18.175: Lecture 17 Martingales

Scott Sheffield

MIT

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Outline

Conditional expectation

Regular conditional probabilities

Martingales

▶ Say we're given a probability space $(\Omega, \mathcal{F}_0, P)$ and a σ -field $\mathcal{F} \subset \mathcal{F}_0$ and a random variable X measurable w.r.t. \mathcal{F}_0 , with $E|X| < \infty$. The **conditional expectation of** X **given** \mathcal{F} is a new random variable, which we can denote by $Y = E(X|\mathcal{F})$.

- ▶ Say we're given a probability space $(\Omega, \mathcal{F}_0, P)$ and a σ -field $\mathcal{F} \subset \mathcal{F}_0$ and a random variable X measurable w.r.t. \mathcal{F}_0 , with $E|X| < \infty$. The **conditional expectation of** X **given** \mathcal{F} is a new random variable, which we can denote by $Y = E(X|\mathcal{F})$.
- ▶ We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F} , we have $\int_A XdP = \int_A YdP$.

- ▶ Say we're given a probability space $(\Omega, \mathcal{F}_0, P)$ and a σ -field $\mathcal{F} \subset \mathcal{F}_0$ and a random variable X measurable w.r.t. \mathcal{F}_0 , with $E|X| < \infty$. The **conditional expectation of** X **given** \mathcal{F} is a new random variable, which we can denote by $Y = E(X|\mathcal{F})$.
- ▶ We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F} , we have $\int_A XdP = \int_A YdP$.
- ▶ Any Y satisfying these properties is called a **version** of $E(X|\mathcal{F})$.

- ▶ Say we're given a probability space $(\Omega, \mathcal{F}_0, P)$ and a σ -field $\mathcal{F} \subset \mathcal{F}_0$ and a random variable X measurable w.r.t. \mathcal{F}_0 , with $E|X| < \infty$. The **conditional expectation of** X **given** \mathcal{F} is a new random variable, which we can denote by $Y = E(X|\mathcal{F})$.
- ▶ We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F} , we have $\int_A XdP = \int_A YdP$.
- ▶ Any Y satisfying these properties is called a **version** of $E(X|\mathcal{F})$.
- ▶ **Theorem:** Up to redefinition on a measure zero set, the random variable $E(X|\mathcal{F})$ exists and is unique.

- ▶ Say we're given a probability space $(\Omega, \mathcal{F}_0, P)$ and a σ -field $\mathcal{F} \subset \mathcal{F}_0$ and a random variable X measurable w.r.t. \mathcal{F}_0 , with $E|X| < \infty$. The **conditional expectation of** X **given** \mathcal{F} is a new random variable, which we can denote by $Y = E(X|\mathcal{F})$.
- ▶ We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F} , we have $\int_A XdP = \int_A YdP$.
- ▶ Any Y satisfying these properties is called a **version** of $E(X|\mathcal{F})$.
- ▶ **Theorem:** Up to redefinition on a measure zero set, the random variable $E(X|\mathcal{F})$ exists and is unique.
- ▶ This follows from Radon-Nikodym theorem.

▶ Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.

- ▶ Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- ▶ If $X \le Y$ then $E(E|\mathcal{F}) \le E(Y|\mathcal{F})$.

- ▶ Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- ▶ If $X \le Y$ then $E(E|\mathcal{F}) \le E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).

- ▶ Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- ▶ If $X \le Y$ then $E(E|\mathcal{F}) \le E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).
- ▶ If $\mathcal{F}_1 \subset \mathcal{F}_2$ then

- ▶ Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- ▶ If $X \le Y$ then $E(E|\mathcal{F}) \le E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).
- ▶ If $\mathcal{F}_1 \subset \mathcal{F}_2$ then
 - $E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1).$

- ▶ Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- ▶ If $X \le Y$ then $E(E|\mathcal{F}) \le E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).
- ▶ If $\mathcal{F}_1 \subset \mathcal{F}_2$ then
 - $E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1).$
 - $E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1).$

- ▶ Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- ▶ If $X \le Y$ then $E(E|\mathcal{F}) \le E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).
- ▶ If $\mathcal{F}_1 \subset \mathcal{F}_2$ then
 - $E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1).$
 - $E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1).$
- Second is kind of interesting: says, after I learn \mathcal{F}_1 , my best guess of what my best guess for X will be after learning \mathcal{F}_2 is simply my current best guess for X.

- ▶ Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- ▶ If $X \le Y$ then $E(E|\mathcal{F}) \le E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).
- ▶ If $\mathcal{F}_1 \subset \mathcal{F}_2$ then
 - $E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1).$
 - $E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1).$
- ▶ Second is kind of interesting: says, after I learn \mathcal{F}_1 , my best guess of what my best guess for X will be after learning \mathcal{F}_2 is simply my current best guess for X.
- ▶ Deduce that $E(X|\mathcal{F}_i)$ is a martingale if \mathcal{F}_i is an increasing sequence of σ -algebras and $E(|X|) < \infty$.

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Outline

Conditional expectation

Regular conditional probabilities

Martingales

▶ Consider probability space (Ω, \mathcal{F}, P) , a measurable map $X: (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then $\mu: \Omega \times \mathcal{S} \to [0,1]$ is a **regular conditional distribution for** X **given** \mathcal{G} if

- ▶ Consider probability space (Ω, \mathcal{F}, P) , a measurable map $X: (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then $\mu: \Omega \times \mathcal{S} \to [0,1]$ is a **regular conditional distribution for** X **given** \mathcal{G} if
 - ▶ For each A, $\omega \to \mu(\omega, A)$ is a version of $P(X \in A|\mathcal{G})$.

- ▶ Consider probability space (Ω, \mathcal{F}, P) , a measurable map $X: (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then $\mu: \Omega \times \mathcal{S} \to [0,1]$ is a **regular conditional distribution for** X **given** \mathcal{G} if
 - ▶ For each A, $\omega \to \mu(\omega, A)$ is a version of $P(X \in A|\mathcal{G})$.
 - ▶ For a.e. ω , $A \rightarrow \mu(\omega, A)$ is a probability measure on (S, S).

- ▶ Consider probability space (Ω, \mathcal{F}, P) , a measurable map $X: (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then $\mu: \Omega \times \mathcal{S} \to [0,1]$ is a **regular conditional distribution for** X **given** \mathcal{G} if
 - ▶ For each A, $\omega \to \mu(\omega, A)$ is a version of $P(X \in A|\mathcal{G})$.
 - ▶ For a.e. ω , $A \to \mu(\omega, A)$ is a probability measure on (S, S).
- ▶ **Theorem:** Regular conditional probabilities exist if (S, S) is nice.

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Outline

Conditional expectation

Regular conditional probabilities

Martingales

Martingales

▶ Let \mathcal{F}_n be increasing sequence of σ -fields (called a **filtration**).

Martingales

- ▶ Let \mathcal{F}_n be increasing sequence of σ -fields (called a **filtration**).
- ▶ A sequence X_n is **adapted** to \mathcal{F}_n if $X_n \in \mathcal{F}_n$ for all n. If X_n is an adapted sequence (with $E|X_n| < \infty$) then it is called a **martingale** if

$$E(X_{n+1}|\mathcal{F}_n)=X_n$$

for all n. It's a **supermartingale** (resp., **submartingale**) if same thing holds with = replaced by \le (resp., \ge).

▶ **Claim:** If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \leq X_m$.

- ▶ Claim: If X_n is a supermartingale then for n > m we have $E(X_n|\mathcal{F}_m) \leq X_m$.
- ▶ **Proof idea:** Follows if n = m + 1 by definition; take n = m + k and use induction on k.

- ▶ **Claim:** If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \leq X_m$.
- ▶ **Proof idea:** Follows if n = m + 1 by definition; take n = m + k and use induction on k.
- ▶ Similar result holds for submartingales. Also, if X_n is a martingale and n > m then $E(X_n | \mathcal{F}_m) = X_m$.

- ▶ **Claim:** If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \leq X_m$.
- ▶ **Proof idea:** Follows if n = m + 1 by definition; take n = m + k and use induction on k.
- ▶ Similar result holds for submartingales. Also, if X_n is a martingale and n > m then $E(X_n | \mathcal{F}_m) = X_m$.
- ▶ **Claim:** if X_n is a martingale w.r.t. \mathcal{F}_n and ϕ is convex with $E|\phi(X_n)| < \infty$ then $\phi(X_n)$ is a submartingale.

- ▶ **Claim:** If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \leq X_m$.
- ▶ **Proof idea:** Follows if n = m + 1 by definition; take n = m + k and use induction on k.
- ▶ Similar result holds for submartingales. Also, if X_n is a martingale and n > m then $E(X_n | \mathcal{F}_m) = X_m$.
- ▶ **Claim:** if X_n is a martingale w.r.t. \mathcal{F}_n and ϕ is convex with $E|\phi(X_n)| < \infty$ then $\phi(X_n)$ is a submartingale.
- Proof idea: Immediate from Jensen's inequality and martingale definition.

- ▶ **Claim:** If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \leq X_m$.
- ▶ **Proof idea:** Follows if n = m + 1 by definition; take n = m + k and use induction on k.
- ▶ Similar result holds for submartingales. Also, if X_n is a martingale and n > m then $E(X_n | \mathcal{F}_m) = X_m$.
- ▶ **Claim:** if X_n is a martingale w.r.t. \mathcal{F}_n and ϕ is convex with $E|\phi(X_n)| < \infty$ then $\phi(X_n)$ is a submartingale.
- Proof idea: Immediate from Jensen's inequality and martingale definition.
- ▶ Example: take $\phi(x) = \max\{x, 0\}$.

▶ Call H_n **predictable** if each H + n is \mathcal{F}_{n-1} measurable.

- ▶ Call H_n **predictable** if each H + n is \mathcal{F}_{n-1} measurable.
- ▶ Maybe H_n represents amount of shares of asset investor has at nth stage.

- ▶ Call H_n **predictable** if each H + n is \mathcal{F}_{n-1} measurable.
- ▶ Maybe H_n represents amount of shares of asset investor has at nth stage.
- ▶ Write $(H \cdot X)_n = \sum_{m=1}^n H_m(X_m X_{m-1})$.

- ▶ Call H_n **predictable** if each H + n is \mathcal{F}_{n-1} measurable.
- ▶ Maybe H_n represents amount of shares of asset investor has at nth stage.
- ▶ Write $(H \cdot X)_n = \sum_{m=1}^n H_m(X_m X_{m-1})$.
- ▶ **Observe:** If X_n is a supermartingale and the $H_n \ge 0$ are bounded, then $(H \cdot X)_n$ is a supermartingale.

- ▶ Call H_n **predictable** if each H + n is \mathcal{F}_{n-1} measurable.
- ▶ Maybe H_n represents amount of shares of asset investor has at nth stage.
- ▶ Write $(H \cdot X)_n = \sum_{m=1}^n H_m(X_m X_{m-1})$.
- ▶ **Observe:** If X_n is a supermartingale and the $H_n \ge 0$ are bounded, then $(H \cdot X)_n$ is a supermartingale.
- ▶ Example: take $H_n = 1_{N \ge n}$ for stopping time N.

▶ **Optional stopping theorem:** Can't make money in expectation by timing sale of asset whose price is non-negative martingale.

- ▶ Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- **Proof:** Just a special case of statement about $(H \cdot X)$.

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- **Proof:** Just a special case of statement about $(H \cdot X)$.
- ► Martingale convergence: A non-negative martingale almost surely has a limit.

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- **Proof:** Just a special case of statement about $(H \cdot X)$.
- ► Martingale convergence: A non-negative martingale almost surely has a limit.
- ▶ Idea of proof: Count upcrossings (times martingale crosses a fixed interval) and devise gambling strategy that makes lots of money if the number of these is not a.s. finite.