18.175: Lecture 18

More on martingales

Scott Sheffield

MIT

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

18.175 Lecture 18

Recall: conditional expectation

- Say we're given a probability space $\left(\Omega, \mathcal{F}_{0}, P\right)$ and a σ-field $\mathcal{F} \subset \mathcal{F}_{0}$ and a random variable X measurable w.r.t. \mathcal{F}_{0}, with $E|X|<\infty$. The conditional expectation of X given \mathcal{F} is a new random variable, which we can denote by $Y=E(X \mid \mathcal{F})$.

Recall: conditional expectation

- Say we're given a probability space $\left(\Omega, \mathcal{F}_{0}, P\right)$ and a σ-field $\mathcal{F} \subset \mathcal{F}_{0}$ and a random variable X measurable w.r.t. \mathcal{F}_{0}, with $E|X|<\infty$. The conditional expectation of X given \mathcal{F} is a new random variable, which we can denote by $Y=E(X \mid \mathcal{F})$.
- We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F}, we have $\int_{A} X d P=\int_{A} Y d P$.

Recall: conditional expectation

- Say we're given a probability space $\left(\Omega, \mathcal{F}_{0}, P\right)$ and a σ-field $\mathcal{F} \subset \mathcal{F}_{0}$ and a random variable X measurable w.r.t. \mathcal{F}_{0}, with $E|X|<\infty$. The conditional expectation of X given \mathcal{F} is a new random variable, which we can denote by $Y=E(X \mid \mathcal{F})$.
- We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F}, we have $\int_{A} X d P=\int_{A} Y d P$.
- Any Y satisfying these properties is called a version of $E(X \mid \mathcal{F})$.

Recall: conditional expectation

- Say we're given a probability space $\left(\Omega, \mathcal{F}_{0}, P\right)$ and a σ-field $\mathcal{F} \subset \mathcal{F}_{0}$ and a random variable X measurable w.r.t. \mathcal{F}_{0}, with $E|X|<\infty$. The conditional expectation of X given \mathcal{F} is a new random variable, which we can denote by $Y=E(X \mid \mathcal{F})$.
- We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F}, we have $\int_{A} X d P=\int_{A} Y d P$.
- Any Y satisfying these properties is called a version of $E(X \mid \mathcal{F})$.
- Theorem: Up to redefinition on a measure zero set, the random variable $E(X \mid \mathcal{F})$ exists and is unique.

Recall: conditional expectation

- Say we're given a probability space $\left(\Omega, \mathcal{F}_{0}, P\right)$ and a σ-field $\mathcal{F} \subset \mathcal{F}_{0}$ and a random variable X measurable w.r.t. \mathcal{F}_{0}, with $E|X|<\infty$. The conditional expectation of X given \mathcal{F} is a new random variable, which we can denote by $Y=E(X \mid \mathcal{F})$.
- We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F}, we have $\int_{A} X d P=\int_{A} Y d P$.
- Any Y satisfying these properties is called a version of $E(X \mid \mathcal{F})$.
- Theorem: Up to redefinition on a measure zero set, the random variable $E(X \mid \mathcal{F})$ exists and is unique.
- This follows from Radon-Nikodym theorem.

Conditional expectation observations

- Linearity: $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$.

Conditional expectation observations

- Linearity: $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$.
- If $X \leq Y$ then $E(E \mid \mathcal{F}) \leq E(Y \mid \mathcal{F})$.

Conditional expectation observations

- Linearity: $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$.
- If $X \leq Y$ then $E(E \mid \mathcal{F}) \leq E(Y \mid \mathcal{F})$.
- If $X_{n} \geq 0$ and $X_{n} \uparrow X$ with $E X<\infty$, then $E\left(X_{n} \mid \mathcal{F}\right) \uparrow E(X \mid \mathcal{F})$ (by dominated convergence).

Conditional expectation observations

- Linearity: $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$.
- If $X \leq Y$ then $E(E \mid \mathcal{F}) \leq E(Y \mid \mathcal{F})$.
- If $X_{n} \geq 0$ and $X_{n} \uparrow X$ with $E X<\infty$, then $E\left(X_{n} \mid \mathcal{F}\right) \uparrow E(X \mid \mathcal{F})$ (by dominated convergence).
- If $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ then

Conditional expectation observations

- Linearity: $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$.
- If $X \leq Y$ then $E(E \mid \mathcal{F}) \leq E(Y \mid \mathcal{F})$.
- If $X_{n} \geq 0$ and $X_{n} \uparrow X$ with $E X<\infty$, then $E\left(X_{n} \mid \mathcal{F}\right) \uparrow E(X \mid \mathcal{F})$ (by dominated convergence).
- If $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ then
- $E\left(E\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right)=E\left(X \mid \mathcal{F}_{1}\right)$.

Conditional expectation observations

- Linearity: $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$.
- If $X \leq Y$ then $E(E \mid \mathcal{F}) \leq E(Y \mid \mathcal{F})$.
- If $X_{n} \geq 0$ and $X_{n} \uparrow X$ with $E X<\infty$, then $E\left(X_{n} \mid \mathcal{F}\right) \uparrow E(X \mid \mathcal{F})$ (by dominated convergence).
- If $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ then
- $E\left(E\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right)=E\left(X \mid \mathcal{F}_{1}\right)$.
- $E\left(E\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)=E\left(X \mid \mathcal{F}_{1}\right)$.

Conditional expectation observations

- Linearity: $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$.
- If $X \leq Y$ then $E(E \mid \mathcal{F}) \leq E(Y \mid \mathcal{F})$.
- If $X_{n} \geq 0$ and $X_{n} \uparrow X$ with $E X<\infty$, then $E\left(X_{n} \mid \mathcal{F}\right) \uparrow E(X \mid \mathcal{F})$ (by dominated convergence).
- If $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ then
- $E\left(E\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right)=E\left(X \mid \mathcal{F}_{1}\right)$.
- $E\left(E\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)=E\left(X \mid \mathcal{F}_{1}\right)$.
- Second is kind of interesting: says, after I learn \mathcal{F}_{1}, my best guess of what my best guess for X will be after learning \mathcal{F}_{2} is simply my current best guess for X.

Conditional expectation observations

- Linearity: $E(a X+Y \mid \mathcal{F})=a E(X \mid \mathcal{F})+E(Y \mid \mathcal{F})$.
- If $X \leq Y$ then $E(E \mid \mathcal{F}) \leq E(Y \mid \mathcal{F})$.
- If $X_{n} \geq 0$ and $X_{n} \uparrow X$ with $E X<\infty$, then $E\left(X_{n} \mid \mathcal{F}\right) \uparrow E(X \mid \mathcal{F})$ (by dominated convergence).
- If $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ then
- $E\left(E\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right)=E\left(X \mid \mathcal{F}_{1}\right)$.
- $E\left(E\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)=E\left(X \mid \mathcal{F}_{1}\right)$.
- Second is kind of interesting: says, after I learn \mathcal{F}_{1}, my best guess of what my best guess for X will be after learning \mathcal{F}_{2} is simply my current best guess for X.
- Deduce that $E\left(X \mid \mathcal{F}_{i}\right)$ is a martingale if \mathcal{F}_{i} is an increasing sequence of σ-algebras and $E(|X|)<\infty$.

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

18.175 Lecture 18

Regular conditional probability

- Consider probability space (Ω, \mathcal{F}, P), a measurable map $X:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ-field. Then $\mu: \Omega \times \mathcal{S} \rightarrow[0,1]$ is a regular conditional distribution for X given \mathcal{G} if

Regular conditional probability

- Consider probability space (Ω, \mathcal{F}, P), a measurable map $X:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ-field. Then $\mu: \Omega \times \mathcal{S} \rightarrow[0,1]$ is a regular conditional distribution for X given \mathcal{G} if
- For each $A, \omega \rightarrow \mu(\omega, A)$ is a version of $P(X \in A \mid \mathcal{G})$.

Regular conditional probability

- Consider probability space (Ω, \mathcal{F}, P), a measurable map $X:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ-field. Then $\mu: \Omega \times \mathcal{S} \rightarrow[0,1]$ is a regular conditional distribution for X given \mathcal{G} if
- For each $A, \omega \rightarrow \mu(\omega, A)$ is a version of $P(X \in A \mid \mathcal{G})$.
- For a.e. $\omega, A \rightarrow \mu(\omega, A)$ is a probability measure on (S, \mathcal{S}).

Regular conditional probability

- Consider probability space (Ω, \mathcal{F}, P), a measurable map $X:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ-field. Then $\mu: \Omega \times \mathcal{S} \rightarrow[0,1]$ is a regular conditional distribution for X given \mathcal{G} if
- For each $A, \omega \rightarrow \mu(\omega, A)$ is a version of $P(X \in A \mid \mathcal{G})$.
- For a.e. $\omega, A \rightarrow \mu(\omega, A)$ is a probability measure on (S, \mathcal{S}).
- Theorem: Regular conditional probabilities exist if (S, \mathcal{S}) is nice.

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Outline

Conditional expectation
 Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

18.175 Lecture 18

Martingales

- Let \mathcal{F}_{n} be increasing sequence of σ-fields (called a filtration).

Martingales

- Let \mathcal{F}_{n} be increasing sequence of σ-fields (called a filtration).
- A sequence X_{n} is adapted to \mathcal{F}_{n} if $X_{n} \in \mathcal{F}_{n}$ for all n. If X_{n} is an adapted sequence (with $E\left|X_{n}\right|<\infty$) then it is called a martingale if

$$
E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}
$$

for all n. It's a supermartingale (resp., submartingale) if same thing holds with $=$ replaced by $\leq($ resp., $\geq)$.

Martingale observations

- Claim: If X_{n} is a supermartingale then for $n>m$ we have $E\left(X_{n} \mid \mathcal{F}_{m}\right) \leq X_{m}$.

Martingale observations

- Claim: If X_{n} is a supermartingale then for $n>m$ we have $E\left(X_{n} \mid \mathcal{F}_{m}\right) \leq X_{m}$.
- Proof idea: Follows if $n=m+1$ by definition; take $n=m+k$ and use induction on k.

Martingale observations

- Claim: If X_{n} is a supermartingale then for $n>m$ we have $E\left(X_{n} \mid \mathcal{F}_{m}\right) \leq X_{m}$.
- Proof idea: Follows if $n=m+1$ by definition; take $n=m+k$ and use induction on k.
- Similar result holds for submartingales. Also, if X_{n} is a martingale and $n>m$ then $E\left(X_{n} \mid \mathcal{F}_{m}\right)=X_{m}$.

Martingale observations

- Claim: If X_{n} is a supermartingale then for $n>m$ we have $E\left(X_{n} \mid \mathcal{F}_{m}\right) \leq X_{m}$.
- Proof idea: Follows if $n=m+1$ by definition; take $n=m+k$ and use induction on k.
- Similar result holds for submartingales. Also, if X_{n} is a martingale and $n>m$ then $E\left(X_{n} \mid \mathcal{F}_{m}\right)=X_{m}$.
- Claim: if X_{n} is a martingale w.r.t. \mathcal{F}_{n} and ϕ is convex with $E\left|\phi\left(X_{n}\right)\right|<\infty$ then $\phi\left(X_{n}\right)$ is a submartingale.

Martingale observations

- Claim: If X_{n} is a supermartingale then for $n>m$ we have $E\left(X_{n} \mid \mathcal{F}_{m}\right) \leq X_{m}$.
- Proof idea: Follows if $n=m+1$ by definition; take $n=m+k$ and use induction on k.
- Similar result holds for submartingales. Also, if X_{n} is a martingale and $n>m$ then $E\left(X_{n} \mid \mathcal{F}_{m}\right)=X_{m}$.
- Claim: if X_{n} is a martingale w.r.t. \mathcal{F}_{n} and ϕ is convex with $E\left|\phi\left(X_{n}\right)\right|<\infty$ then $\phi\left(X_{n}\right)$ is a submartingale.
- Proof idea: Immediate from Jensen's inequality and martingale definition.

Martingale observations

- Claim: If X_{n} is a supermartingale then for $n>m$ we have $E\left(X_{n} \mid \mathcal{F}_{m}\right) \leq X_{m}$.
- Proof idea: Follows if $n=m+1$ by definition; take $n=m+k$ and use induction on k.
- Similar result holds for submartingales. Also, if X_{n} is a martingale and $n>m$ then $E\left(X_{n} \mid \mathcal{F}_{m}\right)=X_{m}$.
- Claim: if X_{n} is a martingale w.r.t. \mathcal{F}_{n} and ϕ is convex with $E\left|\phi\left(X_{n}\right)\right|<\infty$ then $\phi\left(X_{n}\right)$ is a submartingale.
- Proof idea: Immediate from Jensen's inequality and martingale definition.
- Example: take $\phi(x)=\max \{x, 0\}$.

Predictable sequence

- Call H_{n} predictable if each $H+n$ is \mathcal{F}_{n-1} measurable.

Predictable sequence

- Call H_{n} predictable if each $H+n$ is \mathcal{F}_{n-1} measurable.
- Maybe H_{n} represents amount of shares of asset investor has at nth stage.

Predictable sequence

- Call H_{n} predictable if each $H+n$ is \mathcal{F}_{n-1} measurable.
- Maybe H_{n} represents amount of shares of asset investor has at nth stage.
- Write $(H \cdot X)_{n}=\sum_{m=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right)$.

Predictable sequence

- Call H_{n} predictable if each $H+n$ is \mathcal{F}_{n-1} measurable.
- Maybe H_{n} represents amount of shares of asset investor has at nth stage.
- Write $(H \cdot X)_{n}=\sum_{m=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right)$.
- Observe: If X_{n} is a supermartingale and the $H_{n} \geq 0$ are bounded, then $(H \cdot X)_{n}$ is a supermartingale.

Predictable sequence

- Call H_{n} predictable if each $H+n$ is \mathcal{F}_{n-1} measurable.
- Maybe H_{n} represents amount of shares of asset investor has at nth stage.
- Write $(H \cdot X)_{n}=\sum_{m=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right)$.
- Observe: If X_{n} is a supermartingale and the $H_{n} \geq 0$ are bounded, then $(H \cdot X)_{n}$ is a supermartingale.
- Example: take $H_{n}=1_{N \geq n}$ for stopping time N.

Two big results

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.

Two big results

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- Proof: Just a special case of statement about (H•X) if stopping time is bounded.

Two big results

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- Proof: Just a special case of statement about (H•X) if stopping time is bounded.
- Martingale convergence: A non-negative martingale almost surely has a limit.

Two big results

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- Proof: Just a special case of statement about (H•X) if stopping time is bounded.
- Martingale convergence: A non-negative martingale almost surely has a limit.
- Idea of proof: Count upcrossings (times martingale crosses a fixed interval) and devise gambling strategy that makes lots of money if the number of these is not a.s. finite. Basically, you buy every time price gets below the interval, sell each time it gets above.

Two big results

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- Proof: Just a special case of statement about (H.X) if stopping time is bounded.
- Martingale convergence: A non-negative martingale almost surely has a limit.
- Idea of proof: Count upcrossings (times martingale crosses a fixed interval) and devise gambling strategy that makes lots of money if the number of these is not a.s. finite. Basically, you buy every time price gets below the interval, sell each time it gets above.
- Stronger convergence statement: If X_{n} is a submartingale with sup $E X_{n}^{+}<\infty$ then as $n \rightarrow \infty, X_{+} n$ converges a.s. to a limit X with $E|X|<\infty$.

Other statements

- If X_{n} is a supermartingale then as $n \rightarrow \infty, X_{n} \rightarrow X$ a.s. and $E X \leq E X_{0}$.

Other statements

- If X_{n} is a supermartingale then as $n \rightarrow \infty, X_{n} \rightarrow X$ a.s. and $E X \leq E X_{0}$.
- Proof: $Y_{n}=-X_{n} \leq 0$ is a submartingale with $E Y^{+}=0$. Since $E X_{0} \geq E X_{n}$, inequality follows from Fatou's lemma.

Other statements

- If X_{n} is a supermartingale then as $n \rightarrow \infty, X_{n} \rightarrow X$ a.s. and $E X \leq E X_{0}$.
- Proof: $Y_{n}=-X_{n} \leq 0$ is a submartingale with $E Y^{+}=0$. Since $E X_{0} \geq E X_{n}$, inequality follows from Fatou's lemma.
- Doob's decomposition: Any submartingale X_{n} can be written in a unique way as $X_{n}=M_{n}+A_{n}$ where M_{n} is a martingale and A_{n} is a predictable increasing sequence with $A_{0}=0$.

Other statements

- If X_{n} is a supermartingale then as $n \rightarrow \infty, X_{n} \rightarrow X$ a.s. and $E X \leq E X_{0}$.
- Proof: $Y_{n}=-X_{n} \leq 0$ is a submartingale with $E Y^{+}=0$. Since $E X_{0} \geq E X_{n}$, inequality follows from Fatou's lemma.
- Doob's decomposition: Any submartingale X_{n} can be written in a unique way as $X_{n}=M_{n}+A_{n}$ where M_{n} is a martingale and A_{n} is a predictable increasing sequence with $A_{0}=0$.
- Proof idea: Just let M_{n} be sum of "surprises" (i.e., the values $\left.X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)\right)$.

Other statements

- If X_{n} is a supermartingale then as $n \rightarrow \infty, X_{n} \rightarrow X$ a.s. and $E X \leq E X_{0}$.
- Proof: $Y_{n}=-X_{n} \leq 0$ is a submartingale with $E Y^{+}=0$. Since $E X_{0} \geq E X_{n}$, inequality follows from Fatou's lemma.
- Doob's decomposition: Any submartingale X_{n} can be written in a unique way as $X_{n}=M_{n}+A_{n}$ where M_{n} is a martingale and A_{n} is a predictable increasing sequence with $A_{0}=0$.
- Proof idea: Just let M_{n} be sum of "surprises" (i.e., the values $\left.X_{n}-E\left(X_{n} \mid \mathcal{F}_{n-1}\right)\right)$.
- A martingale with bounded increments a.s. either converges to limit or oscillates between $\pm \infty$. That is, a.s. either $\lim X_{n}<\infty$ exists or $\lim \sup X_{n}=+\infty$ and $\liminf X_{n}=-\infty$.

Problems

- How many primary candidates does one expect to ever exceed 20 percent on Intrade? (Asked by Aldous.)

Problems

- How many primary candidates does one expect to ever exceed 20 percent on Intrade? (Asked by Aldous.)
- Compute probability of having a martingale price reach a before b if martingale prices vary continuously.

Problems

- How many primary candidates does one expect to ever exceed 20 percent on Intrade? (Asked by Aldous.)
- Compute probability of having a martingale price reach a before b if martingale prices vary continuously.
- Polya's urn: red and g green balls. Repeatedly sample randomly and add extra ball of sampled color. Ratio of red to green is martingale, hence a.s. converges to limit.

Problems

- How many primary candidates ever get above twenty percent in expected probability of victory? (Asked by Aldous.)

Problems

- How many primary candidates ever get above twenty percent in expected probability of victory? (Asked by Aldous.)
- Suppose that you expect to get married once during your life How many people do you expect will reach the point that you would say you have a twenty five percent chance to marry them?

Problems

- How many primary candidates ever get above twenty percent in expected probability of victory? (Asked by Aldous.)
- Suppose that you expect to get married once during your life How many people do you expect will reach the point that you would say you have a twenty five percent chance to marry them?
- Compute probability of having a continuously updated conditional probability reach a before b.

Wald

- Wald's equation: Let X_{i} be i.i.d. with $E\left|X_{i}\right|<\infty$. If N is a stopping time with $E N<\infty$ then $E S_{N}=E X_{1} E N$.

Wald

- Wald's equation: Let X_{i} be i.i.d. with $E\left|X_{i}\right|<\infty$. If N is a stopping time with $E N<\infty$ then $E S_{N}=E X_{1} E N$.
- Wald's second equation: Let X_{i} be i.i.d. with $E\left|X_{i}\right|=0$ and $E X_{i}^{2}=\sigma^{2}<\infty$. If N is a stopping time with $E N<\infty$ then $E S_{N}=\sigma^{2} E N$.

Wald applications to SRW

- $S_{0}=a \in \mathbb{Z}$ and at each time step S_{j} independently changes by ± 1 according to a fair coin toss. Fix $A \in \mathbb{Z}$ and let $N=\inf \left\{k: S_{k} \in\{0, A\}\right.$. What is $\mathbb{E} S_{N}$?

Wald applications to SRW

- $S_{0}=a \in \mathbb{Z}$ and at each time step S_{j} independently changes by ± 1 according to a fair coin toss. Fix $A \in \mathbb{Z}$ and let $N=\inf \left\{k: S_{k} \in\{0, A\}\right.$. What is $\mathbb{E} S_{N}$?
- What is $\mathbb{E} N$?

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories
18.175 Lecture 18

Reflection principle

- How many walks from $(0, x)$ to (n, y) that don't cross the horizontal axis?

Reflection principle

- How many walks from $(0, x)$ to (n, y) that don't cross the horizontal axis?
- Try counting walks that do cross by giving bijection to walks from $(0,-x)$ to (n, y).

Ballot Theorem

- Suppose that in election candidate A gets α votes and B gets $\beta<\alpha$ votes. What's probability that A is ahead throughout the counting?

Ballot Theorem

- Suppose that in election candidate A gets α votes and B gets $\beta<\alpha$ votes. What's probability that A is ahead throughout the counting?
- Answer: $(\alpha-\beta) /(\alpha+\beta)$. Can be proved using reflection principle.

Arcsin theorem

- Theorem for last hitting time.

Arcsin theorem

- Theorem for last hitting time.
- Theorem for amount of positive positive time.

