18.175: Lecture 22 Ergodic theory

Scott Sheffield

MIT

Setup

Birkhoff's ergodic theorem

Setup

Birkhoff's ergodic theorem

Consider independent bond percolation on Z² with some fixed parameter p > 1/2. Look at some simulations.

- Consider independent bond percolation on Z² with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of Z² to {0,1}, F the usual product σ-algebra, and P = P_p the probability measure.

- Consider independent bond percolation on Z² with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of Z² to {0,1}, F the usual product σ-algebra, and P = P_p the probability measure.
- Now consider an n × n box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as n → ∞?

- Consider independent bond percolation on Z² with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of Z² to {0,1}, F the usual product σ-algebra, and P = P_p the probability measure.
- Now consider an n × n box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as n → ∞?
- Let C_x = 1_{x∈infinitecluster}. If the C_x were independent of each other, then this would just be a law of large numbers question. But the C_x are not independent of each other far from it.

- Consider independent bond percolation on Z² with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of Z² to {0,1}, F the usual product σ-algebra, and P = P_p the probability measure.
- Now consider an n × n box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as n → ∞?
- Let C_x = 1_{x∈infinitecluster}. If the C_x were independent of each other, then this would just be a law of large numbers question. But the C_x are not independent of each other far from it.
- We don't have independence. We have translation invariance instead. Is that good enough?

- Consider independent bond percolation on Z² with some fixed parameter p > 1/2. Look at some simulations.
- Let Ω be the set of maps from the edges of Z² to {0,1}, F the usual product σ-algebra, and P = P_p the probability measure.
- Now consider an n × n box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as n → ∞?
- Let C_x = 1_{x∈infinitecluster}. If the C_x were independent of each other, then this would just be a law of large numbers question. But the C_x are not independent of each other far from it.
- We don't have independence. We have translation invariance instead. Is that good enough?
- More general: C_x distributed in some translation invariant way, EC₀ < ∞. Is mean of C_x (on large box) nearly constant?

Let θ_x be the translation of the Z² that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω. Then C_x(ω) = C₀(θ_{-x}(ω)). So summing up the C_x values is the same as summing up the C₀(θ_x(ω)) value over a range of x.

- Let θ_x be the translation of the Z² that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω. Then C_x(ω) = C₀(θ_{-x}(ω)). So summing up the C_x values is the same as summing up the C₀(θ_x(ω)) value over a range of x.
- The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, *P*-preserving) maps on Ω as φ₁ and φ₂.

- Let θ_x be the translation of the Z² that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω. Then C_x(ω) = C₀(θ_{-x}(ω)). So summing up the C_x values is the same as summing up the C₀(θ_x(ω)) value over a range of x.
- The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, *P*-preserving) maps on Ω as φ₁ and φ₂.
- We're interested in averaging C₀(φ^j₁φ^k₂ω) over a range of (j, k) pairs.

- Let θ_x be the translation of the Z² that moves 0 to x. Each θ_x induces a measure-preserving translation of Ω. Then C_x(ω) = C₀(θ_{-x}(ω)). So summing up the C_x values is the same as summing up the C₀(θ_x(ω)) value over a range of x.
- The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, *P*-preserving) maps on Ω as φ₁ and φ₂.
- We're interested in averaging $C_0(\phi_1^j \phi_2^k \omega)$ over a range of (j, k) pairs.
- Let's simplify matters still further and consider the one-dimensional problem. In this case, we have a random variable X and we study empirical averages of the form

$$N^{-1}\sum_{n=1}^N X(\phi^n \omega).$$

► Could take X_j i.i.d.

- ▶ Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X₀ is uniform in [0,1] and generally X_j = X₀ + αj modulo 1.

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X₀ is uniform in [0,1] and generally X_j = X₀ + αj modulo 1.
- If X₀, X₁,... is stationary and g : ℝ^{0,1,...} → ℝ is measurable, then Y_k = g(X_k, X_{k+1},...) is stationary.

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X₀ is uniform in [0,1] and generally X_j = X₀ + αj modulo 1.
- If X₀, X₁,... is stationary and g : ℝ^{0,1,...} → ℝ is measurable, then Y_k = g(X_k, X_{k+1},...) is stationary.
- Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X₀ is uniform in [0,1] and generally X_j = X₀ + αj modulo 1.
- If X₀, X₁,... is stationary and g : ℝ^{0,1,...} → ℝ is measurable, then Y_k = g(X_k, X_{k+1},...) is stationary.
- Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.
- Can construct two-sided (Z-indexed) stationary sequence from one-sided stationary sequence by Kolmogorov extension.

- Could take X_j i.i.d.
- Or X_n could be a Markov chain, with each individual X_j distributed according to a stationary distribution π.
- Rotations of the circle. Say X₀ is uniform in [0,1] and generally X_j = X₀ + αj modulo 1.
- If X₀, X₁,... is stationary and g : ℝ^{0,1,...} → ℝ is measurable, then Y_k = g(X_k, X_{k+1},...) is stationary.
- Bernoulli shift. X_0, X_1, \ldots are i.i.d. and $Y_k = \sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.
- Can construct two-sided (Z-indexed) stationary sequence from one-sided stationary sequence by Kolmogorov extension.
- ▶ What if X_i are i.i.d. tosses of a p-coin, where p is itself random?

Say that A is **invariant** if the symmetric difference between φ(A) and A has measure zero.

- Say that A is **invariant** if the symmetric difference between φ(A) and A has measure zero.
- Observe: class \mathcal{I} of invariant events is a σ -field.

- Say that A is **invariant** if the symmetric difference between φ(A) and A has measure zero.
- Observe: class \mathcal{I} of invariant events is a σ -field.
- ► Measure preserving transformation is called **ergodic** if *I* is trivial, i.e., every set *A* ∈ *I* satisfies *P*(*A*) ∈ {0,1}.

- Say that A is **invariant** if the symmetric difference between φ(A) and A has measure zero.
- Observe: class \mathcal{I} of invariant events is a σ -field.
- ► Measure preserving transformation is called **ergodic** if *I* is trivial, i.e., every set *A* ∈ *I* satisfies *P*(*A*) ∈ {0,1}.
- Example: If Ω = ℝ^{0,1,...} and A is invariant, then A is necessarily in tail σ-field T, hence has probability zero or one by Kolmogorov's 0 − 1 law. So sequence is ergodic (the shift on sequence space ℝ^{0,1,2,...} is ergodic..

Setup

Birkhoff's ergodic theorem

Setup

Birkhoff's ergodic theorem

• Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

• Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

► Note: if sequence is ergodic, then E(X|I) = E(X), so the limit is just the mean.

• Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

- ► Note: if sequence is ergodic, then E(X|I) = E(X), so the limit is just the mean.
- Proof takes a couple of pages. Shall we work through it?