18.175: Lecture 10

Characteristic functions and central limit theorem

Scott Sheffield

MIT

Outline

Large deviations

Characteristic functions and central limit theorem

Outline

Large deviations

Characteristic functions and central limit theorem

Recall: moment generating functions

- Let X be a random variable.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.
- If $b>0$ and $t>0$ then

$$
E\left[e^{t X}\right] \geq E\left[e^{t \min \{X, b\}}\right] \geq P\{X \geq b\} e^{t b} .
$$

Recall: moment generating functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t)=M_{X}(t):=E\left[e^{t X}\right]$.
- When X is discrete, can write $M(t)=\sum_{x} e^{t x} p_{X}(x)$. So $M(t)$ is a weighted average of countably many exponential functions.
- When X is continuous, can write $M(t)=\int_{-\infty}^{\infty} e^{t x} f(x) d x$. So $M(t)$ is a weighted average of a continuum of exponential functions.
- We always have $M(0)=1$.
- If $b>0$ and $t>0$ then $E\left[e^{t X}\right] \geq E\left[e^{t \min \{X, b\}}\right] \geq P\{X \geq b\} e^{t b}$.
- If X takes both positive and negative values with positive probability then $M(t)$ grows at least exponentially fast in $|t|$ as $|t| \rightarrow \infty$.

Recall: moment generating functions for i.i.d. sums

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$

Recall: moment generating functions for i.i.d. sums

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?

Recall: moment generating functions for i.i.d. sums

- We showed that if $Z=X+Y$ and X and Y are independent, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$
- If $X_{1} \ldots X_{n}$ are i.i.d. copies of X and $Z=X_{1}+\ldots+X_{n}$ then what is M_{Z} ?
- Answer: M_{X}^{n}.

Large deviations

- Consider i.i.d. random variables X_{i}. Can we show that $P\left(S_{n} \geq n a\right) \rightarrow 0$ exponentially fast when $a>E\left[X_{i}\right]$?

Large deviations

- Consider i.i.d. random variables X_{i}. Can we show that $P\left(S_{n} \geq n a\right) \rightarrow 0$ exponentially fast when $a>E\left[X_{i}\right]$?
- Kind of a quantitative form of the weak law of large numbers. The empirical average A_{n} is very unlikely to ϵ away from its expected value (where "very" means with probability less than some exponentially decaying function of n).

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map
$I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$
-\inf _{x \in \Gamma^{\Gamma}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x) .
$$

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$
-\inf _{x \in \Gamma^{\Gamma}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x) .
$$

- INTUITION: when "near x " the probability density function for μ_{n} is tending to zero like $e^{-I(x) n}$, as $n \rightarrow \infty$.

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,
$-\inf _{x \in \Gamma^{0}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)$.
- INTUITION: when "near x " the probability density function for μ_{n} is tending to zero like $e^{-I(x) n}$, as $n \rightarrow \infty$.
- Simple case: I is continuous, Γ is closure of its interior.

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$
-\inf _{x \in \Gamma^{0}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$

- INTUITION: when "near x " the probability density function for μ_{n} is tending to zero like $e^{-I(x) n}$, as $n \rightarrow \infty$.
- Simple case: I is continuous, Γ is closure of its interior.
- Question: How would I change if we replaced the measures μ_{n} by weighted measures $e^{(\lambda n, \cdot)} \mu_{n}$?

General large deviation principle

- More general framework: a large deviation principle describes limiting behavior as $n \rightarrow \infty$ of family $\left\{\mu_{n}\right\}$ of measures on measure space $(\mathcal{X}, \mathcal{B})$ in terms of a rate function I.
- The rate function is a lower-semicontinuous map $I: \mathcal{X} \rightarrow[0, \infty]$. (The sets $\{x: I(x) \leq a\}$ are closed - rate function called "good" if these sets are compact.)
- DEFINITION: $\left\{\mu_{n}\right\}$ satisfy LDP with rate function I and speed n if for all $\Gamma \in \mathcal{B}$,

$$
-\inf _{x \in \Gamma^{\Gamma}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$

- INTUITION: when "near x " the probability density function for μ_{n} is tending to zero like $e^{-I(x) n}$, as $n \rightarrow \infty$.
- Simple case: I is continuous, Γ is closure of its interior.
- Question: How would I change if we replaced the measures μ_{n} by weighted measures $e^{(\lambda n, \cdot)} \mu_{n}$?
- Replace $I(x)$ by $I(x)-(\lambda, x)$? What is $\inf _{x} I(x)-(\lambda, x)$?

Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ for i.i.d. vectors $X_{1}, X_{2}, \ldots, X_{n}$ in \mathbb{R}^{d} with same law as X.

Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ for i.i.d. vectors $X_{1}, X_{2}, \ldots, X_{n}$ in \mathbb{R}^{d} with same law as X.
- Define \log moment generating function of X by

$$
\Lambda(\lambda)=\Lambda_{X}(\lambda)=\log M_{X}(\lambda)=\log \mathbb{E} e^{(\lambda, X)}
$$

where (\cdot, \cdot) is inner product on \mathbb{R}^{d}.

Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ for i.i.d. vectors $X_{1}, X_{2}, \ldots, X_{n}$ in \mathbb{R}^{d} with same law as X.
- Define \log moment generating function of X by

$$
\Lambda(\lambda)=\Lambda_{X}(\lambda)=\log M_{X}(\lambda)=\log \mathbb{E} e^{(\lambda, X)}
$$

where (\cdot, \cdot) is inner product on \mathbb{R}^{d}.

- Define Legendre transform of Λ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ for i.i.d. vectors $X_{1}, X_{2}, \ldots, X_{n}$ in \mathbb{R}^{d} with same law as X.
- Define log moment generating function of X by

$$
\Lambda(\lambda)=\Lambda_{X}(\lambda)=\log M_{X}(\lambda)=\log \mathbb{E} e^{(\lambda, X)}
$$

where (\cdot, \cdot) is inner product on \mathbb{R}^{d}.

- Define Legendre transform of Λ by

$$
\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

- CRAMER'S THEOREM: μ_{n} satisfy LDP with convex rate function Λ^{*}.

Thinking about Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.

Thinking about Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.
- CRAMER'S THEOREM: μ_{n} satisfy LDP with convex rate function

$$
I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

where $\Lambda(\lambda)=\log M(\lambda)=\mathbb{E} e^{\left(\lambda, X_{1}\right)}$.

Thinking about Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.
- CRAMER'S THEOREM: μ_{n} satisfy LDP with convex rate function

$$
I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

where $\Lambda(\lambda)=\log M(\lambda)=\mathbb{E} e^{\left(\lambda, X_{1}\right)}$.

- This means that for all $\Gamma \in \mathcal{B}$ we have this asymptotic lower bound on probabilities $\mu_{n}(\Gamma)$

$$
-\inf _{x \in \Gamma^{0}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma),
$$

so (up to sub-exponential error) $\mu_{n}(\Gamma) \geq e^{-n \inf _{x \in \Gamma^{0}} I(x)}$.

Thinking about Cramer's theorem

- Let μ_{n} be law of empirical mean $A_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.
- CRAMER'S THEOREM: μ_{n} satisfy LDP with convex rate function

$$
I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}
$$

where $\Lambda(\lambda)=\log M(\lambda)=\mathbb{E} e^{\left(\lambda, X_{1}\right)}$.

- This means that for all $\Gamma \in \mathcal{B}$ we have this asymptotic lower bound on probabilities $\mu_{n}(\Gamma)$

$$
-\inf _{x \in \Gamma^{0}} I(x) \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma)
$$

so (up to sub-exponential error) $\mu_{n}(\Gamma) \geq e^{-n \inf _{x \in \Gamma^{0}} I(x)}$.

- and this asymptotic upper bound on the probabilities $\mu_{n}(\Gamma)$

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(\Gamma) \leq-\inf _{x \in \bar{\Gamma}} I(x)
$$

which says (up to subexponential error) $\mu_{n}(\Gamma) \leq e^{-n \inf _{x \in \bar{\Gamma}} I(x)}$.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^{*} are strictly convex, and the derivatives of Λ and Λ^{\prime} are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0)=0$ is a minimum of Λ, and $\Lambda^{*}(0)=0$ is a minimum of Λ^{*}.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^{*} are strictly convex, and the derivatives of Λ and Λ^{\prime} are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0)=0$ is a minimum of Λ, and $\Lambda^{*}(0)=0$ is a minimum of Λ^{*}.
- We aim to show (up to subexponential error) that $\mu_{n}(\Gamma) \leq e^{-n i n f_{x \in \bar{\Gamma}} l(x)}$.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^{*} are strictly convex, and the derivatives of Λ and Λ^{\prime} are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0)=0$ is a minimum of Λ, and $\Lambda^{*}(0)=0$ is a minimum of Λ^{*}.
- We aim to show (up to subexponential error) that $\mu_{n}(\Gamma) \leq e^{-n i n f_{x \in \bar{\Gamma}} /(x)}$.
- If Γ were singleton set $\{x\}$ we could find the λ corresponding to x, so $\Lambda^{*}(x)=(x, \lambda)-\Lambda(\lambda)$. Note then that

$$
\mathbb{E} e^{\left(n \lambda, A_{n}\right)}=\mathbb{E} e^{\left(\lambda, S_{n}\right)}=M_{X}^{n}(\lambda)=e^{n \Lambda(\lambda)},
$$

and also $\mathbb{E} e^{\left(n \lambda, A_{n}\right)} \geq e^{n(\lambda, x)} \mu_{n}\{x\}$. Taking logs and dividing by n gives $\Lambda(\lambda) \geq \frac{1}{n} \log \mu_{n}+(\lambda, x)$, so that $\frac{1}{n} \log \mu_{n}(\Gamma) \leq-\Lambda^{*}(x)$, as desired.

Proving Cramer upper bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ^{*} are strictly convex, and the derivatives of Λ and Λ^{\prime} are inverses of each other). It is also enough to consider the case X has mean zero, which implies that $\Lambda(0)=0$ is a minimum of Λ, and $\Lambda^{*}(0)=0$ is a minimum of Λ^{*}.
- We aim to show (up to subexponential error) that $\mu_{n}(\Gamma) \leq e^{-n i n f_{x \in \bar{\Gamma}} /(x)}$.
- If Γ were singleton set $\{x\}$ we could find the λ corresponding to x, so $\Lambda^{*}(x)=(x, \lambda)-\Lambda(\lambda)$. Note then that

$$
\mathbb{E} e^{\left(n \lambda, A_{n}\right)}=\mathbb{E} e^{\left(\lambda, S_{n}\right)}=M_{X}^{n}(\lambda)=e^{n \Lambda(\lambda)},
$$

and also $\mathbb{E} e^{\left(n \lambda, A_{n}\right)} \geq e^{n(\lambda, x)} \mu_{n}\{x\}$. Taking logs and dividing by n gives $\Lambda(\lambda) \geq \frac{1}{n} \log \mu_{n}+(\lambda, x)$, so that $\frac{1}{n} \log \mu_{n}(\Gamma) \leq-\Lambda^{*}(x)$, as desired.

- General Γ : cut into finitely many pieces, bound each piece?

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- We aim to show that asymptotically $\mu_{n}(\Gamma) \geq e^{-n \inf _{x \in \Gamma^{0}} I(x)}$.

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- We aim to show that asymptotically $\mu_{n}(\Gamma) \geq e^{-n \text { inf }_{x \in \Gamma^{0}} /(x)}$.
- It's enough to show that for each given $x \in \Gamma^{0}$, we have that asymptotically $\mu_{n}(\Gamma) \geq e^{-n I(x)}$.

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- We aim to show that asymptotically $\mu_{n}(\Gamma) \geq e^{-n \text { inf }_{x \in \Gamma^{0}} /(x)}$.
- It's enough to show that for each given $x \in \Gamma^{0}$, we have that asymptotically $\mu_{n}(\Gamma) \geq e^{-n I(x)}$.
- Idea is to weight law of each X_{i} by $e^{(\lambda, x)}$ to get a new measure whose expectation is in the interior of x. In this new measure, A_{n} is "typically" in Γ for large Γ, so the probability is of order 1 .

Proving Cramer lower bound

- Recall that $I(x)=\Lambda^{*}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\{(\lambda, x)-\Lambda(\lambda)\}$.
- We aim to show that asymptotically $\mu_{n}(\Gamma) \geq e^{-n \text { inf }_{x \in \Gamma^{0}} /(x)}$.
- It's enough to show that for each given $x \in \Gamma^{0}$, we have that asymptotically $\mu_{n}(\Gamma) \geq e^{-n I(x)}$.
- Idea is to weight law of each X_{i} by $e^{(\lambda, x)}$ to get a new measure whose expectation is in the interior of x. In this new measure, A_{n} is "typically" in Γ for large Γ, so the probability is of order 1 .
- But by how much did we have to modify the measure to make this typical? Aren't we weighting the law of A_{n} by about $e^{-n l(x)}$ near x ?

Outline

Large deviations

Characteristic functions and central limit theorem

Outline

Large deviations

Characteristic functions and central limit theorem

Characteristic functions

- Let X be a random variable.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- Characteristic functions are well defined at all t for all random variables X.

Characteristic function properties

- $\phi(0)=1$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.
- $|\phi(t+h)-\phi(t)| \leq E\left|e^{i h X}-1\right|$, so $\phi(t)$ uniformly continuous on $(-\infty, \infty)$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.
- $|\phi(t+h)-\phi(t)| \leq E\left|e^{i h X}-1\right|$, so $\phi(t)$ uniformly continuous on $(-\infty, \infty)$
- $E e^{i t(a X+b)}=e^{i t b} \phi(a t)$

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then $\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k} e^{i t k}}{k!}=\exp \left(\lambda\left(e^{i t}-1\right)\right)$.
- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?
- Exponential: If X is standard exponential (density e^{-x} on $(0, \infty))$ then $\phi_{X}(t)=1 /(1-i t)$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then $\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)$.
- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?
- Exponential: If X is standard exponential (density e^{-x} on $(0, \infty))$ then $\phi_{X}(t)=1 /(1-i t)$.
- Bilateral exponential: if $f_{X}(t)=e^{-|x|} / 2$ on \mathbb{R} then $\phi_{X}(t)=1 /\left(1+t^{2}\right)$. Use linearity of $f_{X} \rightarrow \phi_{X}$.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.
- Convolution theorem: If

$$
h(x)=(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

then

$$
\hat{h}(t)=\hat{f}(t) \hat{g}(t)
$$

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.
- Convolution theorem: If

$$
h(x)=(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

then

$$
\hat{h}(t)=\hat{f}(t) \hat{g}(t)
$$

- Possible application?

$$
\int 1_{[a, b]}(x) f(x) d x=\left(\widehat{1_{[a, b]} f}\right)(0)=\left(\hat{f} * \widehat{1_{[a, b]}}\right)(0)=\int \hat{f}(t) \widehat{1_{[a, b]}}(-t) d x
$$

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.
- Inversion theorem:

$$
\lim _{T \rightarrow \infty}(2 \pi)^{-1} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\})
$$

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.
- Inversion theorem:

$$
\lim _{T \rightarrow \infty}(2 \pi)^{-1} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\})
$$

- Main ideas of proof: Write

$$
I_{T}=\int \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\int_{-T}^{T} \int \frac{e^{-i t a}-e^{-i t b}}{i t} e^{i t x} \mu(x) d t
$$

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.
- Inversion theorem:

$$
\lim _{T \rightarrow \infty}(2 \pi)^{-1} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\})
$$

- Main ideas of proof: Write

$$
I_{T}=\int \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\int_{-T}^{T} \int \frac{e^{-i t a}-e^{-i t b}}{i t} e^{i t x} \mu(x) d t .
$$

- Observe that $\frac{e^{-i t a}-e^{-i t b}}{i t}=\int_{a}^{b} e^{-i t y} d y$ has modulus bounded by $b-a$.

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.
- Inversion theorem:

$$
\lim _{T \rightarrow \infty}(2 \pi)^{-1} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\})
$$

- Main ideas of proof: Write

$$
I_{T}=\int \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\int_{-T}^{T} \int \frac{e^{-i t a}-e^{-i t b}}{i t} e^{i t x} \mu(x) d t .
$$

- Observe that $\frac{e^{-i t a}-e^{-i t b}}{i t}=\int_{a}^{b} e^{-i t y} d y$ has modulus bounded by $b-a$.
- That means we can use Fubini to compute I_{T}.

Bochner's theorem

- Given any function ϕ and any points t_{1}, \ldots, t_{n}, we can consider the matrix with i, j entry given by $\phi\left(t_{i}-t_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.

Bochner's theorem

- Given any function ϕ and any points t_{1}, \ldots, t_{n}, we can consider the matrix with i, j entry given by $\phi\left(t_{i}-t_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{C} with $\phi(0)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.

Bochner's theorem

- Given any function ϕ and any points t_{1}, \ldots, t_{n}, we can consider the matrix with i, j entry given by $\phi\left(t_{i}-t_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{C} with $\phi(0)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Why positive definite?

Bochner's theorem

- Given any function ϕ and any points t_{1}, \ldots, t_{n}, we can consider the matrix with i, j entry given by $\phi\left(t_{i}-t_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{C} with $\phi(0)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Why positive definite?
- Write $Y=\sum_{j=1}^{n} a_{j} e^{t_{j} X}$. This is a complex-valued random variable. What is $\mathbb{E}|Y|^{2}$?

Bochner's theorem

- Given any function ϕ and any points t_{1}, \ldots, t_{n}, we can consider the matrix with i, j entry given by $\phi\left(t_{i}-t_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{C} with $\phi(0)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Why positive definite?
- Write $Y=\sum_{j=1}^{n} a_{j} e^{t_{j} X}$. This is a complex-valued random variable. What is $\mathbb{E}|Y|^{2}$?
- $Y \bar{Y}=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} \overline{a_{k}} e^{\left(t_{i}-t_{j}\right) X}$ and $\mathbb{E} Y \bar{Y}=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} \overline{a_{k}} \phi\left(t_{i}-t_{j}\right)$.

Bochner's theorem

- Given any function ϕ and any points t_{1}, \ldots, t_{n}, we can consider the matrix with i, j entry given by $\phi\left(t_{i}-t_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{C} with $\phi(0)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Why positive definite?
- Write $Y=\sum_{j=1}^{n} a_{j} e^{t_{j} X}$. This is a complex-valued random variable. What is $\mathbb{E}|Y|^{2}$?
- $Y \bar{Y}=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} \overline{a_{k}} e^{\left(t_{i}-t_{j}\right) X}$ and $\mathbb{E} Y \bar{Y}=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} \overline{a_{k}} \phi\left(t_{i}-t_{j}\right)$.
- Set of possible characteristic functions is a pretty nice set.

Continuity theorems

- Lévy's continuity theorem: if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

Continuity theorems

- Lévy's continuity theorem: if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

- Slightly stronger theorem: If $\mu_{n} \Longrightarrow \mu_{\infty}$ then $\phi_{n}(t) \rightarrow \phi_{\infty}(t)$ for all t. Conversely, if $\phi_{n}(t)$ converges to a limit that is continuous at 0 , then the associated sequence of distributions μ_{n} is tight and converges weakly to measure μ with characteristic function ϕ.

Continuity theorems

- Lévy's continuity theorem: if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

- Slightly stronger theorem: If $\mu_{n} \Longrightarrow \mu_{\infty}$ then $\phi_{n}(t) \rightarrow \phi_{\infty}(t)$ for all t. Conversely, if $\phi_{n}(t)$ converges to a limit that is continuous at 0 , then the associated sequence of distributions μ_{n} is tight and converges weakly to measure μ with characteristic function ϕ.
- Proof ideas: First statement easy (since $X_{n} \Longrightarrow X$ implies $E g\left(X_{n}\right) \rightarrow E g(X)$ for any bounded continuous $\left.g\right)$. For second statement, try to use fact that $u^{-1} \int_{-u}^{u}(1-\phi(t)) d t \rightarrow 0$ to get tightness of the μ_{n}. Then note that any subsequential limit of the μ_{n} must be equal to μ. Use this to argue that $\int f d \mu_{n}$ converges to $\int f d \mu$ for every bounded continuous f.

Moments, derivatives, CLT

- If $\int|x|^{n} \mu(x)<\infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by $\phi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)$.

Moments, derivatives, CLT

- If $\int|x|^{n} \mu(x)<\infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by

$$
\phi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)
$$

- Indeed, if $E|X|^{2}<\infty$ and $E X=0$ then $\phi(t)=1-t^{2} E\left(X^{2}\right) / 2 o\left(t^{2}\right)$.

Moments, derivatives, CLT

- If $\int|x|^{n} \mu(x)<\infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by

$$
\phi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)
$$

- Indeed, if $E|X|^{2}<\infty$ and $E X=0$ then $\phi(t)=1-t^{2} E\left(X^{2}\right) / 2 o\left(t^{2}\right)$.
- This and the continuity theorem together imply the central limit theorem.

Moments, derivatives, CLT

- If $\int|x|^{n} \mu(x)<\infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by $\phi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)$.
- Indeed, if $E|X|^{2}<\infty$ and $E X=0$ then $\phi(t)=1-t^{2} E\left(X^{2}\right) / 2 o\left(t^{2}\right)$.
- This and the continuity theorem together imply the central limit theorem.
- Theorem: Let X_{1}, X_{2}, \ldots by i.i.d. with $E X_{i}=\mu$, $\operatorname{Var}\left(X_{i}\right)=\sigma^{2} \in(0, \infty)$. If $S_{n}=X_{1}+\ldots+X_{n}$ then $\left(S_{n}-n \mu\right) /\left(\sigma n^{1 / 2}\right)$ converges in law to a standard normal.

