18.175: Lecture 10

Characteristic functions and central limit theorem

Scott Sheffield

MIT

Large deviations

Characteristic functions and central limit theorem

Large deviations

Characteristic functions and central limit theorem

• Let X be a random variable.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$
- If X takes both positive and negative values with positive probability then M(t) grows at least exponentially fast in |t| as |t| → ∞.

• We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?

- We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?
- Answer: M_X^n .

• Consider i.i.d. random variables X_i . Can we show that $P(S_n \ge na) \rightarrow 0$ exponentially fast when $a > E[X_i]$?

- Consider i.i.d. random variables X_i . Can we show that $P(S_n \ge na) \rightarrow 0$ exponentially fast when $a > E[X_i]$?
- ► Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to ε away from its expected value (where "very" means with probability less than some exponentially decaying function of n).

More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

▶ **INTUITION:** when "near *x*" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- ▶ **INTUITION:** when "near x" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.
- **Simple case:** *I* is continuous, Γ is closure of its interior.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- ▶ **INTUITION:** when "near x" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.
- **Simple case:** *I* is continuous, Γ is closure of its interior.
- Question: How would *I* change if we replaced the measures μ_n by weighted measures e^(λn,·)μ_n?

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- INTUITION: when "near x" the probability density function for µ_n is tending to zero like e^{-I(x)n}, as n→∞.
- **Simple case:** *I* is continuous, Γ is closure of its interior.
- **Question:** How would *I* change if we replaced the measures μ_n by weighted measures $e^{(\lambda n, \cdot)}\mu_n$?
- ▶ Replace I(x) by $I(x) (\lambda, x)$? What is $\inf_x I(x) (\lambda, x)$?

• Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$ for i.i.d. vectors X_1, X_2, \dots, X_n in \mathbb{R}^d with same law as X.

- Let µ_n be law of empirical mean A_n = ¹/_n ∑ⁿ_{j=1} X_j for i.i.d. vectors X₁, X₂,..., X_n in ℝ^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

- Let µ_n be law of empirical mean A_n = ¹/_n ∑ⁿ_{j=1} X_j for i.i.d. vectors X₁, X₂,..., X_n in ℝ^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

Define Legendre transform of Λ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$ for i.i.d. vectors X_1, X_2, \dots, X_n in \mathbb{R}^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

Define Legendre transform of Λ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function Λ*.

• Let
$$\mu_n$$
 be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\},\$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\},\$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

This means that for all Γ ∈ B we have this asymptotic lower bound on probabilities μ_n(Γ)

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma),$$

so (up to sub-exponential error) $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\},\$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

This means that for all Γ ∈ B we have this asymptotic lower bound on probabilities μ_n(Γ)

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma),$$

so (up to sub-exponential error) $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

• and this **asymptotic upper bound** on the probabilities $\mu_n(\Gamma)$

$$\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x),$$

which says (up to subexponential error) $\mu_n(\Gamma) \leq e^{-n \inf_{x \in \overline{\Gamma}} I(x)}$. 18.175 Lecture 10

• Recall that
$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} I(x)}.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} I(x)}.
- If Γ were singleton set {x} we could find the λ corresponding to x, so Λ*(x) = (x, λ) − Λ(λ). Note then that

$$\mathbb{E}e^{(n\lambda,A_n)}=\mathbb{E}e^{(\lambda,S_n)}=M_X^n(\lambda)=e^{n\Lambda(\lambda)},$$

and also $\mathbb{E}e^{(n\lambda,A_n)} \ge e^{n(\lambda,x)}\mu_n\{x\}$. Taking logs and dividing by n gives $\Lambda(\lambda) \ge \frac{1}{n}\log\mu_n + (\lambda,x)$, so that $\frac{1}{n}\log\mu_n(\Gamma) \le -\Lambda^*(x)$, as desired.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} I(x)}.
- If Γ were singleton set {x} we could find the λ corresponding to x, so Λ*(x) = (x, λ) − Λ(λ). Note then that

$$\mathbb{E}e^{(n\lambda,A_n)}=\mathbb{E}e^{(\lambda,S_n)}=M_X^n(\lambda)=e^{n\Lambda(\lambda)},$$

and also $\mathbb{E}e^{(n\lambda,A_n)} \ge e^{n(\lambda,x)}\mu_n\{x\}$. Taking logs and dividing by *n* gives $\Lambda(\lambda) \ge \frac{1}{n}\log\mu_n + (\lambda,x)$, so that $\frac{1}{n}\log\mu_n(\Gamma) \le -\Lambda^*(x)$, as desired.

General Γ: cut into finitely many pieces, bound each piece?

• Recall that
$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\}.$$

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-nI(x)}$.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-nI(x)}$.
- Idea is to weight law of each X_i by e^(λ,x) to get a new measure whose expectation is in the interior of x. In this new measure, A_n is "typically" in Γ for large Γ, so the probability is of order 1.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-nI(x)}$.
- Idea is to weight law of each X_i by e^(λ,x) to get a new measure whose expectation is in the interior of x. In this new measure, A_n is "typically" in Γ for large Γ, so the probability is of order 1.
- But by how much did we have to modify the measure to make this typical? Aren't we weighting the law of A_n by about e^{-nl(x)} near x?

Large deviations

Characteristic functions and central limit theorem

18.175 Lecture 10

Large deviations

Characteristic functions and central limit theorem

18.175 Lecture 10

• Let X be a random variable.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ► Characteristic function φ_X similar to moment generating function M_X.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ► Characteristic function φ_X similar to moment generating function M_X.
- ► $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ► Characteristic function φ_X similar to moment generating function M_X.
- ► $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ► Characteristic function φ_X similar to moment generating function M_X.
- ► $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- ► Characteristic function φ_X similar to moment generating function M_X.
- ► $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- Characteristic functions are well defined at all t for all random variables X.

Characteristic function properties

$$\phi(0) = 1 \phi(-t) = \overline{\phi(t)}$$

•
$$\phi(0) = 1$$

$$\blacktriangleright \phi(-t) = \phi(t)$$

•
$$|\phi(t)| = |Ee^{itX}| \le E|e^{itX}| = 1.$$

φ(0) = 1
 φ(-t) = φ(t)
 |φ(t)| = |Ee^{itX}| ≤ E|e^{itX}| = 1.
 |φ(t + h) - φ(t)| ≤ E|e^{ihX} - 1|, so φ(t) uniformly continuous on (-∞, ∞)

\$\phi(0) = 1\$
 \$\phi(-t) = \overline{\phi(t)}\$
 \$|\phi(t)| = |\mathcal{E}e^{itX}| ≤ \mathcal{E}|e^{itX}| = 1\$.
 \$|\phi(t+h) - \phi(t)| ≤ \mathcal{E}|e^{ihX} - 1|\$, so \$\phi(t)\$ uniformly continuous on \$(-\infty, \infty)\$)\$
 \$\mathcal{E}e^{it(aX+b)} = e^{itb}\phi(at)\$

• **Coin:** If
$$P(X = 1) = P(X = -1) = 1/2$$
 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.

- **Coin:** If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?

- **Coin:** If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$

- **Coin:** If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- Why does doubling λ amount to squaring ϕ_X ?

- **Coin:** If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- Why does doubling λ amount to squaring ϕ_X ?
- Normal: If X is standard normal, then $\phi_X(t) = e^{-t^2/2}$.

- **Coin:** If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- Why does doubling λ amount to squaring ϕ_X ?
- Normal: If X is standard normal, then $\phi_X(t) = e^{-t^2/2}$.
- ▶ Is ϕ_X always real when the law of X is symmetric about zero?

- **Coin:** If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- Why does doubling λ amount to squaring ϕ_X ?
- Normal: If X is standard normal, then $\phi_X(t) = e^{-t^2/2}$.
- ▶ Is ϕ_X always real when the law of X is symmetric about zero?
- ► Exponential: If X is standard exponential (density e^{-x} on (0,∞)) then φ_X(t) = 1/(1 it).

- **Coin:** If P(X = 1) = P(X = -1) = 1/2 then $\phi_X(t) = (e^{it} + e^{-it})/2 = \cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- ▶ **Poisson:** If X is Poisson with parameter λ then $\phi_X(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp(\lambda(e^{it} 1)).$
- Why does doubling λ amount to squaring ϕ_X ?
- Normal: If X is standard normal, then $\phi_X(t) = e^{-t^2/2}$.
- ▶ Is ϕ_X always real when the law of X is symmetric about zero?
- ► Exponential: If X is standard exponential (density e^{-x} on (0,∞)) then φ_X(t) = 1/(1 it).
- ▶ **Bilateral exponential:** if $f_X(t) = e^{-|x|}/2$ on \mathbb{R} then $\phi_X(t) = 1/(1+t^2)$. Use linearity of $f_X \to \phi_X$.

• If
$$f : \mathbb{R} \to \mathbb{C}$$
 is in L^1 , write $\hat{f}(t) := \int_{-\infty}^{\infty} f(x) e^{-itx} dx$.

• If $f : \mathbb{R} \to \mathbb{C}$ is in L^1 , write $\hat{f}(t) := \int_{-\infty}^{\infty} f(x) e^{-itx} dx$.

• Fourier inversion: If f is nice: $f(x) = \frac{1}{2\pi} \int \hat{f}(t) e^{itx} dt$.

- If $f : \mathbb{R} \to \mathbb{C}$ is in L^1 , write $\hat{f}(t) := \int_{-\infty}^{\infty} f(x) e^{-itx} dx$.
- Fourier inversion: If f is nice: $f(x) = \frac{1}{2\pi} \int \hat{f}(t) e^{itx} dt$.
- ► Easy to check this when f is density function of a Gaussian. Use linearity of f → f to extend to linear combinations of Gaussians, or to convolutions with Gaussians.

- If $f : \mathbb{R} \to \mathbb{C}$ is in L^1 , write $\hat{f}(t) := \int_{-\infty}^{\infty} f(x) e^{-itx} dx$.
- Fourier inversion: If f is nice: $f(x) = \frac{1}{2\pi} \int \hat{f}(t) e^{itx} dt$.
- ► Easy to check this when f is density function of a Gaussian. Use linearity of f → f to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \to \hat{f}$ is an isometry of Schwartz space (endowed with L^2 norm). Extend definition to L^2 completion.

• If $f : \mathbb{R} \to \mathbb{C}$ is in L^1 , write $\hat{f}(t) := \int_{-\infty}^{\infty} f(x) e^{-itx} dx$.

• Fourier inversion: If f is nice: $f(x) = \frac{1}{2\pi} \int \hat{f}(t) e^{itx} dt$.

- ► Easy to check this when f is density function of a Gaussian. Use linearity of f → f to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- ▶ Show $f \to \hat{f}$ is an isometry of Schwartz space (endowed with L^2 norm). Extend definition to L^2 completion.

Convolution theorem: If

$$h(x) = (f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y)dy,$$

then

$$\hat{h}(t) = \hat{f}(t)\hat{g}(t).$$

• If $f : \mathbb{R} \to \mathbb{C}$ is in L^1 , write $\hat{f}(t) := \int_{-\infty}^{\infty} f(x) e^{-itx} dx$.

• Fourier inversion: If f is nice: $f(x) = \frac{1}{2\pi} \int \hat{f}(t) e^{itx} dt$.

- ► Easy to check this when f is density function of a Gaussian. Use linearity of f → f to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- ▶ Show $f \to \hat{f}$ is an isometry of Schwartz space (endowed with L^2 norm). Extend definition to L^2 completion.
- Convolution theorem: If

$$h(x) = (f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y)dy,$$

then

$$\hat{h}(t) = \hat{f}(t)\hat{g}(t).$$

Possible application?

$$\int 1_{[a,b]}(x)f(x)dx = (\widehat{1_{[a,b]}f})(0) = (\widehat{f} * \widehat{1_{[a,b]}})(0) = \int \widehat{f}(t)\widehat{1_{[a,b]}}(-t)dx.$$

18.175 Lecture 10

Characteristic function inversion formula

If the map µ_X → φ_X is linear, is the map φ → µ[a, b] (for some fixed [a, b]) a linear map? How do we recover µ[a, b] from φ?

Characteristic function inversion formula

- If the map µ_X → φ_X is linear, is the map φ → µ[a, b] (for some fixed [a, b]) a linear map? How do we recover µ[a, b] from φ?
- Say $\phi(t) = \int e^{itx} \mu(x)$.

- If the map µ_X → φ_X is linear, is the map φ → µ[a, b] (for some fixed [a, b]) a linear map? How do we recover µ[a, b] from φ?
- Say $\phi(t) = \int e^{itx} \mu(x)$.
- Inversion theorem:

$$\lim_{T \to \infty} (2\pi)^{-1} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \mu(a, b) + \frac{1}{2} \mu(\{a, b\})$$

- If the map µ_X → φ_X is linear, is the map φ → µ[a, b] (for some fixed [a, b]) a linear map? How do we recover µ[a, b] from φ?
- Say $\phi(t) = \int e^{itx} \mu(x)$.
- Inversion theorem:

$$\lim_{T \to \infty} (2\pi)^{-1} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \mu(a, b) + \frac{1}{2} \mu(\{a, b\})$$

Main ideas of proof: Write

$$I_T = \int \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \int_{-T}^T \int \frac{e^{-ita} - e^{-itb}}{it} e^{itx} \mu(x) dt.$$

- If the map µ_X → φ_X is linear, is the map φ → µ[a, b] (for some fixed [a, b]) a linear map? How do we recover µ[a, b] from φ?
- Say $\phi(t) = \int e^{itx} \mu(x)$.
- Inversion theorem:

$$\lim_{T \to \infty} (2\pi)^{-1} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \mu(a, b) + \frac{1}{2} \mu(\{a, b\})$$

Main ideas of proof: Write

$$I_T = \int \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \int_{-T}^T \int \frac{e^{-ita} - e^{-itb}}{it} e^{itx} \mu(x) dt.$$

• Observe that $\frac{e^{-ita}-e^{-itb}}{it} = \int_a^b e^{-ity} dy$ has modulus bounded by b - a.

18.175 Lecture 10

- If the map µ_X → φ_X is linear, is the map φ → µ[a, b] (for some fixed [a, b]) a linear map? How do we recover µ[a, b] from φ?
- Say $\phi(t) = \int e^{itx} \mu(x)$.
- Inversion theorem:

$$\lim_{T \to \infty} (2\pi)^{-1} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \mu(a, b) + \frac{1}{2} \mu(\{a, b\})$$

Main ideas of proof: Write

$$I_T = \int \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \int_{-T}^T \int \frac{e^{-ita} - e^{-itb}}{it} e^{itx} \mu(x) dt.$$

- Observe that $\frac{e^{-ita}-e^{-itb}}{it} = \int_a^b e^{-ity} dy$ has modulus bounded by b a.
- That means we can use Fubini to compute I_T .

18.175 Lecture 10

► Given any function φ and any points t₁,..., t_n, we can consider the matrix with i, j entry given by φ(t_i − t_j). Call φ **positive definite** if this matrix is always positive semidefinite Hermitian.

- ► Given any function φ and any points t₁,..., t_n, we can consider the matrix with i, j entry given by φ(t_i − t_j). Call φ **positive definite** if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from ℝ to C with φ(0) = 1 is a characteristic function of a some probability measure on ℝ if and only if it is positive definite.

- ► Given any function φ and any points t₁,..., t_n, we can consider the matrix with i, j entry given by φ(t_i − t_j). Call φ **positive definite** if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from ℝ to C with φ(0) = 1 is a characteristic function of a some probability measure on ℝ if and only if it is positive definite.
- Why positive definite?

- ► Given any function φ and any points t₁,..., t_n, we can consider the matrix with i, j entry given by φ(t_i − t_j). Call φ **positive definite** if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from ℝ to C with φ(0) = 1 is a characteristic function of a some probability measure on ℝ if and only if it is positive definite.
- Why positive definite?
- ▶ Write $Y = \sum_{j=1}^{n} a_j e^{t_j X}$. This is a complex-valued random variable. What is $\mathbb{E}|Y|^2$?

- ► Given any function φ and any points t₁,..., t_n, we can consider the matrix with i, j entry given by φ(t_i − t_j). Call φ **positive definite** if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from ℝ to C with φ(0) = 1 is a characteristic function of a some probability measure on ℝ if and only if it is positive definite.
- Why positive definite?
- Write Y = ∑_{j=1}ⁿ a_je^{t_jX}. This is a complex-valued random variable. What is E|Y|²?

►
$$Y\overline{Y} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_j \overline{a_k} e^{(t_i - t_j)X}$$
 and
 $\mathbb{E}Y\overline{Y} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_j \overline{a_k} \phi(t_i - t_j).$

- ► Given any function φ and any points t₁,..., t_n, we can consider the matrix with i, j entry given by φ(t_i − t_j). Call φ **positive definite** if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from ℝ to C with φ(0) = 1 is a characteristic function of a some probability measure on ℝ if and only if it is positive definite.
- Why positive definite?
- Write Y = ∑_{j=1}ⁿ a_je^{t_jX}. This is a complex-valued random variable. What is E|Y|²?

►
$$Y\overline{Y} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_j \overline{a_k} e^{(t_i - t_j)X}$$
 and
 $\mathbb{E}Y\overline{Y} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_j \overline{a_k} \phi(t_i - t_j).$

Set of possible characteristic functions is a pretty nice set.

Continuity theorems

Lévy's continuity theorem: if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

Continuity theorems

Lévy's continuity theorem: if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

1

Slightly stronger theorem: If μ_n ⇒ μ_∞ then φ_n(t) → φ_∞(t) for all t. Conversely, if φ_n(t) converges to a limit that is continuous at 0, then the associated sequence of distributions μ_n is tight and converges weakly to measure μ with characteristic function φ.

Continuity theorems

Lévy's continuity theorem: if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

1

- ▶ Slightly stronger theorem: If $\mu_n \implies \mu_\infty$ then $\phi_n(t) \rightarrow \phi_\infty(t)$ for all t. Conversely, if $\phi_n(t)$ converges to a limit that is continuous at 0, then the associated sequence of distributions μ_n is tight and converges weakly to measure μ with characteristic function ϕ .
- ▶ **Proof ideas:** First statement easy (since $X_n \implies X$ implies $Eg(X_n) \rightarrow Eg(X)$ for any bounded continuous g). For second statement, try to use fact that $u^{-1} \int_{-u}^{u} (1 \phi(t)) dt \rightarrow 0$ to get tightness of the μ_n . Then note that any subsequential limit of the μ_n must be equal to μ . Use this to argue that $\int f d\mu_n$ converges to $\int f d\mu$ for every bounded continuous f.

18.175 Lecture 10

• If $\int |x|^n \mu(x) < \infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by $\phi^{(n)}(t) = \int (ix)^n e^{itx} \mu(dx).$

Moments, derivatives, CLT

- If $\int |x|^n \mu(x) < \infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by $\phi^{(n)}(t) = \int (ix)^n e^{itx} \mu(dx).$
- ▶ Indeed, if $E|X|^2 < \infty$ and EX = 0 then $\phi(t) = 1 t^2 E(X^2)/2o(t^2)$.

- If $\int |x|^n \mu(x) < \infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by $\phi^{(n)}(t) = \int (ix)^n e^{itx} \mu(dx).$
- ▶ Indeed, if $E|X|^2 < \infty$ and EX = 0 then $\phi(t) = 1 t^2 E(X^2)/2o(t^2)$.
- This and the continuity theorem together imply the central limit theorem.

- If $\int |x|^n \mu(x) < \infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by $\phi^{(n)}(t) = \int (ix)^n e^{itx} \mu(dx).$
- ▶ Indeed, if $E|X|^2 < \infty$ and EX = 0 then $\phi(t) = 1 t^2 E(X^2)/2o(t^2)$.
- This and the continuity theorem together imply the central limit theorem.
- ▶ **Theorem:** Let $X_1, X_2, ...$ by i.i.d. with $EX_i = \mu$, $Var(X_i) = \sigma^2 \in (0, \infty)$. If $S_n = X_1 + ... + X_n$ then $(S_n - n\mu)/(\sigma n^{1/2})$ converges in law to a standard normal.