18.175: Lecture 21

More Markov chains

Scott Sheffield

MIT

Recollections

General setup and basic properties

Recurrence and transience

Recollections

General setup and basic properties

Recurrence and transience

Consider a sequence of random variables X₀, X₁, X₂,... each taking values in the same state space, which for now we take to be a finite set that we label by {0, 1, ..., M}.

- ► Consider a sequence of random variables X₀, X₁, X₂,... each taking values in the same state space, which for now we take to be a finite set that we label by {0, 1, ..., M}.
- Interpret X_n as state of the system at time n.

- Consider a sequence of random variables X₀, X₁, X₂,... each taking values in the same state space, which for now we take to be a finite set that we label by {0, 1, ..., M}.
- Interpret X_n as state of the system at time n.
- Sequence is called a Markov chain if we have a fixed collection of numbers P_{ij} (one for each pair i, j ∈ {0, 1, ..., M}) such that whenever the system is in state i, there is probability P_{ij} that system will next be in state j.

- Consider a sequence of random variables X₀, X₁, X₂,... each taking values in the same state space, which for now we take to be a finite set that we label by {0, 1, ..., M}.
- Interpret X_n as state of the system at time n.
- Sequence is called a Markov chain if we have a fixed collection of numbers P_{ij} (one for each pair i, j ∈ {0, 1, ..., M}) such that whenever the system is in state i, there is probability P_{ij} that system will next be in state j.
- Precisely,

$$P\{X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_1 = i_1, X_0 = i_0\} = P_{ij}$$

- Consider a sequence of random variables X₀, X₁, X₂,... each taking values in the same state space, which for now we take to be a finite set that we label by {0, 1, ..., M}.
- Interpret X_n as state of the system at time n.
- Sequence is called a Markov chain if we have a fixed collection of numbers P_{ij} (one for each pair i, j ∈ {0, 1, ..., M}) such that whenever the system is in state i, there is probability P_{ij} that system will next be in state j.

Precisely,

$$P\{X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_1 = i_1, X_0 = i_0\} = P_{ij}.$$

 Kind of an "almost memoryless" property. Probability distribution for next state depends only on the current state (and not on the rest of the state history). ▶ To describe a Markov chain, we need to define P_{ij} for any $i, j \in \{0, 1, ..., M\}$.

- ▶ To describe a Markov chain, we need to define P_{ij} for any $i, j \in \{0, 1, ..., M\}$.
- It is convenient to represent the collection of transition probabilities P_{ij} as a matrix:

$$A = \begin{pmatrix} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ \vdots & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{pmatrix}$$

- ▶ To describe a Markov chain, we need to define P_{ij} for any $i, j \in \{0, 1, ..., M\}$.
- It is convenient to represent the collection of transition probabilities P_{ij} as a matrix:

$$A = \begin{pmatrix} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ \vdots & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{pmatrix}$$

▶ For this to make sense, we require $P_{ij} \ge 0$ for all i, j and $\sum_{j=0}^{M} P_{ij} = 1$ for each i. That is, the rows sum to one.

Powers of transition matrix

We write P⁽ⁿ⁾_{ij} for the probability to go from state i to state j over n steps.

Powers of transition matrix

- We write P⁽ⁿ⁾_{ij} for the probability to go from state i to state j over n steps.
- From the matrix point of view

$$\begin{pmatrix} P_{00}^{(n)} & P_{01}^{(n)} & \dots & P_{0M}^{(n)} \\ P_{10}^{(n)} & P_{11}^{(n)} & \dots & P_{1M}^{(n)} \\ \vdots & & & & \\ \vdots & & & & \\ P_{M0}^{(n)} & P_{M1}^{(n)} & \dots & P_{MM}^{(n)} \end{pmatrix} = \begin{pmatrix} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ P_{10} & P_{11} & \dots & P_{1M} \end{pmatrix}^{n}$$

Powers of transition matrix

- We write P⁽ⁿ⁾_{ij} for the probability to go from state i to state j over n steps.
- From the matrix point of view

$$\begin{pmatrix} P_{00}^{(n)} & P_{01}^{(n)} & \dots & P_{0M}^{(n)} \\ P_{10}^{(n)} & P_{11}^{(n)} & \dots & P_{1M}^{(n)} \\ \vdots & & & & \\ \vdots & & & & \\ P_{M0}^{(n)} & P_{M1}^{(n)} & \dots & P_{MM}^{(n)} \end{pmatrix} = \begin{pmatrix} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ \vdots & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{pmatrix}^{n}$$

► If A is the one-step transition matrix, then Aⁿ is the *n*-step transition matrix.

Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- Turns out that if chain has this property, then π_j := lim_{n→∞} P⁽ⁿ⁾_{ij} exists and the π_j are the unique non-negative solutions of π_j = Σ^M_{k=0} π_kP_{kj} that sum to one.

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- ► Turns out that if chain has this property, then $\pi_j := \lim_{n\to\infty} P_{ij}^{(n)}$ exists and the π_j are the unique non-negative solutions of $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ that sum to one.
- This means that the row vector

$$\pi = \left(\begin{array}{ccc} \pi_0 & \pi_1 & \dots & \pi_M \end{array}\right)$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A = \pi$.

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- ► Turns out that if chain has this property, then $\pi_j := \lim_{n\to\infty} P_{ij}^{(n)}$ exists and the π_j are the unique non-negative solutions of $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ that sum to one.
- This means that the row vector

$$\pi = \left(\begin{array}{ccc} \pi_0 & \pi_1 & \dots & \pi_M \end{array}\right)$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A = \pi$.

• We call π the *stationary distribution* of the Markov chain.

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- ► Turns out that if chain has this property, then $\pi_j := \lim_{n\to\infty} P_{ij}^{(n)}$ exists and the π_j are the unique non-negative solutions of $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ that sum to one.
- This means that the row vector

$$\pi = \left(\begin{array}{ccc} \pi_0 & \pi_1 & \dots & \pi_M \end{array}\right)$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A = \pi$.

- We call π the stationary distribution of the Markov chain.
- One can solve the system of linear equations
 π_j = Σ^M_{k=0} π_kP_{kj} to compute the values π_j. Equivalent to
 considering A fixed and solving πA = π. Or solving
 (A − I)π = 0. This determines π up to a multiplicative
 constant, and fact that Σπ_j = 1 determines the constant.

• Random walks on \mathbb{R}^d .

- Random walks on \mathbb{R}^d .
- Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.

- Random walks on \mathbb{R}^d .
- ► Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).

- Random walks on \mathbb{R}^d .
- ► Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.

- Random walks on \mathbb{R}^d .
- ► Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).

- Random walks on \mathbb{R}^d .
- ► Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- ► Birth and death chains (changes by ±1). Stationarity distribution?

- Random walks on \mathbb{R}^d .
- ► Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- ► Birth and death chains (changes by ±1). Stationarity distribution?
- M/G/1 queues.

- Random walks on \mathbb{R}^d .
- ► Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- ► Birth and death chains (changes by ±1). Stationarity distribution?
- M/G/1 queues.
- Random walk on a graph. Stationary distribution?

- Random walks on \mathbb{R}^d .
- ► Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- ► Birth and death chains (changes by ±1). Stationarity distribution?
- M/G/1 queues.
- Random walk on a graph. Stationary distribution?
- ▶ Random walk on directed graph (e.g., single directed chain).

- Random walks on \mathbb{R}^d .
- ► Branching processes: p(i,j) = P(∑ⁱ_{m=1} ξ_m = j) where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- ► Birth and death chains (changes by ±1). Stationarity distribution?
- M/G/1 queues.
- Random walk on a graph. Stationary distribution?
- Random walk on directed graph (e.g., single directed chain).
- Snakes and ladders.

Recollections

General setup and basic properties

Recurrence and transience

Recollections

General setup and basic properties

Recurrence and transience

• Consider a measurable space (S, S).

- Consider a measurable space (S, S).
- A function $p: S \times S \rightarrow \mathbb{R}$ is a **transition probability** if

- Consider a measurable space (S, S).
- A function $p: S \times S \to \mathbb{R}$ is a **transition probability** if
 - For each $x \in S$, $A \rightarrow p(x, A)$ is a probability measure on S, S).

- Consider a measurable space (S, S).
- A function $p: S \times S \to \mathbb{R}$ is a **transition probability** if
 - ▶ For each $x \in S$, $A \rightarrow p(x, A)$ is a probability measure on S, S).
 - ▶ For each $A \in S$, the map $x \to p(x, A)$ is a measurable function.

- Consider a measurable space (S, S).
- A function $p: S \times S \rightarrow \mathbb{R}$ is a **transition probability** if
 - For each $x \in S$, $A \rightarrow p(x, A)$ is a probability measure on S, S).
 - For each $A \in S$, the map $x \to p(x, A)$ is a measurable function.
- Say that X_n is a Markov chain w.r.t. F_n with transition probability p if P(X_{n+1} ∈ B|F_n) = p(X_n, B).

Markov chains: general definition

- Consider a measurable space (S, S).
- A function $p: S \times S \to \mathbb{R}$ is a **transition probability** if
 - ▶ For each $x \in S$, $A \rightarrow p(x, A)$ is a probability measure on S, S).
 - For each $A \in S$, the map $x \to p(x, A)$ is a measurable function.
- Say that X_n is a Markov chain w.r.t. F_n with transition probability p if P(X_{n+1} ∈ B|F_n) = p(X_n, B).
- How do we construct an infinite Markov chain? Choose p and initial distribution µ on (S, S). For each n < ∞ write</p>

$$P(X_j \in B_j, 0 \leq j \leq n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots$$

$$\int_{B_n} p(x_{n-1}, dx_n).$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.

- ▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ► Construction, again: Fix initial distribution µ on (S, S). For each n < ∞ write</p>

$$P(X_j \in B_j, 0 \le j \le n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots$$
$$\int_{B_n} p(x_{n-1}, dx_n).$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

- ▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ► Construction, again: Fix initial distribution µ on (S, S). For each n < ∞ write</p>

$$P(X_j \in B_j, 0 \leq j \leq n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots$$

 $\int_{B_n} p(x_{n-1}, dx_n).$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

Notation: Extension produces probability measure P_μ on sequence space (S^{0,1,...}, S^{0,1,...}).

- ▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ► Construction, again: Fix initial distribution µ on (S, S). For each n < ∞ write</p>

$$egin{aligned} P(X_j \in B_j, 0 \leq j \leq n) &= \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots & \ &\int_{B_n} p(x_{n-1}, dx_n). \end{aligned}$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

- Notation: Extension produces probability measure P_μ on sequence space (S^{0,1,...}, S^{0,1,...}).
- **Theorem:** (X_0, X_1, \ldots) chosen from P_{μ} is Markov chain.

- ▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ► Construction, again: Fix initial distribution µ on (S,S). For each n < ∞ write</p>

$$egin{aligned} \mathcal{P}(X_j\in B_j, 0\leq j\leq n) &= \int_{B_0}\mu(dx_0)\int_{B_1}p(x_0,dx_1)\cdots && \ &\int_{B_n}p(x_{n-1},dx_n). \end{aligned}$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

- Notation: Extension produces probability measure P_μ on sequence space (S^{0,1,...}, S^{0,1,...}).
- **Theorem:** (X_0, X_1, \ldots) chosen from P_{μ} is Markov chain.
- Theorem: If X_n is any Markov chain with initial distribution μ and transition p, then finite dim. probabilities are as above.

Markov properties

Markov property: Take (Ω₀, F) = (S^{0,1,...}, S^{0,1,...}), and let P_μ be Markov chain measure and θ_n the shift operator on Ω₀ (shifts sequence n units to left, discarding elements shifted off the edge). If Y : Ω₀ → ℝ is bounded and measurable then

$$E_{\mu}(Y \circ \theta_n | \mathcal{F}_n) = E_{X_n} Y.$$

Markov property: Take (Ω₀, F) = (S^{0,1,...}, S^{0,1,...}), and let P_μ be Markov chain measure and θ_n the shift operator on Ω₀ (shifts sequence n units to left, discarding elements shifted off the edge). If Y : Ω₀ → ℝ is bounded and measurable then

$$E_{\mu}(Y \circ \theta_n | \mathcal{F}_n) = E_{X_n} Y.$$

▶ Strong Markov property: Can replace *n* with a.s. finite stopping time *N* and function *Y* can vary with time. Suppose that for each *n*, $Y_n : \Omega_n \to \mathbb{R}$ is measurable and $|Y_n| \leq M$ for all *n*. Then

$$E_{\mu}(Y_N \circ \theta_N | \mathcal{F}_N) = E_{X_N} Y_N,$$

where RHS means $E_x Y_n$ evaluated at $x = X_n$, n = N.

Property of infinite opportunities: Suppose X_n is Markov chain and

$$P(\cup_{m=n+1}^{\infty} \{X_m \in B_m\} | X_n) \ge \delta > 0$$

on $\{X_n \in A_n\}$. Then $P(\{X_n \in A_n i.o.\} - \{X_n \in B_n i.o.\}) = 0$.

Property of infinite opportunities: Suppose X_n is Markov chain and

$$P(\bigcup_{m=n+1}^{\infty} \{X_m \in B_m\} | X_n) \geq \delta > 0$$

on $\{X_n \in A_n\}$. Then $P(\{X_n \in A_n i.o.\} - \{X_n \in B_n i.o.\}) = 0$.

▶ **Reflection principle:** Symmetric random walks on \mathbb{R} . Have $P(\sup_{m \ge n} S_m > a) \le 2P(S_n > a)$.

Property of infinite opportunities: Suppose X_n is Markov chain and

$$P(\bigcup_{m=n+1}^{\infty} \{X_m \in B_m\} | X_n) \geq \delta > 0$$

on $\{X_n \in A_n\}$. Then $P(\{X_n \in A_n i.o.\} - \{X_n \in B_n i.o.\}) = 0$.

- ▶ **Reflection principle:** Symmetric random walks on \mathbb{R} . Have $P(\sup_{m \ge n} S_m > a) \le 2P(S_n > a)$.
- Proof idea: Reflection picture.

► Measure µ called reversible if µ(x)p(x, y) = µ(y)p(y, x) for all x, y.

- ► Measure µ called reversible if µ(x)p(x, y) = µ(y)p(y, x) for all x, y.
- Reversibility implies stationarity. Implies that amount of mass moving from x to y is same as amount moving from y to x. Net flow of zero along each edge.

- ► Measure µ called reversible if µ(x)p(x, y) = µ(y)p(y, x) for all x, y.
- Reversibility implies stationarity. Implies that amount of mass moving from x to y is same as amount moving from y to x. Net flow of zero along each edge.
- Markov chain called reversible if admits a reversible probability measure.

- ► Measure µ called reversible if µ(x)p(x, y) = µ(y)p(y, x) for all x, y.
- Reversibility implies stationarity. Implies that amount of mass moving from x to y is same as amount moving from y to x. Net flow of zero along each edge.
- Markov chain called reversible if admits a reversible probability measure.
- ► Are all random walks on (undirected) graphs reversible?

- ► Measure µ called reversible if µ(x)p(x, y) = µ(y)p(y, x) for all x, y.
- Reversibility implies stationarity. Implies that amount of mass moving from x to y is same as amount moving from y to x. Net flow of zero along each edge.
- Markov chain called reversible if admits a reversible probability measure.
- Are all random walks on (undirected) graphs reversible?
- What about directed graphs?

► **Kolmogorov's cycle theorem:** Suppose *p* is irreducible. Then exists reversible measure if and only if

- ► **Kolmogorov's cycle theorem:** Suppose *p* is irreducible. Then exists reversible measure if and only if
 - p(x, y) > 0 implies p(y, x) > 0

- ► **Kolmogorov's cycle theorem:** Suppose *p* is irreducible. Then exists reversible measure if and only if
 - p(x, y) > 0 implies p(y, x) > 0
 - for any loop x_0, x_1, \ldots, x_n with $\prod_{i=1}^n p(x_i, x_{i-1}) > 0$, we have

$$\prod_{i=1}^{n} \frac{p(x_{i-1}, x_i)}{p(x_i, x_{i-1})} = 1.$$

- ► **Kolmogorov's cycle theorem:** Suppose *p* is irreducible. Then exists reversible measure if and only if
 - p(x, y) > 0 implies p(y, x) > 0
 - for any loop x_0, x_1, \ldots, x_n with $\prod_{i=1}^n p(x_i, x_{i-1}) > 0$, we have

$$\prod_{i=1}^{n} \frac{p(x_{i-1}, x_i)}{p(x_i, x_{i-1})} = 1.$$

 Useful idea to have in mind when constructing Markov chains with given reversible distribution, as needed in Monte Carlo Markov Chains (MCMC) applications.

Recollections

General setup and basic properties

Recurrence and transience

Recollections

General setup and basic properties

Recurrence and transience

► Interesting question: If A is an infinite probability transition matrix on a countable state space, what does the (infinite) matrix I + A + A² + A³ + ... = (I - A)⁻¹ represent (if the sum converges)?

- ► Interesting question: If A is an infinite probability transition matrix on a countable state space, what does the (infinite) matrix I + A + A² + A³ + ... = (I - A)⁻¹ represent (if the sum converges)?
- Question: Does it describe the expected number of y hits when starting at x? Is there a similar interpretation for other power series?

- ► Interesting question: If A is an infinite probability transition matrix on a countable state space, what does the (infinite) matrix I + A + A² + A³ + ... = (I - A)⁻¹ represent (if the sum converges)?
- Question: Does it describe the expected number of y hits when starting at x? Is there a similar interpretation for other power series?
- How about e^A or $e^{\lambda A}$?

- ► Interesting question: If A is an infinite probability transition matrix on a countable state space, what does the (infinite) matrix I + A + A² + A³ + ... = (I - A)⁻¹ represent (if the sum converges)?
- Question: Does it describe the expected number of y hits when starting at x? Is there a similar interpretation for other power series?
- How about e^A or $e^{\lambda A}$?
- Related to distribution after a Poisson random number of steps?

Consider probability walk from y ever returns to y.

- Consider probability walk from y ever returns to y.
- If it's 1, return to y infinitely often, else don't. Call y a recurrent state if we return to y infinitely often.