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Recall the dilemma

I Want, a priori, to define measure of any subset of [0, 1).

I Find that if we allow the axiom of choice and require
measures to be countably additive (as we do) then we run
into trouble. No valid translation invariant way to assign a
finite measure to all subsets of [0, 1).

I Could toss out the axiom of choice... but we don’t want to.
Instead we will only define measure for certain “measurable
sets”. We will construct a σ-algebra of measurable sets and
let probability measure be function from σ-algebra to [0, 1].

I Price to this decision: for the rest of our lives, whenever we
talk about a measure on any space (a Euclidean space, a
space of differentiable functions, a space of fractal curves
embedded in a plane, etc.), we have to worry about what the
σ-algebra might be.
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Recall the dilemma

I On the other hand: always have to ensure that any measure
we produce assigns actual number to every measurable set. A
bigger σ-algebra means more sets whose measures have to be
defined. So if we want to make it easy to construct measures,
maybe it’s a good thing if our σ-algebra doesn’t have too
many elements... unless it’s easier to...

I Come to think of it, how do we define a measure anyway?

I If the σ-algebra is something like the Borel σ-algebra (smallest
σ-algebra containing all open sets) it’s a pretty big collection
of sets. How do we go about producing a measure (any
measure) that’s defined for every set in this family?

I Answer: use extension theorems.
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Recall definitions

I Probability space is triple (Ω,F ,P) where Ω is sample
space, F is set of events (the σ-algebra) and P : F → [0, 1] is
the probability function.

I σ-algebra is collection of subsets closed under
complementation and countable unions. Call (Ω,F) a
measure space.

I Measure is function µ : F → R satisfying µ(A) ≥ µ(∅) = 0
for all A ∈ F and countable additivity: µ(∪iAi ) =

∑
i µ(Ai )

for disjoint Ai .

I Measure µ is probability measure if µ(Ω) = 1.

I The Borel σ-algebra B on a topological space is the smallest
σ-algebra containing all open sets.
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Recall algebras and semi-algebras

I algebra: collection A of sets closed under finite unions and
complementation.

I measure on algebra: Have µ(A) ≥ µ(∅) = 0 for all A in A,
and for disjoint Ai with union in A we have
µ(∪∞i=1Ai ) =

∑∞
i=1 µ(Ai ) (countable additivity).

I Measure µ on A is σ-finite if exists countable collection
An ∈ A with µ(An) <∞ and ∪An = Ω.

I semi-algebra: collection S of sets closed under intersection
and such that S ∈ S implies that Sc is a finite disjoint union
of sets in S. (Example: empty set plus sets of form
(a1, b1]× . . .× (ad , bd ] ⊂ Rd .)

I One lemma: If S is a semialgebra, then the set S of finite
disjoint unions of sets in S is an algebra, called the algebra
generated by S.
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Recall π-systems and λ-systems

I Say collection of sets P is a π-system if closed under
intersection.

I Say collection of sets L is a λ-system if

I Ω ∈ L
I If A,B ∈ L and A ⊂ B, then B − A ∈ L.
I If An ∈ L and An ↑ A then A ∈ L.

I THEOREM: If P is a π-system and L is a λ-system that
contains P, then σ(P) ⊂ L, where σ(A) denotes smallest
σ-algebra containing A.
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Recall Carathéodory Extension Theorem

I Theorem: If µ is a σ-finite measure on an algebra A then µ
has a unique extension to the σ algebra generated by A.

I Detailed proof is somewhat involved, but let’s take a look at
it.

I We can use this extension theorem to prove existence of a
unique translation invariant measure (Lebesgue measure) on
the Borel sets of Rd that assigns unit mass to a unit cube.
(Borel σ-algebra Rd is the smallest one containing all open
sets of Rd . Given any space with a topology, we can define a
σ-algebra this way.)
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Recall Extension theorem for semialgebras

I Say S is semialgebra and µ is defined on S with µ(∅ = 0),
such that µ is finitely additive and countably subadditive.
[This means that if S ∈ S is a finite disjoint union of sets
Si ∈ S then µ(S) =

∑
i µ(Si ). If it is a countable disjoint

union of Si ∈ S then µ(S) ≤
∑

i µ(Si ).] Then µ has a unique
extension µ̄ that is a measure on the algebra S generated by
S. If µ̄ is sigma-finite, then there is an extension that is a
measure on σ(S).
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Recall σ-algebra story

I Borel σ-algebra is generated by open sets. Sometimes
consider “completion” formed by tossing in measure zero sets.

I Caratheéodory Extension Theorem tells us that if we want to
construct a measure on a σ-algebra, it is enough to construct
the measure on an algebra that generates it.
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Recall construction of measures on R

I Write F (a) = P
(
(−∞, a]

)
.

I Theorem: for each right continuous, non-decreasing function
F , tending to 0 at −∞ and to 1 at ∞, there is a unique
measure defined on the Borel sets of R with
P((a, b]) = F (b)− F (a).

I Proved using Caratheéodory Extension Theorem.
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Characterizing probability measures on Rd

I Want to have F (x) = µ(−∞, x1]× (∞, x2]× . . .× (−∞, xn].

I Given such an F , can compute µ of any finite rectangle of
form

∏
(ai , bi ] by taking differences of F applied to vertices.

I Theorem: Given F , there is a unique measure whose values
on finite rectangles are determined this way (provided that F
is non-decreasing, right continuous, and assigns a
non-negative value to each rectangle).

I Also proved using Caratheéodory Extension Theorem.
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18.175 Lecture 2



Characterizing probability measures on Rd

I Want to have F (x) = µ(−∞, x1]× (∞, x2]× . . .× (−∞, xn].

I Given such an F , can compute µ of any finite rectangle of
form

∏
(ai , bi ] by taking differences of F applied to vertices.

I Theorem: Given F , there is a unique measure whose values
on finite rectangles are determined this way (provided that F
is non-decreasing, right continuous, and assigns a
non-negative value to each rectangle).

I Also proved using Caratheéodory Extension Theorem.
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Defining random variables

I Random variable is a measurable function from (Ω,F) to
(R,B). That is, a function X : Ω→ R such that the preimage
of every set in B is in F . Say X is F-measurable.

I Question: to prove X is measurable, is it enough to show that
the pre-image of every open set is in F?

I Theorem: If X−1(A) ∈ F for all A ∈ A and A generates S,
then X is a measurable map from (Ω,F) to (S ,S).

I Example of random variable: indicator function of a set. Or
sum of finitely many indicator functions of sets.

I Let F (x) = FX (x) = P(X ≤ x) be distribution function for
X . Write f = fX = F ′X for density function of X .

I What functions can be distributions of random variables?

I Non-decreasing, right-continuous, with limx→∞ F (x) = 1 and
limx→−∞ F (x) = 0.
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I Question: to prove X is measurable, is it enough to show that
the pre-image of every open set is in F?

I Theorem: If X−1(A) ∈ F for all A ∈ A and A generates S,
then X is a measurable map from (Ω,F) to (S ,S).

I Example of random variable: indicator function of a set. Or
sum of finitely many indicator functions of sets.

I Let F (x) = FX (x) = P(X ≤ x) be distribution function for
X . Write f = fX = F ′X for density function of X .

I What functions can be distributions of random variables?

I Non-decreasing, right-continuous, with limx→∞ F (x) = 1 and
limx→−∞ F (x) = 0.

18.175 Lecture 2



Defining random variables

I Random variable is a measurable function from (Ω,F) to
(R,B). That is, a function X : Ω→ R such that the preimage
of every set in B is in F . Say X is F-measurable.

I Question: to prove X is measurable, is it enough to show that
the pre-image of every open set is in F?

I Theorem: If X−1(A) ∈ F for all A ∈ A and A generates S,
then X is a measurable map from (Ω,F) to (S ,S).

I Example of random variable: indicator function of a set. Or
sum of finitely many indicator functions of sets.

I Let F (x) = FX (x) = P(X ≤ x) be distribution function for
X . Write f = fX = F ′X for density function of X .

I What functions can be distributions of random variables?

I Non-decreasing, right-continuous, with limx→∞ F (x) = 1 and
limx→−∞ F (x) = 0.

18.175 Lecture 2



Examples of possible random variable laws

I Other examples of distribution functions: uniform on [0, 1],
exponential with rate λ, standard normal, Cantor set measure.

I Can also define distribution functions for random variables
that are a.s. integers (like Poisson or geometric or binomial
random variables, say). How about for a ratio of two
independent Poisson random variables? (This is a random
rational with a dense support on [0,∞).)

I Higher dimensional density functions analogously defined.
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Other properties

I Compositions of measurable maps between measure spaces
are measurable.

I If X1, . . . ,Xn are random variables in R, defined on the same
measure space, then (X1, . . . ,Xn) is a random variable in Rn.

I Sums and products of finitely many random variables are
random variables. If Xi is countable sequence of random
variables, then infn Xn is a random variable. Same for lim inf,
sup, lim sup.

I Given infinite sequence of random variables, consider the event
that they converge to a limit. Is this a measurable event?

I Yes. If it has measure one, we say sequence converges almost
surely.

18.175 Lecture 2



Other properties

I Compositions of measurable maps between measure spaces
are measurable.

I If X1, . . . ,Xn are random variables in R, defined on the same
measure space, then (X1, . . . ,Xn) is a random variable in Rn.

I Sums and products of finitely many random variables are
random variables. If Xi is countable sequence of random
variables, then infn Xn is a random variable. Same for lim inf,
sup, lim sup.

I Given infinite sequence of random variables, consider the event
that they converge to a limit. Is this a measurable event?

I Yes. If it has measure one, we say sequence converges almost
surely.

18.175 Lecture 2



Other properties

I Compositions of measurable maps between measure spaces
are measurable.

I If X1, . . . ,Xn are random variables in R, defined on the same
measure space, then (X1, . . . ,Xn) is a random variable in Rn.

I Sums and products of finitely many random variables are
random variables. If Xi is countable sequence of random
variables, then infn Xn is a random variable. Same for lim inf,
sup, lim sup.

I Given infinite sequence of random variables, consider the event
that they converge to a limit. Is this a measurable event?

I Yes. If it has measure one, we say sequence converges almost
surely.

18.175 Lecture 2



Other properties

I Compositions of measurable maps between measure spaces
are measurable.

I If X1, . . . ,Xn are random variables in R, defined on the same
measure space, then (X1, . . . ,Xn) is a random variable in Rn.

I Sums and products of finitely many random variables are
random variables. If Xi is countable sequence of random
variables, then infn Xn is a random variable. Same for lim inf,
sup, lim sup.

I Given infinite sequence of random variables, consider the event
that they converge to a limit. Is this a measurable event?

I Yes. If it has measure one, we say sequence converges almost
surely.

18.175 Lecture 2



Other properties

I Compositions of measurable maps between measure spaces
are measurable.

I If X1, . . . ,Xn are random variables in R, defined on the same
measure space, then (X1, . . . ,Xn) is a random variable in Rn.

I Sums and products of finitely many random variables are
random variables. If Xi is countable sequence of random
variables, then infn Xn is a random variable. Same for lim inf,
sup, lim sup.

I Given infinite sequence of random variables, consider the event
that they converge to a limit. Is this a measurable event?

I Yes. If it has measure one, we say sequence converges almost
surely.

18.175 Lecture 2


	Extension theorems
	Characterizing measures on Rd
	Random variables

