18.175: Lecture 13

Infinite divisibility and Lévy processes

Scott Sheffield

MIT

Outline

Poisson random variable convergence

Extend CLT idea to stable random variables

Infinite divisibility

Higher dimensional CFs and CLTs
18.175 Lecture 13

Outline

Poisson random variable convergence

Extend CLT idea to stable random variables

Infinite divisibility

Higher dimensional CFs and CLTs
18.175 Lecture 13

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?
- How many notable gaffes during 90 minute debate?

Poisson random variables: motivating questions

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5 ?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?
- How many notable gaffes during 90 minute debate?
- Key idea for all these examples: Divide time into large number of small increments. Assume that during each increment, there is some small probability of thing happening (independently of other increments).

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

- This is approximately $\frac{\lambda^{k}}{k!}(1-p)^{n-k} \approx \frac{\lambda^{k}}{k!} e^{-\lambda}$.

Bernoulli random variable with n large and $n p=\lambda$

- Let λ be some moderate-sized number. Say $\lambda=2$ or $\lambda=3$. Let n be a huge number, say $n=10^{6}$.
- Suppose I have a coin that comes up heads with probability λ / n and I toss it n times.
- How many heads do I expect to see?
- Answer: $n p=\lambda$.
- Let k be some moderate sized number (say $k=4$). What is the probability that I see exactly k heads?
- Binomial formula:

$$
\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} p^{k}(1-p)^{n-k} .
$$

- This is approximately $\frac{\lambda^{k}}{k!}(1-p)^{n-k} \approx \frac{\lambda^{k}}{k!} e^{-\lambda}$.
- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k)=1$?

Probabilities sum to one

- A Poisson random variable X with parameter λ satisfies $p(k)=P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k)=1$?
- Use Taylor expansion $e^{\lambda}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}$.

Expectation

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.

Expectation

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What is $E[X]$?

Expectation

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What is $E[X]$?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.

Expectation

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What is $E[X]$?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This would suggest $E[X]=\lambda$. Can we show this directly from the formula for $P\{X=k\}$?

Expectation

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What is $E[X]$?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This would suggest $E[X]=\lambda$. Can we show this directly from the formula for $P\{X=k\}$?
- By definition of expectation

$$
E[X]=\sum_{k=0}^{\infty} P\{X=k\} k=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}=\sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} .
$$

Expectation

- A Poisson random variable X with parameter λ satisfies $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$.
- What is $E[X]$?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This would suggest $E[X]=\lambda$. Can we show this directly from the formula for $P\{X=k\}$?
- By definition of expectation

$$
E[X]=\sum_{k=0}^{\infty} P\{X=k\} k=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}=\sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} .
$$

- Setting $j=k-1$, this is $\lambda \sum_{j=0}^{\infty} \frac{\lambda_{j}^{j}}{j!} e^{-\lambda}=\lambda$.

Variance

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?

Variance

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.

Variance

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This suggests $\operatorname{Var}[X] \approx n p q \approx \lambda$ (since $n p \approx \lambda$ and $q=1-p \approx 1$). Can we show directly that $\operatorname{Var}[X]=\lambda$?

Variance

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This suggests $\operatorname{Var}[X] \approx n p q \approx \lambda$ (since $n p \approx \lambda$ and $q=1-p \approx 1$). Can we show directly that $\operatorname{Var}[X]=\lambda$?

Variance

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This suggests $\operatorname{Var}[X] \approx n p q \approx \lambda$ (since $n p \approx \lambda$ and $q=1-p \approx 1$). Can we show directly that $\operatorname{Var}[X]=\lambda$?
- Compute

$$
E\left[X^{2}\right]=\sum_{k=0}^{\infty} P\{X=k\} k^{2}=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} .
$$

Variance

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This suggests $\operatorname{Var}[X] \approx n p q \approx \lambda$ (since $n p \approx \lambda$ and $q=1-p \approx 1$). Can we show directly that $\operatorname{Var}[X]=\lambda$?
- Compute

$$
E\left[X^{2}\right]=\sum_{k=0}^{\infty} P\{X=k\} k^{2}=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} .
$$

- Setting $j=k-1$, this is

$$
\lambda\left(\sum_{j=0}^{\infty}(j+1) \frac{\lambda^{j}}{j!} e^{-\lambda}\right)=\lambda E[X+1]=\lambda(\lambda+1)
$$

Variance

- Given $P\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}$ for integer $k \geq 0$, what is $\operatorname{Var}[X]$?
- Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and $p=\lambda / n$.
- This suggests $\operatorname{Var}[X] \approx n p q \approx \lambda$ (since $n p \approx \lambda$ and $q=1-p \approx 1$). Can we show directly that $\operatorname{Var}[X]=\lambda$?
- Compute

$$
E\left[X^{2}\right]=\sum_{k=0}^{\infty} P\{X=k\} k^{2}=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} .
$$

- Setting $j=k-1$, this is

$$
\lambda\left(\sum_{j=0}^{\infty}(j+1) \frac{\lambda^{j}}{j!} e^{-\lambda}\right)=\lambda E[X+1]=\lambda(\lambda+1)
$$

- Then $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=\lambda(\lambda+1)-\lambda^{2}=\lambda$.

Poisson convergence

- Idea: if we have lots of independent random events, each with very small probability to occur, and expected number to occur is λ, then total number that occur is roughly Poisson λ.

Poisson convergence

- Idea: if we have lots of independent random events, each with very small probability to occur, and expected number to occur is λ, then total number that occur is roughly Poisson λ.
- Theorem: Let $X_{n, m}$ be independent $\{0,1\}$-valued random variables with $P\left(X_{n, m}=1\right)=p_{n, m}$. Suppose $\sum_{m=1}^{n} p_{n, m} \rightarrow \lambda$ and $\max _{1 \leq m \leq n} p_{n, m} \rightarrow 0$. Then $S_{n}=X_{n, 1}+\ldots+X_{n, n} \Longrightarrow Z$ were Z is $\operatorname{Poisson}(\lambda)$.

Poisson convergence

- Idea: if we have lots of independent random events, each with very small probability to occur, and expected number to occur is λ, then total number that occur is roughly Poisson λ.
- Theorem: Let $X_{n, m}$ be independent $\{0,1\}$-valued random variables with $P\left(X_{n, m}=1\right)=p_{n, m}$. Suppose $\sum_{m=1}^{n} p_{n, m} \rightarrow \lambda$ and $\max _{1 \leq m \leq n} p_{n, m} \rightarrow 0$. Then $S_{n}=X_{n, 1}+\ldots+X_{n, n} \Longrightarrow Z$ were Z is $\operatorname{Poisson}(\lambda)$.
- Proof idea: Just write down the log characteristic functions for Bernoulli and Poisson random variables. Check the conditions of the continuity theorem.

Outline

Poisson random variable convergence

Extend CLT idea to stable random variables

Infinite divisibility

Higher dimensional CFs and CLTs
18.175 Lecture 13

Outline

Poisson random variable convergence

Extend CLT idea to stable random variables

Infinite divisibility

Higher dimensional CFs and CLTs
18.175 Lecture 13

Recall continuity theorem

- Strong continuity theorem: If $\mu_{n} \Longrightarrow \mu_{\infty}$ then $\phi_{n}(t) \rightarrow \phi_{\infty}(t)$ for all t. Conversely, if $\phi_{n}(t)$ converges to a limit that is continuous at 0 , then the associated sequence of distributions μ_{n} is tight and converges weakly to a measure μ with characteristic function ϕ.

Recall stable law construction

- Suppose that $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$. This is a random variable with a "power law tail".

Recall stable law construction

- Suppose that $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$. This is a random variable with a "power law tail".
- Compute $1-\phi(t) \approx C|t|^{\alpha}$ when $|t|$ is large.

Recall stable law construction

- Suppose that $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$. This is a random variable with a "power law tail".
- Compute $1-\phi(t) \approx C|t|^{\alpha}$ when $|t|$ is large.
- If X_{1}, X_{2}, \ldots have same law as X_{1} then we have $E \exp \left(i t S_{n} / n^{1 / \alpha}\right)=\phi\left(t / n^{\alpha}\right)^{n}=\left(1-\left(1-\phi\left(t / n^{1 / \alpha}\right)\right)\right)$. As $n \rightarrow \infty$, this converges pointwise to $\exp \left(-C|t|^{\alpha}\right)$.

Recall stable law construction

- Suppose that $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$. This is a random variable with a "power law tail".
- Compute $1-\phi(t) \approx C|t|^{\alpha}$ when $|t|$ is large.
- If X_{1}, X_{2}, \ldots have same law as X_{1} then we have $E \exp \left(i t S_{n} / n^{1 / \alpha}\right)=\phi\left(t / n^{\alpha}\right)^{n}=\left(1-\left(1-\phi\left(t / n^{1 / \alpha}\right)\right)\right)$. As $n \rightarrow \infty$, this converges pointwise to $\exp \left(-C|t|^{\alpha}\right)$.
- Conclude by continuity theorems that $X_{n} / n^{1 / \alpha} \Longrightarrow Y$ where Y is a random variable with $\phi_{Y}(t)=\exp \left(-C|t|^{\alpha}\right)$

Recall stable law construction

- Suppose that $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$. This is a random variable with a "power law tail".
- Compute $1-\phi(t) \approx C|t|^{\alpha}$ when $|t|$ is large.
- If X_{1}, X_{2}, \ldots have same law as X_{1} then we have $E \exp \left(i t S_{n} / n^{1 / \alpha}\right)=\phi\left(t / n^{\alpha}\right)^{n}=\left(1-\left(1-\phi\left(t / n^{1 / \alpha}\right)\right)\right)$. As $n \rightarrow \infty$, this converges pointwise to $\exp \left(-C|t|^{\alpha}\right)$.
- Conclude by continuity theorems that $X_{n} / n^{1 / \alpha} \Longrightarrow Y$ where Y is a random variable with $\phi_{Y}(t)=\exp \left(-C|t|^{\alpha}\right)$
- Let's look up stable distributions. Up to affine transformations, this is just a two-parameter family with characteristic functions $\exp \left[-|t|^{\alpha}(1-i \beta \operatorname{sgn}(t) \Phi)\right]$ where $\Phi=\tan (\pi \alpha / 2)$ where $\beta \in[-1,1]$ and $\alpha \in(0,2]$.

Recall stable-Poisson connection

- Let's think some more about this example, where $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$ and X_{1}, X_{2}, \ldots are i.i.d.

Recall stable-Poisson connection

- Let's think some more about this example, where $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$ and X_{1}, X_{2}, \ldots are i.i.d.
- Now $P\left(a n^{1 / \alpha}<X_{1}<b n^{1 \alpha}=\frac{1}{2}\left(a^{-\alpha}-b^{-\alpha}\right) n^{-1}\right.$.

Recall stable-Poisson connection

- Let's think some more about this example, where $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$ and X_{1}, X_{2}, \ldots are i.i.d.
- Now $P\left(a n^{1 / \alpha}<X_{1}<b n^{1 \alpha}=\frac{1}{2}\left(a^{-\alpha}-b^{-\alpha}\right) n^{-1}\right.$.
- So $\left\{m \leq n: X_{m} / n^{1 / \alpha} \in(a, b)\right\}$ converges to a Poisson distribution with mean $\left(a^{-\alpha}-b^{-\alpha}\right) / 2$.

Recall stable-Poisson connection

- Let's think some more about this example, where $P\left(X_{1}>x\right)=P\left(X_{1}<-x\right)=x^{-\alpha} / 2$ for $0<\alpha<2$ and X_{1}, X_{2}, \ldots are i.i.d.
- Now $P\left(a n^{1 / \alpha}<X_{1}<b n^{1 \alpha}=\frac{1}{2}\left(a^{-\alpha}-b^{-\alpha}\right) n^{-1}\right.$.
- So $\left\{m \leq n: X_{m} / n^{1 / \alpha} \in(a, b)\right\}$ converges to a Poisson distribution with mean $\left(a^{-\alpha}-b^{-\alpha}\right) / 2$.
- More generally $\left\{m \leq n: X_{m} / n^{1 / \alpha} \in(a, b)\right\}$ converges in law to Poisson with mean $\int_{A} \frac{\alpha}{2|x|^{\alpha+1}} d x<\infty$.

Domain of attraction to stable random variable

- More generality: suppose that $\lim _{x \rightarrow \infty} P\left(X_{1}>x\right) / P\left(\left|X_{1}\right|>x\right)=\theta \in[0,1]$ and $P\left(\left|X_{1}\right|>x\right)=x^{-\alpha} L(x)$ where L is slowly varying (which means $\lim _{x \rightarrow \infty} L(t x) / L(x)=1$ for all $\left.t>0\right)$.

Domain of attraction to stable random variable

- More generality: suppose that $\lim _{x \rightarrow \infty} P\left(X_{1}>x\right) / P\left(\left|X_{1}\right|>x\right)=\theta \in[0,1]$ and $P\left(\left|X_{1}\right|>x\right)=x^{-\alpha} L(x)$ where L is slowly varying (which means $\lim _{x \rightarrow \infty} L(t x) / L(x)=1$ for all $\left.t>0\right)$.
- Theorem: Then $\left(S_{n}-b_{n}\right) / a_{n}$ converges in law to limiting random variable, for appropriate a_{n} and b_{n} values.

Outline

Poisson random variable convergence

Extend CLT idea to stable random variables

Infinite divisibility

Higher dimensional CFs and CLTs
18.175 Lecture 13

Outline

Poisson random variable convergence

 Extend CLT idea to stable random variables

 Extend CLT idea to stable random variables}

Infinite divisibility

Higher dimensional CFs and CLTs
18.175 Lecture 13

Infinitely divisible laws

- Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.

Infinitely divisible laws

- Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?

Infinitely divisible laws

- Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?
- Poisson, Cauchy, normal, stable, etc.

Infinitely divisible laws

- Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?
- Poisson, Cauchy, normal, stable, etc.
- Let's look at the characteristic functions of these objects. What about compound Poisson random variables (linear combinations of independent Poisson random variables)? What are their characteristic functions like?

Infinitely divisible laws

- Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?
- Poisson, Cauchy, normal, stable, etc.
- Let's look at the characteristic functions of these objects. What about compound Poisson random variables (linear combinations of independent Poisson random variables)? What are their characteristic functions like?
- What if have a random variable X and then we choose a Poisson random variable N and add up N independent copies of X.

Infinitely divisible laws

- Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?
- Poisson, Cauchy, normal, stable, etc.
- Let's look at the characteristic functions of these objects. What about compound Poisson random variables (linear combinations of independent Poisson random variables)? What are their characteristic functions like?
- What if have a random variable X and then we choose a Poisson random variable N and add up N independent copies of X.
- More general constructions are possible via Lévy Khintchine representation.

Outline

Poisson random variable convergence

Extend CLT idea to stable random variables

Infinite divisibility

Higher dimensional CFs and CLTs
18.175 Lecture 13

Outline

Poisson random variable convergence
 Extend CLT idea to stable random variables
 Infinite divisibility

Higher dimensional CFs and CLTs
18.175 Lecture 13

Higher dimensional limit theorems

- Much of the CLT story generalizes to higher dimensional random variables.

Higher dimensional limit theorems

- Much of the CLT story generalizes to higher dimensional random variables.
- For example, given a random vector (X, Y, Z), we can define $\phi(a, b, c)=E e^{i(a X+b Y+c Z)}$.

Higher dimensional limit theorems

- Much of the CLT story generalizes to higher dimensional random variables.
- For example, given a random vector (X, Y, Z), we can define $\phi(a, b, c)=E e^{i(a X+b Y+c Z)}$.
- This is just a higher dimensional Fourier transform of the density function.

Higher dimensional limit theorems

- Much of the CLT story generalizes to higher dimensional random variables.
- For example, given a random vector (X, Y, Z), we can define $\phi(a, b, c)=E e^{i(a X+b Y+c Z)}$.
- This is just a higher dimensional Fourier transform of the density function.
- The inversion theorems and continuity theorems that apply here are essentially the same as in the one-dimensional case.

