
18.175: Lecture 13

Infinite divisibility and Lévy processes
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Poisson random variables: motivating questions

I How many raindrops hit a given square inch of sidewalk
during a ten minute period?

I How many people fall down the stairs in a major city on a
given day?

I How many plane crashes in a given year?

I How many radioactive particles emitted during a time period
in which the expected number emitted is 5?

I How many calls to call center during a given minute?

I How many goals scored during a 90 minute soccer game?

I How many notable gaffes during 90 minute debate?

I Key idea for all these examples: Divide time into large
number of small increments. Assume that during each
increment, there is some small probability of thing happening
(independently of other increments).
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Bernoulli random variable with n large and np = λ

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3.
Let n be a huge number, say n = 106.

I Suppose I have a coin that comes up heads with probability
λ/n and I toss it n times.

I How many heads do I expect to see?

I Answer: np = λ.

I Let k be some moderate sized number (say k = 4). What is
the probability that I see exactly k heads?

I Binomial formula:(n
k

)
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.
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Probabilities sum to one

I A Poisson random variable X with parameter λ satisfies
p(k) = P{X = k} = λk

k! e
−λ for integer k ≥ 0.

I How can we show that
∑∞

k=0 p(k) = 1?

I Use Taylor expansion eλ =
∑∞

k=0
λk

k! .
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Expectation

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

I What is E [X ]?

I We think of a Poisson random variable as being (roughly) a
Bernoulli (n, p) random variable with n very large and
p = λ/n.

I This would suggest E [X ] = λ. Can we show this directly from
the formula for P{X = k}?

I By definition of expectation

E [X ] =
∞∑
k=0

P{X = k}k =
∞∑
k=0

k
λk

k!
e−λ =

∞∑
k=1

λk

(k − 1)!
e−λ.

I Setting j = k − 1, this is λ
∑∞

j=0
λj

j! e
−λ = λ.
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Variance

I Given P{X = k} = λk

k! e
−λ for integer k ≥ 0, what is Var[X ]?

I Think of X as (roughly) a Bernoulli (n, p) random variable
with n very large and p = λ/n.

I This suggests Var[X ] ≈ npq ≈ λ (since np ≈ λ and
q = 1− p ≈ 1). Can we show directly that Var[X ] = λ?

I Compute

E [X 2] =
∞∑
k=0

P{X = k}k2 =
∞∑
k=0

k2
λk

k!
e−λ = λ

∞∑
k=1

k
λk−1

(k − 1)!
e−λ.

I Setting j = k − 1, this is

λ

 ∞∑
j=0

(j + 1)
λj

j!
e−λ

 = λE [X + 1] = λ(λ+ 1).

I Then Var[X ] = E [X 2]− E [X ]2 = λ(λ+ 1)− λ2 = λ.
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Poisson convergence

I Idea: if we have lots of independent random events, each with
very small probability to occur, and expected number to occur
is λ, then total number that occur is roughly Poisson λ.

I Theorem: Let Xn,m be independent {0, 1}-valued random
variables with P(Xn,m = 1) = pn,m. Suppose

∑n
m=1 pn,m → λ

and max1≤m≤n pn,m → 0. Then
Sn = Xn,1 + . . .+ Xn,n =⇒ Z were Z is Poisson(λ).

I Proof idea: Just write down the log characteristic functions
for Bernoulli and Poisson random variables. Check the
conditions of the continuity theorem.
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Outline
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Recall continuity theorem

I Strong continuity theorem: If µn =⇒ µ∞ then
φn(t)→ φ∞(t) for all t. Conversely, if φn(t) converges to a
limit that is continuous at 0, then the associated sequence of
distributions µn is tight and converges weakly to a measure µ
with characteristic function φ.
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Recall stable law construction

I Suppose that P(X1 > x) = P(X1 < −x) = x−α/2 for
0 < α < 2. This is a random variable with a “power law tail”.

I Compute 1− φ(t) ≈ C |t|α when |t| is large.

I If X1,X2, . . . have same law as X1 then we have
E exp(itSn/n

1/α) = φ(t/nα)n =
(
1− (1− φ(t/n1/α))

)
. As

n→∞, this converges pointwise to exp(−C |t|α).

I Conclude by continuity theorems that Xn/n
1/α =⇒ Y where

Y is a random variable with φY (t) = exp(−C |t|α)

I Let’s look up stable distributions. Up to affine
transformations, this is just a two-parameter family with
characteristic functions exp[−|t|α(1− iβsgn(t)Φ)] where
Φ = tan(πα/2) where β ∈ [−1, 1] and α ∈ (0, 2].
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Recall stable-Poisson connection

I Let’s think some more about this example, where
P(X1 > x) = P(X1 < −x) = x−α/2 for 0 < α < 2 and
X1,X2, . . . are i.i.d.

I Now P(an1/α < X1 < bn1α = 1
2(a−α − b−α)n−1.

I So {m ≤ n : Xm/n
1/α ∈ (a, b)} converges to a Poisson

distribution with mean (a−α − b−α)/2.

I More generally {m ≤ n : Xm/n
1/α ∈ (a, b)} converges in law

to Poisson with mean
∫
A

α
2|x |α+1 dx <∞.
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Domain of attraction to stable random variable

I More generality: suppose that
limx→∞ P(X1 > x)/P(|X1| > x) = θ ∈ [0, 1] and
P(|X1| > x) = x−αL(x) where L is slowly varying (which
means limx→∞ L(tx)/L(x) = 1 for all t > 0).

I Theorem: Then (Sn − bn)/an converges in law to limiting
random variable, for appropriate an and bn values.
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Infinitely divisible laws

I Say a random variable X is infinitely divisible, for each n,
there is a random variable Y such that X has the same law as
the sum of n i.i.d. copies of Y .

I What random variables are infinitely divisible?

I Poisson, Cauchy, normal, stable, etc.

I Let’s look at the characteristic functions of these objects.
What about compound Poisson random variables (linear
combinations of independent Poisson random variables)?
What are their characteristic functions like?

I What if have a random variable X and then we choose a
Poisson random variable N and add up N independent copies
of X .

I More general constructions are possible via Lévy Khintchine
representation.
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Higher dimensional limit theorems

I Much of the CLT story generalizes to higher dimensional
random variables.

I For example, given a random vector (X ,Y ,Z ), we can define
φ(a, b, c) = Ee i(aX+bY+cZ).

I This is just a higher dimensional Fourier transform of the
density function.

I The inversion theorems and continuity theorems that apply
here are essentially the same as in the one-dimensional case.
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