# 18.175: Lecture 22 <br> Ergodic theory 

Scott Sheffield

MIT

## Outline

Setup

Birkhoff's ergodic theorem
18.175 Lecture 22

## Outline

## Setup

## Birkhoff's ergodic theorem

## Motivating problem

- Consider independent bond percolation on $\mathbb{Z}^{2}$ with some fixed parameter $p>1 / 2$. Look at some simulations.


## Motivating problem

- Consider independent bond percolation on $\mathbb{Z}^{2}$ with some fixed parameter $p>1 / 2$. Look at some simulations.
- Let $\Omega$ be the set of maps from the edges of $\mathbb{Z}^{2}$ to $\{0,1\}, \mathcal{F}$ the usual product $\sigma$-algebra, and $P=P_{p}$ the probability measure.


## Motivating problem

- Consider independent bond percolation on $\mathbb{Z}^{2}$ with some fixed parameter $p>1 / 2$. Look at some simulations.
- Let $\Omega$ be the set of maps from the edges of $\mathbb{Z}^{2}$ to $\{0,1\}, \mathcal{F}$ the usual product $\sigma$-algebra, and $P=P_{p}$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \rightarrow \infty$ ?


## Motivating problem

- Consider independent bond percolation on $\mathbb{Z}^{2}$ with some fixed parameter $p>1 / 2$. Look at some simulations.
- Let $\Omega$ be the set of maps from the edges of $\mathbb{Z}^{2}$ to $\{0,1\}, \mathcal{F}$ the usual product $\sigma$-algebra, and $P=P_{p}$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \rightarrow \infty$ ?
- Let $C_{x}=1_{x \in \text { infinitecluster }}$. If the $C_{x}$ were independent of each other, then this would just be a law of large numbers question. But the $C_{x}$ are not independent of each other - far from it.


## Motivating problem

- Consider independent bond percolation on $\mathbb{Z}^{2}$ with some fixed parameter $p>1 / 2$. Look at some simulations.
- Let $\Omega$ be the set of maps from the edges of $\mathbb{Z}^{2}$ to $\{0,1\}, \mathcal{F}$ the usual product $\sigma$-algebra, and $P=P_{p}$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \rightarrow \infty$ ?
- Let $C_{x}=1_{x \in \text { infinitecluster }}$. If the $C_{x}$ were independent of each other, then this would just be a law of large numbers question. But the $C_{x}$ are not independent of each other - far from it.
- We don't have independence. We have translation invariance instead. Is that good enough?


## Motivating problem

- Consider independent bond percolation on $\mathbb{Z}^{2}$ with some fixed parameter $p>1 / 2$. Look at some simulations.
- Let $\Omega$ be the set of maps from the edges of $\mathbb{Z}^{2}$ to $\{0,1\}, \mathcal{F}$ the usual product $\sigma$-algebra, and $P=P_{p}$ the probability measure.
- Now consider an $n \times n$ box centered at 0 and ask: what fraction of the points in that box belong to an infinite clusters? Does this fraction converge to a limit (in some sense: in probability, or maybe almost surely) as $n \rightarrow \infty$ ?
- Let $C_{x}=1_{x \in \text { infinitecluster }}$. If the $C_{x}$ were independent of each other, then this would just be a law of large numbers question. But the $C_{x}$ are not independent of each other - far from it.
- We don't have independence. We have translation invariance instead. Is that good enough?
- More general: $C_{x}$ distributed in some translation invariant way, $E C_{0}<\infty$. Is mean of $C_{x}$ (on large box) nearly constant?


## Rephrasing problem

- Let $\theta_{x}$ be the translation of the $\mathbb{Z}^{2}$ that moves 0 to $x$. Each $\theta_{x}$ induces a measure-preserving translation of $\Omega$. Then $C_{x}(\omega)=C_{0}\left(\theta_{-x}(\omega)\right)$. So summing up the $C_{x}$ values is the same as summing up the $C_{0}\left(\theta_{x}(\omega)\right)$ value over a range of $x$.


## Rephrasing problem

- Let $\theta_{x}$ be the translation of the $\mathbb{Z}^{2}$ that moves 0 to $x$. Each $\theta_{x}$ induces a measure-preserving translation of $\Omega$. Then $C_{x}(\omega)=C_{0}\left(\theta_{-x}(\omega)\right)$. So summing up the $C_{x}$ values is the same as summing up the $C_{0}\left(\theta_{x}(\omega)\right)$ value over a range of $x$.
- The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, $P$-preserving) maps on $\Omega$ as $\phi_{1}$ and $\phi_{2}$.


## Rephrasing problem

- Let $\theta_{x}$ be the translation of the $\mathbb{Z}^{2}$ that moves 0 to $x$. Each $\theta_{x}$ induces a measure-preserving translation of $\Omega$. Then $C_{x}(\omega)=C_{0}\left(\theta_{-x}(\omega)\right)$. So summing up the $C_{x}$ values is the same as summing up the $C_{0}\left(\theta_{x}(\omega)\right)$ value over a range of $x$.
- The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, $P$-preserving) maps on $\Omega$ as $\phi_{1}$ and $\phi_{2}$.
- We're interested in averaging $C_{0}\left(\phi_{1}^{j} \phi_{2}^{k} \omega\right)$ over a range of $(j, k)$ pairs.


## Rephrasing problem

- Let $\theta_{x}$ be the translation of the $\mathbb{Z}^{2}$ that moves 0 to $x$. Each $\theta_{x}$ induces a measure-preserving translation of $\Omega$. Then $C_{x}(\omega)=C_{0}\left(\theta_{-x}(\omega)\right)$. So summing up the $C_{x}$ values is the same as summing up the $C_{0}\left(\theta_{x}(\omega)\right)$ value over a range of $x$.
- The group of translations is generated by a one-step vertical and a one-step horizontal translation. Refer to the corresponding (commuting, $P$-preserving) maps on $\Omega$ as $\phi_{1}$ and $\phi_{2}$.
- We're interested in averaging $C_{0}\left(\phi_{1}^{j} \phi_{2}^{k} \omega\right)$ over a range of $(j, k)$ pairs.
- Let's simplify matters still further and consider the one-dimensional problem. In this case, we have a random variable $X$ and we study empirical averages of the form

$$
N^{-1} \sum_{n=1}^{N} X\left(\phi^{n} \omega\right)
$$

## Examples: stationary $X_{j}$ sequences

- Could take $X_{j}$ i.i.d.


## Examples: stationary $X_{j}$ sequences

- Could take $X_{j}$ i.i.d.
- Or $X_{n}$ could be a Markov chain, with each individual $X_{j}$ distributed according to a stationary distribution $\pi$.


## Examples: stationary $X_{j}$ sequences

- Could take $X_{j}$ i.i.d.
- Or $X_{n}$ could be a Markov chain, with each individual $X_{j}$ distributed according to a stationary distribution $\pi$.
- Rotations of the circle. Say $X_{0}$ is uniform in $[0,1]$ and generally $X_{j}=X_{0}+\alpha j$ modulo 1 .


## Examples: stationary $X_{j}$ sequences

- Could take $X_{j}$ i.i.d.
- Or $X_{n}$ could be a Markov chain, with each individual $X_{j}$ distributed according to a stationary distribution $\pi$.
- Rotations of the circle. Say $X_{0}$ is uniform in $[0,1]$ and generally $X_{j}=X_{0}+\alpha j$ modulo 1 .
- If $X_{0}, X_{1}, \ldots$ is stationary and $g: \mathbb{R}^{\{0,1, \ldots\}} \rightarrow \mathbb{R}$ is measurable, then $Y_{k}=g\left(X_{k}, X_{k+1}, \ldots\right)$ is stationary.


## Examples: stationary $X_{j}$ sequences

- Could take $X_{j}$ i.i.d.
- Or $X_{n}$ could be a Markov chain, with each individual $X_{j}$ distributed according to a stationary distribution $\pi$.
- Rotations of the circle. Say $X_{0}$ is uniform in $[0,1]$ and generally $X_{j}=X_{0}+\alpha j$ modulo 1 .
- If $X_{0}, X_{1}, \ldots$ is stationary and $g: \mathbb{R}^{\{0,1, \ldots\}} \rightarrow \mathbb{R}$ is measurable, then $Y_{k}=g\left(X_{k}, X_{k+1}, \ldots\right)$ is stationary.
- Bernoulli shift. $X_{0}, X_{1}, \ldots$ are i.i.d. and $Y_{k}=\sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.


## Examples: stationary $X_{j}$ sequences

- Could take $X_{j}$ i.i.d.
- Or $X_{n}$ could be a Markov chain, with each individual $X_{j}$ distributed according to a stationary distribution $\pi$.
- Rotations of the circle. Say $X_{0}$ is uniform in $[0,1]$ and generally $X_{j}=X_{0}+\alpha j$ modulo 1 .
- If $X_{0}, X_{1}, \ldots$ is stationary and $g: \mathbb{R}^{\{0,1, \ldots\}} \rightarrow \mathbb{R}$ is measurable, then $Y_{k}=g\left(X_{k}, X_{k+1}, \ldots\right)$ is stationary.
- Bernoulli shift. $X_{0}, X_{1}, \ldots$ are i.i.d. and $Y_{k}=\sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.
- Can construct two-sided ( $\mathbb{Z}$-indexed) stationary sequence from one-sided stationary sequence by Kolmogorov extension.


## Examples: stationary $X_{j}$ sequences

- Could take $X_{j}$ i.i.d.
- Or $X_{n}$ could be a Markov chain, with each individual $X_{j}$ distributed according to a stationary distribution $\pi$.
- Rotations of the circle. Say $X_{0}$ is uniform in $[0,1]$ and generally $X_{j}=X_{0}+\alpha j$ modulo 1 .
- If $X_{0}, X_{1}, \ldots$ is stationary and $g: \mathbb{R}^{\{0,1, \ldots\}} \rightarrow \mathbb{R}$ is measurable, then $Y_{k}=g\left(X_{k}, X_{k+1}, \ldots\right)$ is stationary.
- Bernoulli shift. $X_{0}, X_{1}, \ldots$ are i.i.d. and $Y_{k}=\sum_{j=1}^{\infty} X_{k+j} 2^{-j}$.
- Can construct two-sided ( $\mathbb{Z}$-indexed) stationary sequence from one-sided stationary sequence by Kolmogorov extension.
- What if $X_{i}$ are i.i.d. tosses of a $p$-coin, where $p$ is itself random?


## Definitions

- Say that $A$ is invariant if the symmetric difference between $\phi(A)$ and $A$ has measure zero.


## Definitions

- Say that $A$ is invariant if the symmetric difference between $\phi(A)$ and $A$ has measure zero.
- Observe: class $\mathcal{I}$ of invariant events is a $\sigma$-field.


## Definitions

- Say that $A$ is invariant if the symmetric difference between $\phi(A)$ and $A$ has measure zero.
- Observe: class $\mathcal{I}$ of invariant events is a $\sigma$-field.
- Measure preserving transformation is called ergodic if $\mathcal{I}$ is trivial, i.e., every set $A \in \mathcal{I}$ satisfies $P(A) \in\{0,1\}$.


## Definitions

- Say that $A$ is invariant if the symmetric difference between $\phi(A)$ and $A$ has measure zero.
- Observe: class $\mathcal{I}$ of invariant events is a $\sigma$-field.
- Measure preserving transformation is called ergodic if $\mathcal{I}$ is trivial, i.e., every set $A \in \mathcal{I}$ satisfies $P(A) \in\{0,1\}$.
- Example: If $\Omega=\mathbb{R}^{\{0,1, \ldots\}}$ and $A$ is invariant, then $A$ is necessarily in tail $\sigma$-field $\mathcal{T}$, hence has probability zero or one by Kolmogorov's $0-1$ law. So sequence is ergodic (the shift on sequence space $\mathbb{R}^{\{0,1,2, \ldots\}}$ is ergodic..


## Outline

Setup

Birkhoff's ergodic theorem
18.175 Lecture 22

## Outline

## Setup

Birkhoff's ergodic theorem
18.175 Lecture 22

## Ergodic theorem

- Let $\phi$ be a measure preserving transformation of $(\Omega, \mathcal{F}, P)$. Then for any $X \in L^{1}$ we have

$$
\frac{1}{n} \sum_{m=0}^{n-1} X\left(\phi^{m} \omega\right) \rightarrow E(X \mid \mathcal{I})
$$

a.s. and in $L^{1}$.

## Ergodic theorem

- Let $\phi$ be a measure preserving transformation of $(\Omega, \mathcal{F}, P)$. Then for any $X \in L^{1}$ we have

$$
\frac{1}{n} \sum_{m=0}^{n-1} X\left(\phi^{m} \omega\right) \rightarrow E(X \mid \mathcal{I})
$$

a.s. and in $L^{1}$.

- Note: if sequence is ergodic, then $E(X \mid \mathcal{I})=E(X)$, so the limit is just the mean.


## Ergodic theorem

- Let $\phi$ be a measure preserving transformation of $(\Omega, \mathcal{F}, P)$. Then for any $X \in L^{1}$ we have

$$
\frac{1}{n} \sum_{m=0}^{n-1} X\left(\phi^{m} \omega\right) \rightarrow E(X \mid \mathcal{I})
$$

a.s. and in $L^{1}$.

- Note: if sequence is ergodic, then $E(X \mid \mathcal{I})=E(X)$, so the limit is just the mean.
- Proof takes a couple of pages. Shall we work through it?

