18.175: Lecture 2

Extension theorems, random variables, distributions

Scott Sheffield

MIT

Outline

Extension theorems

Characterizing measures on \mathbb{R}^{d}

Random variables

18.175 Lecture 2

Outline

Extension theorems

Characterizing measures on \mathbb{R}^{d}

Random variables

18.175 Lecture 2

Recall the dilemma

- Want, a priori, to define measure of any subset of $[0,1)$.

Recall the dilemma

- Want, a priori, to define measure of any subset of $[0,1)$.
- Find that if we allow the axiom of choice and require measures to be countably additive (as we do) then we run into trouble. No valid translation invariant way to assign a finite measure to all subsets of $[0,1)$.

Recall the dilemma

- Want, a priori, to define measure of any subset of $[0,1)$.
- Find that if we allow the axiom of choice and require measures to be countably additive (as we do) then we run into trouble. No valid translation invariant way to assign a finite measure to all subsets of $[0,1)$.
- Could toss out the axiom of choice... but we don't want to. Instead we will only define measure for certain "measurable sets". We will construct a σ-algebra of measurable sets and let probability measure be function from σ-algebra to $[0,1]$.

Recall the dilemma

- Want, a priori, to define measure of any subset of $[0,1)$.
- Find that if we allow the axiom of choice and require measures to be countably additive (as we do) then we run into trouble. No valid translation invariant way to assign a finite measure to all subsets of $[0,1)$.
- Could toss out the axiom of choice... but we don't want to. Instead we will only define measure for certain "measurable sets". We will construct a σ-algebra of measurable sets and let probability measure be function from σ-algebra to $[0,1]$.
- Price to this decision: for the rest of our lives, whenever we talk about a measure on any space (a Euclidean space, a space of differentiable functions, a space of fractal curves embedded in a plane, etc.), we have to worry about what the σ-algebra might be.

Recall the dilemma

- On the other hand: always have to ensure that any measure we produce assigns actual number to every measurable set. A bigger σ-algebra means more sets whose measures have to be defined. So if we want to make it easy to construct measures, maybe it's a good thing if our σ-algebra doesn't have too many elements... unless it's easier to...

Recall the dilemma

- On the other hand: always have to ensure that any measure we produce assigns actual number to every measurable set. A bigger σ-algebra means more sets whose measures have to be defined. So if we want to make it easy to construct measures, maybe it's a good thing if our σ-algebra doesn't have too many elements... unless it's easier to...
- Come to think of it, how do we define a measure anyway?

Recall the dilemma

- On the other hand: always have to ensure that any measure we produce assigns actual number to every measurable set. A bigger σ-algebra means more sets whose measures have to be defined. So if we want to make it easy to construct measures, maybe it's a good thing if our σ-algebra doesn't have too many elements... unless it's easier to...
- Come to think of it, how do we define a measure anyway?
- If the σ-algebra is something like the Borel σ-algebra (smallest σ-algebra containing all open sets) it's a pretty big collection of sets. How do we go about producing a measure (any measure) that's defined for every set in this family?

Recall the dilemma

- On the other hand: always have to ensure that any measure we produce assigns actual number to every measurable set. A bigger σ-algebra means more sets whose measures have to be defined. So if we want to make it easy to construct measures, maybe it's a good thing if our σ-algebra doesn't have too many elements... unless it's easier to...
- Come to think of it, how do we define a measure anyway?
- If the σ-algebra is something like the Borel σ-algebra (smallest σ-algebra containing all open sets) it's a pretty big collection of sets. How do we go about producing a measure (any measure) that's defined for every set in this family?
- Answer: use extension theorems.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- Measure is function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- Measure is function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.
- Measure μ is probability measure if $\mu(\Omega)=1$.

Recall definitions

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- Measure is function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.
- Measure μ is probability measure if $\mu(\Omega)=1$.
- The Borel σ-algebra \mathcal{B} on a topological space is the smallest σ-algebra containing all open sets.

Recall algebras and semi-algebras

- algebra: collection \mathcal{A} of sets closed under finite unions and complementation.

Recall algebras and semi-algebras

- algebra: collection \mathcal{A} of sets closed under finite unions and complementation.
- measure on algebra: Have $\mu(A) \geq \mu(\emptyset)=0$ for all A in \mathcal{A}, and for disjoint A_{i} with union in \mathcal{A} we have $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$ (countable additivity).

Recall algebras and semi-algebras

- algebra: collection \mathcal{A} of sets closed under finite unions and complementation.
- measure on algebra: Have $\mu(A) \geq \mu(\emptyset)=0$ for all A in \mathcal{A}, and for disjoint A_{i} with union in \mathcal{A} we have $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$ (countable additivity).
- Measure μ on \mathcal{A} is σ-finite if exists countable collection $A_{n} \in \mathcal{A}$ with $\mu\left(A_{n}\right)<\infty$ and $\cup A_{n}=\Omega$.

Recall algebras and semi-algebras

- algebra: collection \mathcal{A} of sets closed under finite unions and complementation.
- measure on algebra: Have $\mu(A) \geq \mu(\emptyset)=0$ for all A in \mathcal{A}, and for disjoint A_{i} with union in \mathcal{A} we have $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$ (countable additivity).
- Measure μ on \mathcal{A} is σ-finite if exists countable collection $A_{n} \in \mathcal{A}$ with $\mu\left(A_{n}\right)<\infty$ and $\cup A_{n}=\Omega$.
- semi-algebra: collection \mathcal{S} of sets closed under intersection and such that $S \in \mathcal{S}$ implies that S^{c} is a finite disjoint union of sets in \mathcal{S}. (Example: empty set plus sets of form $\left.\left(a_{1}, b_{1}\right] \times \ldots \times\left(a_{d}, b_{d}\right] \subset \mathbb{R}^{d}.\right)$

Recall algebras and semi-algebras

- algebra: collection \mathcal{A} of sets closed under finite unions and complementation.
- measure on algebra: Have $\mu(A) \geq \mu(\emptyset)=0$ for all A in \mathcal{A}, and for disjoint A_{i} with union in \mathcal{A} we have $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$ (countable additivity).
- Measure μ on \mathcal{A} is σ-finite if exists countable collection $A_{n} \in \mathcal{A}$ with $\mu\left(A_{n}\right)<\infty$ and $\cup A_{n}=\Omega$.
- semi-algebra: collection \mathcal{S} of sets closed under intersection and such that $S \in \mathcal{S}$ implies that S^{c} is a finite disjoint union of sets in \mathcal{S}. (Example: empty set plus sets of form $\left.\left(a_{1}, b_{1}\right] \times \ldots \times\left(a_{d}, b_{d}\right] \subset \mathbb{R}^{d}.\right)$
- One lemma: If \mathcal{S} is a semialgebra, then the set \bar{S} of finite disjoint unions of sets in \mathcal{S} is an algebra, called the algebra generated by \mathcal{S}.

Recall π-systems and λ-systems

- Say collection of sets \mathcal{P} is a π-system if closed under intersection.

Recall π-systems and λ-systems

- Say collection of sets \mathcal{P} is a π-system if closed under intersection.
- Say collection of sets \mathcal{L} is a λ-system if

Recall π-systems and λ-systems

- Say collection of sets \mathcal{P} is a π-system if closed under intersection.
- Say collection of sets \mathcal{L} is a λ-system if
- $\Omega \in \mathcal{L}$

Recall π-systems and λ-systems

- Say collection of sets \mathcal{P} is a π-system if closed under intersection.
- Say collection of sets \mathcal{L} is a λ-system if
- $\Omega \in \mathcal{L}$
- If $A, B \in \mathcal{L}$ and $A \subset B$, then $B-A \in \mathcal{L}$.

Recall π-systems and λ-systems

- Say collection of sets \mathcal{P} is a π-system if closed under intersection.
- Say collection of sets \mathcal{L} is a λ-system if
- $\Omega \in \mathcal{L}$
- If $A, B \in \mathcal{L}$ and $A \subset B$, then $B-A \in \mathcal{L}$.
- If $A_{n} \in \mathcal{L}$ and $A_{n} \uparrow A$ then $A \in \mathcal{L}$.

Recall π-systems and λ-systems

- Say collection of sets \mathcal{P} is a π-system if closed under intersection.
- Say collection of sets \mathcal{L} is a λ-system if
- $\Omega \in \mathcal{L}$
- If $A, B \in \mathcal{L}$ and $A \subset B$, then $B-A \in \mathcal{L}$.
- If $A_{n} \in \mathcal{L}$ and $A_{n} \uparrow A$ then $A \in \mathcal{L}$.
- THEOREM: If \mathcal{P} is a π-system and \mathcal{L} is a λ-system that contains \mathcal{P}, then $\sigma(\mathcal{P}) \subset \mathcal{L}$, where $\sigma(\mathcal{A})$ denotes smallest σ-algebra containing \mathcal{A}.

Recall Carathéodory Extension Theorem

- Theorem: If μ is a σ-finite measure on an algebra \mathcal{A} then μ has a unique extension to the σ algebra generated by \mathcal{A}.

Recall Carathéodory Extension Theorem

- Theorem: If μ is a σ-finite measure on an algebra \mathcal{A} then μ has a unique extension to the σ algebra generated by \mathcal{A}.
- Detailed proof is somewhat involved, but let's take a look at it.

Recall Carathéodory Extension Theorem

- Theorem: If μ is a σ-finite measure on an algebra \mathcal{A} then μ has a unique extension to the σ algebra generated by \mathcal{A}.
- Detailed proof is somewhat involved, but let's take a look at it.
- We can use this extension theorem to prove existence of a unique translation invariant measure (Lebesgue measure) on the Borel sets of \mathbb{R}^{d} that assigns unit mass to a unit cube. (Borel σ-algebra \mathcal{R}^{d} is the smallest one containing all open sets of \mathbb{R}^{d}. Given any space with a topology, we can define a σ-algebra this way.)

Recall Extension theorem for semialgebras

- Say \mathcal{S} is semialgebra and μ is defined on \mathcal{S} with $\mu(\emptyset=0)$, such that μ is finitely additive and countably subadditive. [This means that if $S \in \mathcal{S}$ is a finite disjoint union of sets $S_{i} \in \mathcal{S}$ then $\mu(S)=\sum_{i} \mu\left(S_{i}\right)$. If it is a countable disjoint union of $S_{i} \in \mathcal{S}$ then $\mu(S) \leq \sum_{i} \mu\left(S_{i}\right)$.] Then μ has a unique extension $\bar{\mu}$ that is a measure on the algebra $\overline{\mathcal{S}}$ generated by \mathcal{S}. If $\bar{\mu}$ is sigma-finite, then there is an extension that is a measure on $\sigma(S)$.

Outline

Extension theorems

Characterizing measures on \mathbb{R}^{d}

Random variables

18.175 Lecture 2

Outline

Extension theorems

Characterizing measures on \mathbb{R}^{d}

Random variables

18.175 Lecture 2

Recall σ-algebra story

- Borel σ-algebra is generated by open sets. Sometimes consider "completion" formed by tossing in measure zero sets.

Recall σ-algebra story

- Borel σ-algebra is generated by open sets. Sometimes consider "completion" formed by tossing in measure zero sets.
- Caratheéodory Extension Theorem tells us that if we want to construct a measure on a σ-algebra, it is enough to construct the measure on an algebra that generates it.

Recall construction of measures on \mathbb{R}

- Write $F(a)=P((-\infty, a])$.

Recall construction of measures on \mathbb{R}

- Write $F(a)=P((-\infty, a])$.
- Theorem: for each right continuous, non-decreasing function F, tending to 0 at $-\infty$ and to 1 at ∞, there is a unique measure defined on the Borel sets of \mathbb{R} with

$$
P((a, b])=F(b)-F(a) .
$$

Recall construction of measures on \mathbb{R}

- Write $F(a)=P((-\infty, a])$.
- Theorem: for each right continuous, non-decreasing function F, tending to 0 at $-\infty$ and to 1 at ∞, there is a unique measure defined on the Borel sets of \mathbb{R} with $P((a, b])=F(b)-F(a)$.
- Proved using Caratheéodory Extension Theorem.

Characterizing probability measures on \mathbb{R}^{d}

- Want to have $F(x)=\mu\left(-\infty, x_{1}\right] \times\left(\infty, x_{2}\right] \times \ldots \times\left(-\infty, x_{n}\right]$.

Characterizing probability measures on \mathbb{R}^{d}

- Want to have $F(x)=\mu\left(-\infty, x_{1}\right] \times\left(\infty, x_{2}\right] \times \ldots \times\left(-\infty, x_{n}\right]$.
- Given such an F, can compute μ of any finite rectangle of form $\prod\left(a_{i}, b_{i}\right]$ by taking differences of F applied to vertices.

Characterizing probability measures on \mathbb{R}^{d}

- Want to have $F(x)=\mu\left(-\infty, x_{1}\right] \times\left(\infty, x_{2}\right] \times \ldots \times\left(-\infty, x_{n}\right]$.
- Given such an F, can compute μ of any finite rectangle of form $\prod\left(a_{i}, b_{i}\right]$ by taking differences of F applied to vertices.
- Theorem: Given F, there is a unique measure whose values on finite rectangles are determined this way (provided that F is non-decreasing, right continuous, and assigns a non-negative value to each rectangle).

Characterizing probability measures on \mathbb{R}^{d}

- Want to have $F(x)=\mu\left(-\infty, x_{1}\right] \times\left(\infty, x_{2}\right] \times \ldots \times\left(-\infty, x_{n}\right]$.
- Given such an F, can compute μ of any finite rectangle of form $\prod\left(a_{i}, b_{i}\right]$ by taking differences of F applied to vertices.
- Theorem: Given F, there is a unique measure whose values on finite rectangles are determined this way (provided that F is non-decreasing, right continuous, and assigns a non-negative value to each rectangle).
- Also proved using Caratheéodory Extension Theorem.

Outline

Extension theorems

Characterizing measures on \mathbb{R}^{d}

Random variables

18.175 Lecture 2

Outline

Extension theorems

Characterizing measures on \mathbb{R}^{d}

Random variables
18.175 Lecture 2

Defining random variables

- Random variable is a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$. That is, a function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every set in \mathcal{B} is in \mathcal{F}. Say X is \mathcal{F}-measurable.

Defining random variables

- Random variable is a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$. That is, a function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every set in \mathcal{B} is in \mathcal{F}. Say X is \mathcal{F}-measurable.
- Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in \mathcal{F} ?

Defining random variables

- Random variable is a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$. That is, a function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every set in \mathcal{B} is in \mathcal{F}. Say X is \mathcal{F}-measurable.
- Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in \mathcal{F} ?
- Theorem: If $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S}, then X is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}).

Defining random variables

- Random variable is a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$. That is, a function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every set in \mathcal{B} is in \mathcal{F}. Say X is \mathcal{F}-measurable.
- Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in \mathcal{F} ?
- Theorem: If $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S}, then X is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}).
- Example of random variable: indicator function of a set. Or sum of finitely many indicator functions of sets.

Defining random variables

- Random variable is a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$. That is, a function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every set in \mathcal{B} is in \mathcal{F}. Say X is \mathcal{F}-measurable.
- Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in \mathcal{F} ?
- Theorem: If $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S}, then X is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}).
- Example of random variable: indicator function of a set. Or sum of finitely many indicator functions of sets.
- Let $F(x)=F_{X}(x)=P(X \leq x)$ be distribution function for X. Write $f=f_{X}=F_{X}^{\prime}$ for density function of X.

Defining random variables

- Random variable is a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$. That is, a function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every set in \mathcal{B} is in \mathcal{F}. Say X is \mathcal{F}-measurable.
- Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in \mathcal{F} ?
- Theorem: If $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S}, then X is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}).
- Example of random variable: indicator function of a set. Or sum of finitely many indicator functions of sets.
- Let $F(x)=F_{X}(x)=P(X \leq x)$ be distribution function for X. Write $f=f_{X}=F_{X}^{\prime}$ for density function of X.
- What functions can be distributions of random variables?

Defining random variables

- Random variable is a measurable function from (Ω, \mathcal{F}) to $(\mathbb{R}, \mathcal{B})$. That is, a function $X: \Omega \rightarrow \mathbb{R}$ such that the preimage of every set in \mathcal{B} is in \mathcal{F}. Say X is \mathcal{F}-measurable.
- Question: to prove X is measurable, is it enough to show that the pre-image of every open set is in \mathcal{F} ?
- Theorem: If $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{A}$ and \mathcal{A} generates \mathcal{S}, then X is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}).
- Example of random variable: indicator function of a set. Or sum of finitely many indicator functions of sets.
- Let $F(x)=F_{X}(x)=P(X \leq x)$ be distribution function for X. Write $f=f_{X}=F_{X}^{\prime}$ for density function of X.
- What functions can be distributions of random variables?
- Non-decreasing, right-continuous, with $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$.

Examples of possible random variable laws

- Other examples of distribution functions: uniform on $[0,1]$, exponential with rate λ, standard normal, Cantor set measure.

Examples of possible random variable laws

- Other examples of distribution functions: uniform on $[0,1]$, exponential with rate λ, standard normal, Cantor set measure.
- Can also define distribution functions for random variables that are a.s. integers (like Poisson or geometric or binomial random variables, say). How about for a ratio of two independent Poisson random variables? (This is a random rational with a dense support on $[0, \infty)$.)

Examples of possible random variable laws

- Other examples of distribution functions: uniform on $[0,1]$, exponential with rate λ, standard normal, Cantor set measure.
- Can also define distribution functions for random variables that are a.s. integers (like Poisson or geometric or binomial random variables, say). How about for a ratio of two independent Poisson random variables? (This is a random rational with a dense support on $[0, \infty)$.)
- Higher dimensional density functions analogously defined.

Other properties

- Compositions of measurable maps between measure spaces are measurable.

Other properties

- Compositions of measurable maps between measure spaces are measurable.
- If X_{1}, \ldots, X_{n} are random variables in \mathbb{R}, defined on the same measure space, then $\left(X_{1}, \ldots, X_{n}\right)$ is a random variable in \mathbb{R}^{n}.

Other properties

- Compositions of measurable maps between measure spaces are measurable.
- If X_{1}, \ldots, X_{n} are random variables in \mathbb{R}, defined on the same measure space, then $\left(X_{1}, \ldots, X_{n}\right)$ is a random variable in \mathbb{R}^{n}.
- Sums and products of finitely many random variables are random variables. If X_{i} is countable sequence of random variables, then $\inf _{n} X_{n}$ is a random variable. Same for liminf, sup, lim sup.

Other properties

- Compositions of measurable maps between measure spaces are measurable.
- If X_{1}, \ldots, X_{n} are random variables in \mathbb{R}, defined on the same measure space, then $\left(X_{1}, \ldots, X_{n}\right)$ is a random variable in \mathbb{R}^{n}.
- Sums and products of finitely many random variables are random variables. If X_{i} is countable sequence of random variables, then $\inf _{n} X_{n}$ is a random variable. Same for liminf, sup, lim sup.
- Given infinite sequence of random variables, consider the event that they converge to a limit. Is this a measurable event?

Other properties

- Compositions of measurable maps between measure spaces are measurable.
- If X_{1}, \ldots, X_{n} are random variables in \mathbb{R}, defined on the same measure space, then $\left(X_{1}, \ldots, X_{n}\right)$ is a random variable in \mathbb{R}^{n}.
- Sums and products of finitely many random variables are random variables. If X_{i} is countable sequence of random variables, then $\inf _{n} X_{n}$ is a random variable. Same for liminf, sup, lim sup.
- Given infinite sequence of random variables, consider the event that they converge to a limit. Is this a measurable event?
- Yes. If it has measure one, we say sequence converges almost surely.

