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Recall local CLT for walks on Z

I Suppose X ∈ b + hZ a.s. for some fixed constants b and h.

I Observe that if φX (λ) = 1 for some λ 6= 0 then X is
supported on (some translation of) (2π/λ)Z. If this holds for
all λ, then X is a.s. some constant. When the former holds
but not the latter (i.e., φX is periodic but not identically 1)
we call X a lattice random variable.

I Write pn(x) = P(Sn/
√
n = x) for x ∈ Ln := (nb + hZ)/

√
n

and n(x) = (2πσ2)−1/2 exp(−x2/2σ2).

I Assume Xi are i.i.d. lattice with EXi = 0 and
EX 2

i = σ2 ∈ (0,∞). Theorem: As n→∞,

sup
x∈Ln
|n

1/2

h
pn(x)− n(x)

∣∣→ 0.
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Recall local CLT for walks on Z

I Proof idea: Use characteristic functions, reduce to periodic
integral problem. Look up “Fourier series”. Note that for Y
supported on a + θZ, we have

P(Y = x) = 1
2π/θ

∫ π/θ
−π/θ e

−itxφY (t)dt.
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Extending this idea to higher dimensions

I Example: suppose we have random walk on Z that at each
step tosses fair 4-sided coin to decide whether to go 1 unit
left, 1 unit right, 2 units left, or 2 units right?

I What is the probability that the walk is back at the origin
after one step? Two steps? Three steps?

I Let’s compute this in Mathematica by writing out the
characteristic function φX for one-step increment X and
calculating

∫ 2π
0 φkX (t)dt/2π.

I How about a random walk on Z2?

I Can one use this to establish when a random walk on Zd is
recurrent versus transient?
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Poisson random variables: motivating questions

I How many raindrops hit a given square inch of sidewalk
during a ten minute period?

I How many people fall down the stairs in a major city on a
given day?

I How many plane crashes in a given year?

I How many radioactive particles emitted during a time period
in which the expected number emitted is 5?

I How many calls to call center during a given minute?

I How many goals scored during a 90 minute soccer game?

I How many notable gaffes during 90 minute debate?

I Key idea for all these examples: Divide time into large
number of small increments. Assume that during each
increment, there is some small probability of thing happening
(independently of other increments).
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Bernoulli random variable with n large and np = λ

I Let λ be some moderate-sized number. Say λ = 2 or λ = 3.
Let n be a huge number, say n = 106.

I Suppose I have a coin that comes up heads with probability
λ/n and I toss it n times.

I How many heads do I expect to see?

I Answer: np = λ.

I Let k be some moderate sized number (say k = 4). What is
the probability that I see exactly k heads?

I Binomial formula:(n
k

)
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately λk

k! (1− p)n−k ≈ λk

k! e
−λ.

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.
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Probabilities sum to one

I A Poisson random variable X with parameter λ satisfies
p(k) = P{X = k} = λk

k! e
−λ for integer k ≥ 0.

I How can we show that
∑∞

k=0 p(k) = 1?

I Use Taylor expansion eλ =
∑∞

k=0
λk

k! .
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Expectation

I A Poisson random variable X with parameter λ satisfies
P{X = k} = λk

k! e
−λ for integer k ≥ 0.

I What is E [X ]?

I We think of a Poisson random variable as being (roughly) a
Bernoulli (n, p) random variable with n very large and
p = λ/n.

I This would suggest E [X ] = λ. Can we show this directly from
the formula for P{X = k}?

I By definition of expectation

E [X ] =
∞∑
k=0

P{X = k}k =
∞∑
k=0

k
λk

k!
e−λ =

∞∑
k=1

λk

(k − 1)!
e−λ.

I Setting j = k − 1, this is λ
∑∞

j=0
λj

j! e
−λ = λ.
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Variance

I Given P{X = k} = λk

k! e
−λ for integer k ≥ 0, what is Var[X ]?

I Think of X as (roughly) a Bernoulli (n, p) random variable
with n very large and p = λ/n.

I This suggests Var[X ] ≈ npq ≈ λ (since np ≈ λ and
q = 1− p ≈ 1). Can we show directly that Var[X ] = λ?

I Compute

E [X 2] =
∞∑
k=0

P{X = k}k2 =
∞∑
k=0

k2
λk

k!
e−λ = λ

∞∑
k=1

k
λk−1

(k − 1)!
e−λ.

I Setting j = k − 1, this is

λ

 ∞∑
j=0

(j + 1)
λj

j!
e−λ

 = λE [X + 1] = λ(λ+ 1).

I Then Var[X ] = E [X 2]− E [X ]2 = λ(λ+ 1)− λ2 = λ.
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(j + 1)
λj

j!
e−λ

 = λE [X + 1] = λ(λ+ 1).

I Then Var[X ] = E [X 2]− E [X ]2 = λ(λ+ 1)− λ2 = λ.
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Poisson convergence

I Idea: if we have lots of independent random events, each with
very small probability to occur, and expected number to occur
is λ, then total number that occur is roughly Poisson λ.

I Theorem: Let Xn,m be independent {0, 1}-valued random
variables with P(Xn,m = 1) = pn,m. Suppose

∑n
m=1 pn,m → λ

and max1≤m≤n pn,m → 0. Then
Sn = Xn,1 + . . .+ Xn,n =⇒ Z were Z is Poisson(λ).

I Proof idea: Just write down the log characteristic functions
for Bernoulli and Poisson random variables. Check the
conditions of the continuity theorem.
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Recall continuity theorem

I Strong continuity theorem: If µn =⇒ µ∞ then
φn(t)→ φ∞(t) for all t. Conversely, if φn(t) converges to a
limit that is continuous at 0, then the associated sequence of
distributions µn is tight and converges weakly to a measure µ
with characteristic function φ.
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Recall CLT idea

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ].

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I In particular, if E [X ] = 0 and E [X 2] = 1 then φX (0) = 1 and
φ′X (0) = 0 and φ′′X (0) = −1.

I Write LX := − log φX . Then LX (0) = 0 and
L′X (0) = −φ′X (0)/φX (0) = 0 and
L′′X = −(φ′′X (0)φX (0)− φ′X (0)2)/ φX (0)2 = 1.

I If Vn = n−1/2
∑n

i=1 Xi where Xi are i.i.d. with law of X , then
LVn(t) = nLX (n−1/2t).

I When we zoom in on a twice differentiable function near zero
(scaling vertically by n and horizontally by

√
n) the picture

looks increasingly like a parabola.
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Stable laws

I Question? Is it possible for something like a CLT to hold if X
has infinite variance? Say we write Vn = n−a

∑n
i=1 Xi for

some a. Could the law of these guys converge to something
non-Gaussian?

I What if the LVn converge to something else as we increase n,
maybe to some other power of |t| instead of |t|2?

I The the appropriately normalized sum should be converge in
law to something with characteristic function e−|t|

α
instead of

e−|t|
2
.

I We already saw that this should work for Cauchy random
variables. What’s the characteristic function in that case?

I Let’s look up stable distributions.
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Infinitely divisible laws

I Say a random variable X is infinitely divisible, for each n,
there is a random variable Y such that X has the same law as
the sum of n i.i.d. copies of Y .

I What random variables are infinitely divisible?

I Poisson, Cauchy, normal, stable, etc.

I Let’s look at the characteristic functions of these objects.
What about compound Poisson random variables (linear
combinations of Poisson random variables)? What are their
characteristic functions like?

I More general constructions are possible via Lévy Khintchine
representation.
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representation.

18.175 Lecture 16



Infinitely divisible laws

I Say a random variable X is infinitely divisible, for each n,
there is a random variable Y such that X has the same law as
the sum of n i.i.d. copies of Y .

I What random variables are infinitely divisible?

I Poisson, Cauchy, normal, stable, etc.

I Let’s look at the characteristic functions of these objects.
What about compound Poisson random variables (linear
combinations of Poisson random variables)? What are their
characteristic functions like?

I More general constructions are possible via Lévy Khintchine
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