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Conditional expectation

I Say we’re given a probability space (Ω,F0,P) and a σ-field
F ⊂ F0 and a random variable X measurable w.r.t. F0, with
E |X | <∞. The conditional expectation of X given F is a
new random variable, which we can denote by Y = E (X |F).

I We require that Y is F measurable and that for all A in F ,
we have

∫
A XdP =

∫
A YdP.

I Any Y satisfying these properties is called a version of
E (X |F).

I Is it possible that there exists more than one version of
E (X |F) (which would mean that in some sense the
conditional expectation is not canonically defined)?

I Is there some sense in which E (X |F) always exists and is
always uniquely defined (maybe up to set of measure zero)?
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Conditional expectation

I Claim: Assuming Y = E (X |F) as above, and E |X | <∞, we
have E |Y | ≤ E |X |. In particular, Y is integrable.

I Proof: let A = {Y > 0} ∈ F and observe:∫
A YdP =

∫
A XdP ≤

∫
A |X |dP. By similar argument,∫

Ac −YdP ≤
∫
Ac |X |dP.

I Uniqueness of Y : Suppose Y ′ is F-measurable and satisfies∫
A Y ′dP =

∫
A XdP =

∫
A YdP for all A ∈ F . Then consider

the set Y − Y ′ ≥ ε}. Integrating over that gives zero. Must
hold for any ε. Conclude that Y = Y ′ almost everywhere.
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Radon-Nikodym theorem

I Let µ and ν be σ-finite measures on (Ω,F). Say ν << µ (or
ν is absolutely continuous w.r.t. µ if µ(A) = 0 implies
ν(A) = 0.

I Recall Radon-Nikodym theorem: If µ and ν are σ-finite
measures on (Ω,F) and ν is absolutely continuous w.r.t. µ,
then there exists a measurable f : Ω→ [0,∞) such that
ν(A) =

∫
A fdµ.

I Observe: this theorem implies existence of conditional
expectation.
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Two big results

I Optional stopping theorem: Can’t make money in
expectation by timing sale of asset whose price is non-negative
martingale.

I Martingale convergence: A non-negative martingale almost
surely has a limit.
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Exchangeable events

I Start with measure space (S ,S, µ). Let
Ω = {(ω1, ω2, . . .) : ωi ∈ S}, let F be product σ-algebra and
P the product probability measure.

I Finite permutation of N is one-to-one map from N to itself
that fixes all but finitely many points.

I Event A ∈ F is permutable if it is invariant under any finite
permutation of the ωi .

I Let E be the σ-field of permutable events.

I This is related to the tail σ-algebra we introduced earlier in
the course. Bigger or smaller?
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Hewitt-Savage 0-1 law

I If X1,X2, . . . are i.i.d. and A ∈ A then P(A) ∈ {0, 1}.

I Idea of proof: Try to show A is independent of itself, i.e.,
that P(A) = P(A ∩ A) = P(A)P(A). Start with measure
theoretic fact that we can approximate A by a set An in
σ-algebra generated by X1, . . .Xn, so that symmetric
difference of A and An has very small probability. Note that
An is independent of event A′

n that An holds when X1, . . . ,Xn

and Xn1 , . . . ,X2n are swapped. Symmetric difference between
A and A′

n is also small, so A is independent of itself up to this
small error. Then make error arbitrarily small.
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Application of Hewitt-Savage:

I If Xi are i.i.d. in Rn then Sn =
∑n

i=1 Xi is a random walk on
Rn.

I Theorem: if Sn is a random walk on R then one of the
following occurs with probability one:

I Sn = 0 for all n
I Sn →∞
I Sn → −∞
I −∞ = lim inf Sn < lim supSn =∞

I Idea of proof: Hewitt-Savage implies the lim supSn and
lim inf Sn are almost sure constants in [−∞,∞]. Note that if
X1 is not a.s. constant, then both values would depend on X1

if they were not in ±∞
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Stopping time definition

I Say that T is a stopping time if the event that T = n is in
Fn for i ≤ n.

I In finance applications, T might be the time one sells a stock.
Then this states that the decision to sell at time n depends
only on prices up to time n, not on (as yet unknown) future
prices.
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Stopping time examples

I Let A1, . . . be i.i.d. random variables equal to −1 with
probability .5 and 1 with probability .5 and let X0 = 0 and
Xn =

∑n
i=1 Ai for n ≥ 0.

I Which of the following is a stopping time?

1. The smallest T for which |XT | = 50
2. The smallest T for which XT ∈ {−10, 100}
3. The smallest T for which XT = 0.
4. The T at which the Xn sequence achieves the value 17 for the

9th time.
5. The value of T ∈ {0, 1, 2, . . . , 100} for which XT is largest.
6. The largest T ∈ {0, 1, 2, . . . , 100} for which XT = 0.

I Answer: first four, not last two.
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Stopping time theorems

I Theorem: Let X1,X2, . . . be i.i.d. and N a stopping time with
N <∞.

I Conditioned on stopping time N <∞, conditional law of
{XN+n, n ≥ 1} is independent of Fn and has same law as
original sequence.

I Wald’s equation: Let Xi be i.i.d. with E |Xi | <∞. If N is a
stopping time with EN <∞ then ESN = EX1EN.

I Wald’s second equation: Let Xi be i.i.d. with E |Xi | = 0 and
EX 2

i = σ2 <∞. If N is a stopping time with EN <∞ then
ESN = σ2EN.
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I Wald’s equation: Let Xi be i.i.d. with E |Xi | <∞. If N is a
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Wald applications to SRW

I S0 = a ∈ Z and at each time step Sj independently changes
by ±1 according to a fair coin toss. Fix A ∈ Z and let
N = inf{k : Sk ∈ {0,A}. What is ESN?

I What is EN?
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Reflection principle

I How many walks from (0, x) to (n, y) that don’t cross the
horizontal axis?

I Try counting walks that do cross by giving bijection to walks
from (0,−x) to (n, y).
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Ballot Theorem

I Suppose that in election candidate A gets α votes and B gets
β < α votes. What’s probability that A is a head throughout
the counting?

I Answer: (α− β)/(α + β). Can be proved using reflection
principle.
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Arcsin theorem

I Theorem for last hitting time.

I Theorem for amount of positive positive time.
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