18.175: Lecture 21
 More Markov chains

Scott Sheffield

MIT

Outline

Recollections

General setup and basic properties

Recurrence and transience
18.175 Lecture 21

Outline

Recollections

General setup and basic properties

Recurrence and transience

18.175 Lecture 21

Markov chains

- Consider a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0,1, \ldots, M\}$.

Markov chains

- Consider a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0,1, \ldots, M\}$.
- Interpret X_{n} as state of the system at time n.

Markov chains

- Consider a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0,1, \ldots, M\}$.
- Interpret X_{n} as state of the system at time n.
- Sequence is called a Markov chain if we have a fixed collection of numbers $P_{i j}$ (one for each pair $i, j \in\{0,1, \ldots, M\}$) such that whenever the system is in state i, there is probability $P_{i j}$ that system will next be in state j.

Markov chains

- Consider a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0,1, \ldots, M\}$.
- Interpret X_{n} as state of the system at time n.
- Sequence is called a Markov chain if we have a fixed collection of numbers $P_{i j}$ (one for each pair $i, j \in\{0,1, \ldots, M\}$) such that whenever the system is in state i, there is probability $P_{i j}$ that system will next be in state j.
- Precisely,

$$
P\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{1}=i_{1}, X_{0}=i_{0}\right\}=P_{i j}
$$

Markov chains

- Consider a sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0,1, \ldots, M\}$.
- Interpret X_{n} as state of the system at time n.
- Sequence is called a Markov chain if we have a fixed collection of numbers $P_{i j}$ (one for each pair $i, j \in\{0,1, \ldots, M\}$) such that whenever the system is in state i, there is probability $P_{i j}$ that system will next be in state j.
- Precisely, $P\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{1}=i_{1}, X_{0}=i_{0}\right\}=P_{i j}$.
- Kind of an "almost memoryless" property. Probability distribution for next state depends only on the current state (and not on the rest of the state history).

Matrix representation

- To describe a Markov chain, we need to define $P_{i j}$ for any $i, j \in\{0,1, \ldots, M\}$.

Matrix representation

- To describe a Markov chain, we need to define $P_{i j}$ for any $i, j \in\{0,1, \ldots, M\}$.
- It is convenient to represent the collection of transition probabilities $P_{i j}$ as a matrix:

$$
A=\left(\begin{array}{cccc}
P_{00} & P_{01} & \ldots & P_{0 M} \\
P_{10} & P_{11} & \ldots & P_{1 M} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
P_{M 0} & P_{M 1} & \ldots & P_{M M}
\end{array}\right)
$$

Matrix representation

- To describe a Markov chain, we need to define $P_{i j}$ for any $i, j \in\{0,1, \ldots, M\}$.
- It is convenient to represent the collection of transition probabilities $P_{i j}$ as a matrix:

$$
A=\left(\begin{array}{cccc}
P_{00} & P_{01} & \ldots & P_{0 M} \\
P_{10} & P_{11} & \ldots & P_{1 M} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
P_{M 0} & P_{M 1} & \ldots & P_{M M}
\end{array}\right)
$$

- For this to make sense, we require $P_{i j} \geq 0$ for all i, j and $\sum_{j=0}^{M} P_{i j}=1$ for each i. That is, the rows sum to one.

Powers of transition matrix

- We write $P_{i j}^{(n)}$ for the probability to go from state i to state j over n steps.

Powers of transition matrix

- We write $P_{i j}^{(n)}$ for the probability to go from state i to state j over n steps.
- From the matrix point of view

$$
\left(\begin{array}{cccc}
P_{00}^{(n)} & P_{01}^{(n)} & \ldots & P_{0 M}^{(n)} \\
P_{10}^{(n)} & P_{11}^{(n)} & \ldots & P_{1 M}^{(n)} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
P_{M 0}^{(n)} & P_{M 1}^{(n)} & \ldots & P_{M M}^{(n)}
\end{array}\right)=\left(\begin{array}{cccc}
P_{00} & P_{01} & \ldots & P_{0 M} \\
P_{10} & P_{11} & \ldots & P_{1 M} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
P_{M 0} & P_{M 1} & \ldots & P_{M M}
\end{array}\right)^{n}
$$

Powers of transition matrix

- We write $P_{i j}^{(n)}$ for the probability to go from state i to state j over n steps.
- From the matrix point of view

$$
\left(\begin{array}{cccc}
P_{00}^{(n)} & P_{01}^{(n)} & \ldots & P_{0 M}^{(n)} \\
P_{10}^{(n)} & P_{11}^{(n)} & \ldots & P_{1 M}^{(n)} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
P_{M 0}^{(n)} & P_{M 1}^{(n)} & \ldots & P_{M M}^{(n)}
\end{array}\right)=\left(\begin{array}{cccc}
P_{00} & P_{01} & \ldots & P_{0 M} \\
P_{10} & P_{11} & \ldots & P_{1 M} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
P_{M 0} & P_{M 1} & \ldots & P_{M M}
\end{array}\right)^{n}
$$

- If A is the one-step transition matrix, then A^{n} is the n-step transition matrix.

Ergodic Markov chains

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.

Ergodic Markov chains

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- Turns out that if chain has this property, then $\pi_{j}:=\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ exists and the π_{j} are the unique non-negative solutions of $\pi_{j}=\sum_{k=0}^{M} \pi_{k} P_{k j}$ that sum to one.

Ergodic Markov chains

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- Turns out that if chain has this property, then $\pi_{j}:=\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ exists and the π_{j} are the unique non-negative solutions of $\pi_{j}=\sum_{k=0}^{M} \pi_{k} P_{k j}$ that sum to one.
- This means that the row vector

$$
\pi=\left(\begin{array}{llll}
\pi_{0} & \pi_{1} & \ldots & \pi_{M}
\end{array}\right)
$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A=\pi$.

Ergodic Markov chains

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- Turns out that if chain has this property, then $\pi_{j}:=\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ exists and the π_{j} are the unique non-negative solutions of $\pi_{j}=\sum_{k=0}^{M} \pi_{k} P_{k j}$ that sum to one.
- This means that the row vector

$$
\pi=\left(\begin{array}{llll}
\pi_{0} & \pi_{1} & \ldots & \pi_{M}
\end{array}\right)
$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A=\pi$.

- We call π the stationary distribution of the Markov chain.

Ergodic Markov chains

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- Turns out that if chain has this property, then $\pi_{j}:=\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ exists and the π_{j} are the unique non-negative solutions of $\pi_{j}=\sum_{k=0}^{M} \pi_{k} P_{k j}$ that sum to one.
- This means that the row vector

$$
\pi=\left(\begin{array}{llll}
\pi_{0} & \pi_{1} & \ldots & \pi_{M}
\end{array}\right)
$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A=\pi$.

- We call π the stationary distribution of the Markov chain.
- One can solve the system of linear equations $\pi_{j}=\sum_{k=0}^{M} \pi_{k} P_{k j}$ to compute the values π_{j}. Equivalent to considering A fixed and solving $\pi A=\pi$. Or solving $(A-I) \pi=0$. This determines π up to a multiplicative constant, and fact that $\sum \pi_{j}=1$ determines the constant.

Examples

- Random walks on \mathbb{R}^{d}.

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- Birth and death chains (changes by ± 1). Stationarity distribution?

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- Birth and death chains (changes by ± 1). Stationarity distribution?
- M/G/1 queues.

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- Birth and death chains (changes by ± 1). Stationarity distribution?
- M/G/1 queues.
- Random walk on a graph. Stationary distribution?

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- Birth and death chains (changes by ± 1). Stationarity distribution?
- M/G/1 queues.
- Random walk on a graph. Stationary distribution?
- Random walk on directed graph (e.g., single directed chain).

Examples

- Random walks on \mathbb{R}^{d}.
- Branching processes: $p(i, j)=P\left(\sum_{m=1}^{i} \xi_{m}=j\right)$ where ξ_{i} are i.i.d. non-negative integer-valued random variables.
- Renewal chain (deterministic unit decreases, random jump when zero hit).
- Card shuffling.
- Ehrenfest chain (n balls in two chambers, randomly pick ball to swap).
- Birth and death chains (changes by ± 1). Stationarity distribution?
- M/G/1 queues.
- Random walk on a graph. Stationary distribution?
- Random walk on directed graph (e.g., single directed chain).
- Snakes and ladders.

Outline

Recollections

General setup and basic properties

Recurrence and transience
18.175 Lecture 21

Outline

Recollections

General setup and basic properties

Recurrence and transience

18.175 Lecture 21

Markov chains: general definition

- Consider a measurable space (S, \mathcal{S}).

Markov chains: general definition

- Consider a measurable space (S, \mathcal{S}).
- A function $p: S \times \mathcal{S} \rightarrow \mathbb{R}$ is a transition probability if

Markov chains: general definition

- Consider a measurable space (S, \mathcal{S}).
- A function $p: S \times \mathcal{S} \rightarrow \mathbb{R}$ is a transition probability if
- For each $x \in S, A \rightarrow p(x, A)$ is a probability measure on $S, \mathcal{S})$.

Markov chains: general definition

- Consider a measurable space (S, \mathcal{S}).
- A function $p: S \times \mathcal{S} \rightarrow \mathbb{R}$ is a transition probability if
- For each $x \in S, A \rightarrow p(x, A)$ is a probability measure on $S, \mathcal{S})$.
- For each $A \in S$, the map $x \rightarrow p(x, A)$ is a measurable function.

Markov chains: general definition

- Consider a measurable space (S, \mathcal{S}).
- A function $p: S \times \mathcal{S} \rightarrow \mathbb{R}$ is a transition probability if
- For each $x \in S, A \rightarrow p(x, A)$ is a probability measure on $S, \mathcal{S})$.
- For each $A \in S$, the map $x \rightarrow p(x, A)$ is a measurable function.
- Say that X_{n} is a Markov chain w.r.t. \mathcal{F}_{n} with transition probability p if $P\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=p\left(X_{n}, B\right)$.

Markov chains: general definition

- Consider a measurable space (S, \mathcal{S}).
- A function $p: S \times \mathcal{S} \rightarrow \mathbb{R}$ is a transition probability if
- For each $x \in S, A \rightarrow p(x, A)$ is a probability measure on $S, \mathcal{S})$.
- For each $A \in S$, the map $x \rightarrow p(x, A)$ is a measurable function.
- Say that X_{n} is a Markov chain w.r.t. \mathcal{F}_{n} with transition probability p if $P\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=p\left(X_{n}, B\right)$.
- How do we construct an infinite Markov chain? Choose p and initial distribution μ on (S, \mathcal{S}). For each $n<\infty$ write

$$
\begin{gathered}
P\left(X_{j} \in B_{j}, 0 \leq j \leq n\right)=\int_{B_{0}} \mu\left(d x_{0}\right) \int_{B_{1}} p\left(x_{0}, d x_{1}\right) \cdots \\
\int_{B_{n}} p\left(x_{n-1}, d x_{n}\right) .
\end{gathered}
$$

Extend to $n=\infty$ by Kolmogorov's extension theorem.

Markov chains

- Definition, again: Say X_{n} is a Markov chain w.r.t. \mathcal{F}_{n} with transition probability p if $P\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=p\left(X_{n}, B\right)$.

Markov chains

- Definition, again: Say X_{n} is a Markov chain w.r.t. \mathcal{F}_{n} with transition probability p if $P\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=p\left(X_{n}, B\right)$.
- Construction, again: Fix initial distribution μ on (S, \mathcal{S}). For each $n<\infty$ write

$$
\begin{gathered}
P\left(X_{j} \in B_{j}, 0 \leq j \leq n\right)=\int_{B_{0}} \mu\left(d x_{0}\right) \int_{B_{1}} p\left(x_{0}, d x_{1}\right) \cdots \\
\int_{B_{n}} p\left(x_{n-1}, d x_{n}\right) .
\end{gathered}
$$

Extend to $n=\infty$ by Kolmogorov's extension theorem.

Markov chains

- Definition, again: Say X_{n} is a Markov chain w.r.t. \mathcal{F}_{n} with transition probability p if $P\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=p\left(X_{n}, B\right)$.
- Construction, again: Fix initial distribution μ on (S, \mathcal{S}). For each $n<\infty$ write

$$
\begin{gathered}
P\left(X_{j} \in B_{j}, 0 \leq j \leq n\right)=\int_{B_{0}} \mu\left(d x_{0}\right) \int_{B_{1}} p\left(x_{0}, d x_{1}\right) \cdots \\
\int_{B_{n}} p\left(x_{n-1}, d x_{n}\right) .
\end{gathered}
$$

Extend to $n=\infty$ by Kolmogorov's extension theorem.

- Notation: Extension produces probability measure P_{μ} on sequence space $\left(S^{0,1, \ldots}, \mathcal{S}^{0,1, \ldots}\right)$.

Markov chains

- Definition, again: Say X_{n} is a Markov chain w.r.t. \mathcal{F}_{n} with transition probability p if $P\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=p\left(X_{n}, B\right)$.
- Construction, again: Fix initial distribution μ on (S, \mathcal{S}). For each $n<\infty$ write

$$
\begin{gathered}
P\left(X_{j} \in B_{j}, 0 \leq j \leq n\right)=\int_{B_{0}} \mu\left(d x_{0}\right) \int_{B_{1}} p\left(x_{0}, d x_{1}\right) \cdots \\
\int_{B_{n}} p\left(x_{n-1}, d x_{n}\right) .
\end{gathered}
$$

Extend to $n=\infty$ by Kolmogorov's extension theorem.

- Notation: Extension produces probability measure P_{μ} on sequence space $\left(S^{0,1, \ldots}, \mathcal{S}^{0,1, \ldots}\right)$.
- Theorem: $\left(X_{0}, X_{1}, \ldots\right)$ chosen from P_{μ} is Markov chain.

Markov chains

- Definition, again: Say X_{n} is a Markov chain w.r.t. \mathcal{F}_{n} with transition probability p if $P\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right)=p\left(X_{n}, B\right)$.
- Construction, again: Fix initial distribution μ on (S, \mathcal{S}). For each $n<\infty$ write

$$
\begin{gathered}
P\left(X_{j} \in B_{j}, 0 \leq j \leq n\right)=\int_{B_{0}} \mu\left(d x_{0}\right) \int_{B_{1}} p\left(x_{0}, d x_{1}\right) \cdots \\
\int_{B_{n}} p\left(x_{n-1}, d x_{n}\right) .
\end{gathered}
$$

Extend to $n=\infty$ by Kolmogorov's extension theorem.

- Notation: Extension produces probability measure P_{μ} on sequence space $\left(S^{0,1, \ldots}, \mathcal{S}^{0,1, \ldots}\right)$.
- Theorem: $\left(X_{0}, X_{1}, \ldots\right)$ chosen from P_{μ} is Markov chain.
- Theorem: If X_{n} is any Markov chain with initial distribution μ and transition p, then finite dim. probabilities are as above.

Markov properties

- Markov property: Take $\left(\Omega_{0}, \mathcal{F}\right)=\left(S^{\{0,1, \ldots\}}, \mathcal{S}^{\{0,1, \ldots\}}\right)$, and let P_{μ} be Markov chain measure and θ_{n} the shift operator on Ω_{0} (shifts sequence n units to left, discarding elements shifted off the edge). If $Y: \Omega_{0} \rightarrow \mathbb{R}$ is bounded and measurable then

$$
E_{\mu}\left(Y \circ \theta_{n} \mid \mathcal{F}_{n}\right)=E_{X_{n}} Y
$$

Markov properties

- Markov property: Take $\left(\Omega_{0}, \mathcal{F}\right)=\left(S^{\{0,1, \ldots\}}, \mathcal{S}^{\{0,1, \ldots\}}\right)$, and let P_{μ} be Markov chain measure and θ_{n} the shift operator on Ω_{0} (shifts sequence n units to left, discarding elements shifted off the edge). If $Y: \Omega_{0} \rightarrow \mathbb{R}$ is bounded and measurable then

$$
E_{\mu}\left(Y \circ \theta_{n} \mid \mathcal{F}_{n}\right)=E_{X_{n}} Y
$$

- Strong Markov property: Can replace n with a.s. finite stopping time N and function Y can vary with time. Suppose that for each $n, Y_{n}: \Omega_{n} \rightarrow \mathbb{R}$ is measurable and $\left|Y_{n}\right| \leq M$ for all n. Then

$$
E_{\mu}\left(Y_{N} \circ \theta_{N} \mid \mathcal{F}_{N}\right)=E_{X_{N}} Y_{N},
$$

where RHS means $E_{X} Y_{n}$ evaluated at $x=X_{n}, n=N$.

Properties

- Property of infinite opportunities: Suppose X_{n} is Markov chain and

$$
P\left(\cup_{m=n+1}^{\infty}\left\{X_{m} \in B_{m}\right\} \mid X_{n}\right) \geq \delta>0
$$

$$
\text { on }\left\{X_{n} \in A_{n}\right\} \text {. Then } P\left(\left\{X_{n} \in A_{n} \text { i.o. }\right\}-\left\{X_{n} \in B_{n} \text { i.o. }\right\}\right)=0 \text {. }
$$

Properties

- Property of infinite opportunities: Suppose X_{n} is Markov chain and

$$
P\left(\cup_{m=n+1}^{\infty}\left\{X_{m} \in B_{m}\right\} \mid X_{n}\right) \geq \delta>0
$$

on $\left\{X_{n} \in A_{n}\right\}$. Then $P\left(\left\{X_{n} \in A_{n}\right.\right.$ i.o. $\}-\left\{X_{n} \in B_{n}\right.$ i.o. $\left.\}\right)=0$.

- Reflection principle: Symmetric random walks on \mathbb{R}. Have $P\left(\sup _{m \geq n} S_{m}>a\right) \leq 2 P\left(S_{n}>a\right)$.

Properties

- Property of infinite opportunities: Suppose X_{n} is Markov chain and

$$
P\left(\cup_{m=n+1}^{\infty}\left\{X_{m} \in B_{m}\right\} \mid X_{n}\right) \geq \delta>0
$$

on $\left\{X_{n} \in A_{n}\right\}$. Then $P\left(\left\{X_{n} \in A_{n}\right.\right.$ i.o. $\}-\left\{X_{n} \in B_{n}\right.$ i.o. $\left.\}\right)=0$.

- Reflection principle: Symmetric random walks on \mathbb{R}. Have $P\left(\sup _{m \geq n} S_{m}>a\right) \leq 2 P\left(S_{n}>a\right)$.
- Proof idea: Reflection picture.

Reversibility

- Measure μ called reversible if $\mu(x) p(x, y)=\mu(y) p(y, x)$ for all x, y.

Reversibility

- Measure μ called reversible if $\mu(x) p(x, y)=\mu(y) p(y, x)$ for all x, y.
- Reversibility implies stationarity. Implies that amount of mass moving from x to y is same as amount moving from y to x. Net flow of zero along each edge.

Reversibility

- Measure μ called reversible if $\mu(x) p(x, y)=\mu(y) p(y, x)$ for all x, y.
- Reversibility implies stationarity. Implies that amount of mass moving from x to y is same as amount moving from y to x. Net flow of zero along each edge.
- Markov chain called reversible if admits a reversible probability measure.

Reversibility

- Measure μ called reversible if $\mu(x) p(x, y)=\mu(y) p(y, x)$ for all x, y.
- Reversibility implies stationarity. Implies that amount of mass moving from x to y is same as amount moving from y to x. Net flow of zero along each edge.
- Markov chain called reversible if admits a reversible probability measure.
- Are all random walks on (undirected) graphs reversible?

Reversibility

- Measure μ called reversible if $\mu(x) p(x, y)=\mu(y) p(y, x)$ for all x, y.
- Reversibility implies stationarity. Implies that amount of mass moving from x to y is same as amount moving from y to x. Net flow of zero along each edge.
- Markov chain called reversible if admits a reversible probability measure.
- Are all random walks on (undirected) graphs reversible?
- What about directed graphs?

Cycle theorem

- Kolmogorov's cycle theorem: Suppose p is irreducible. Then exists reversible measure if and only if

Cycle theorem

- Kolmogorov's cycle theorem: Suppose p is irreducible. Then exists reversible measure if and only if
- $p(x, y)>0$ implies $p(y, x)>0$

Cycle theorem

- Kolmogorov's cycle theorem: Suppose p is irreducible. Then exists reversible measure if and only if
- $p(x, y)>0$ implies $p(y, x)>0$
- for any loop $x_{0}, x_{1}, \ldots x_{n}$ with $\prod_{i=1}^{n} p\left(x_{i}, x_{i-1}\right)>0$, we have

$$
\prod_{i=1}^{n} \frac{p\left(x_{i-1}, x_{i}\right)}{p\left(x_{i}, x_{i-1}\right)}=1
$$

Cycle theorem

- Kolmogorov's cycle theorem: Suppose p is irreducible. Then exists reversible measure if and only if
- $p(x, y)>0$ implies $p(y, x)>0$
- for any loop $x_{0}, x_{1}, \ldots x_{n}$ with $\prod_{i=1}^{n} p\left(x_{i}, x_{i-1}\right)>0$, we have

$$
\prod_{i=1}^{n} \frac{p\left(x_{i-1}, x_{i}\right)}{p\left(x_{i}, x_{i-1}\right)}=1
$$

- Useful idea to have in mind when constructing Markov chains with given reversible distribution, as needed in Monte Carlo Markov Chains (MCMC) applications.

Outline

Recollections

General setup and basic properties

Recurrence and transience
18.175 Lecture 21

Outline

Recollections

General setup and basic properties

Recurrence and transience
18.175 Lecture 21

Query

- Interesting question: If A is an infinite probability transition matrix on a countable state space, what does the (infinite) matrix $I+A+A^{2}+A^{3}+\ldots=(I-A)^{-1}$ represent (if the sum converges)?

Query

- Interesting question: If A is an infinite probability transition matrix on a countable state space, what does the (infinite) matrix $I+A+A^{2}+A^{3}+\ldots=(I-A)^{-1}$ represent (if the sum converges)?
- Question: Does it describe the expected number of y hits when starting at x ? Is there a similar interpretation for other power series?

Query

- Interesting question: If A is an infinite probability transition matrix on a countable state space, what does the (infinite) matrix $I+A+A^{2}+A^{3}+\ldots=(I-A)^{-1}$ represent (if the sum converges)?
- Question: Does it describe the expected number of y hits when starting at x ? Is there a similar interpretation for other power series?
- How about e^{A} or $e^{\lambda A}$?

Query

- Interesting question: If A is an infinite probability transition matrix on a countable state space, what does the (infinite) matrix $I+A+A^{2}+A^{3}+\ldots=(I-A)^{-1}$ represent (if the sum converges)?
- Question: Does it describe the expected number of y hits when starting at x ? Is there a similar interpretation for other power series?
- How about e^{A} or $e^{\lambda A}$?
- Related to distribution after a Poisson random number of steps?

Recurrence

- Consider probability walk from y ever returns to y.

Recurrence

- Consider probability walk from y ever returns to y.
- If it's 1 , return to y infinitely often, else don't. Call y a recurrent state if we return to y infinitely often.

