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Recall: moment generating functions

I Let X be a random variable.

I The moment generating function of X is defined by
M(t) = MX (t) := E [etX ].

I When X is discrete, can write M(t) =
∑

x e
txpX (x). So M(t)

is a weighted average of countably many exponential
functions.

I When X is continuous, can write M(t) =
∫∞
−∞ etx f (x)dx . So

M(t) is a weighted average of a continuum of exponential
functions.

I We always have M(0) = 1.

I If b > 0 and t > 0 then
E [etX ] ≥ E [et min{X ,b}] ≥ P{X ≥ b}etb.

I If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in |t|
as |t| → ∞.
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Recall: moment generating functions for i.i.d. sums

I We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X .
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Large deviations

I Consider i.i.d. random variables Xi . Can we show that
P(Sn ≥ na)→ 0 exponentially fast when a > E [Xi ]?

I Kind of a quantitative form of the weak law of large numbers.
The empirical average An is very unlikely to ε away from its
expected value (where “very” means with probability less than
some exponentially decaying function of n).
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General large deviation principle

I More general framework: a large deviation principle describes
limiting behavior as n→∞ of family {µn} of measures on
measure space (X ,B) in terms of a rate function I .

I The rate function is a lower-semicontinuous map
I : X → [0,∞]. (The sets {x : I (x) ≤ a} are closed — rate
function called “good” if these sets are compact.)

I DEFINITION: {µn} satisfy LDP with rate function I and
speed n if for all Γ ∈ B,

− inf
x∈Γ0

I (x) ≤ lim inf
n→∞

1

n
logµn(Γ) ≤ lim sup

n→∞

1

n
logµn(Γ) ≤ − inf

x∈Γ
I (x).

I INTUITION: when “near x” the probability density function
for µn is tending to zero like e−I (x)n, as n→∞.

I Simple case: I is continuous, Γ is closure of its interior.
I Question: How would I change if we replaced the measures
µn by weighted measures e(λn,·)µn?

I Replace I (x) by I (x)− (λ, x)? What is infx I (x)− (λ, x)?
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Cramer’s theorem

I Let µn be law of empirical mean An = 1
n

∑n
j=1 Xj for i.i.d.

vectors X1,X2, . . . ,Xn in Rd with same law as X .

I Define log moment generating function of X by

Λ(λ) = ΛX (λ) = logMX (λ) = logEe(λ,X ),

where (·, ·) is inner product on Rd .

I Define Legendre transform of Λ by

Λ∗(x) = sup
λ∈Rd

{(λ, x)− Λ(λ)}.

I CRAMER’S THEOREM: µn satisfy LDP with convex rate
function Λ∗.
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Thinking about Cramer’s theorem

I Let µn be law of empirical mean An = 1
n

∑n
j=1 Xj .

I CRAMER’S THEOREM: µn satisfy LDP with convex rate
function

I (x) = Λ∗(x) = sup
λ∈Rd

{(λ, x)− Λ(λ)},

where Λ(λ) = logM(λ) = Ee(λ,X1).
I This means that for all Γ ∈ B we have this asymptotic lower

bound on probabilities µn(Γ)

− inf
x∈Γ0

I (x) ≤ lim inf
n→∞

1

n
logµn(Γ),

so (up to sub-exponential error) µn(Γ) ≥ e−n infx∈Γ0 I (x).
I and this asymptotic upper bound on the probabilities µn(Γ)

lim sup
n→∞

1

n
logµn(Γ) ≤ − inf

x∈Γ
I (x),

which says (up to subexponential error) µn(Γ) ≤ e−n infx∈Γ I (x).
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Proving Cramer upper bound

I Recall that I (x) = Λ∗(x) = supλ∈Rd{(λ, x)− Λ(λ)}.

I For simplicity, assume that Λ is defined for all x (which
implies that X has moments of all orders and Λ and Λ∗ are
strictly convex, and the derivatives of Λ and Λ′ are inverses of
each other). It is also enough to consider the case X has
mean zero, which implies that Λ(0) = 0 is a minimum of Λ,
and Λ∗(0) = 0 is a minimum of Λ∗.

I We aim to show (up to subexponential error) that
µn(Γ) ≤ e−n infx∈Γ I (x).

I If Γ were singleton set {x} we could find the λ corresponding
to x , so Λ∗(x) = (x , λ)− Λ(λ). Note then that

Ee(nλ,An) = Ee(λ,Sn) = Mn
X (λ) = enΛ(λ),

and also Ee(nλ,An) ≥ en(λ,x)µn{x}. Taking logs and dividing
by n gives Λ(λ) ≥ 1

n logµn + (λ, x), so that
1
n logµn(Γ) ≤ −Λ∗(x), as desired.

I General Γ: cut into finitely many pieces, bound each piece?
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Proving Cramer lower bound

I Recall that I (x) = Λ∗(x) = supλ∈Rd{(λ, x)− Λ(λ)}.

I We aim to show that asymptotically µn(Γ) ≥ e−n infx∈Γ0 I (x).

I It’s enough to show that for each given x ∈ Γ0, we have that
asymptotically µn(Γ) ≥ e−nI (x).

I Idea is to weight law of each Xi by e(λ,x) to get a new
measure whose expectation is in the interior of x . In this new
measure, An is “typically” in Γ for large Γ, so the probability is
of order 1.

I But by how much did we have to modify the measure to make
this typical? Aren’t we weighting the law of An by about
e−nI (x) near x?
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Characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ].

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic function φX similar to moment generating
function MX .

I φX+Y = φXφY , just as MX+Y = MXMY , if X and Y are
independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I Characteristic functions are well defined at all t for all random
variables X .
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Characteristic function properties

I φ(0) = 1

I φ(−t) = φ(t)

I |φ(t)| = |Ee itX | ≤ E |e itX | = 1.

I |φ(t + h)− φ(t)| ≤ E |e ihX − 1|, so φ(t) uniformly continuous
on (−∞,∞)

I Ee it(aX+b) = e itbφ(at)
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Characteristic function examples

I Coin: If P(X = 1) = P(X = −1) = 1/2 then
φX (t) = (e it + e−it)/2 = cos t.

I That’s periodic. Do we always have periodicity if X is a
random integer?

I Poisson: If X is Poisson with parameter λ then
φX (t) =

∑∞
k=0 e

−λ λke itk
k! = exp(λ(e it − 1)).

I Why does doubling λ amount to squaring φX ?

I Normal: If X is standard normal, then φX (t) = e−t
2/2.

I Is φX always real when the law of X is symmetric about zero?

I Exponential: If X is standard exponential (density e−x on
(0,∞)) then φX (t) = 1/(1− it).

I Bilateral exponential: if fX (t) = e−|x |/2 on R then
φX (t) = 1/(1 + t2). Use linearity of fX → φX .
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Fourier inversion formula

I If f : R→ C is in L1, write f̂ (t) :=
∫∞
−∞ f (x)e−itxdx .

I Fourier inversion: If f is nice: f (x) = 1
2π

∫
f̂ (t)e itxdt.

I Easy to check this when f is density function of a Gaussian.
Use linearity of f → f̂ to extend to linear combinations of
Gaussians, or to convolutions with Gaussians.

I Show f → f̂ is an isometry of Schwartz space (endowed with
L2 norm). Extend definition to L2 completion.

I Convolution theorem: If

h(x) = (f ∗ g)(x) =

∫ ∞
−∞

f (y)g(x − y)dy ,

then
ĥ(t) = f̂ (t)ĝ(t).

I Possible application?∫
1[a,b](x)f (x)dx = ̂(1[a,b]f )(0)=(f̂ ∗1̂[a,b])(0)=

∫
f̂ (t)1̂[a,b](−t)dx .
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I Convolution theorem: If

h(x) = (f ∗ g)(x) =

∫ ∞
−∞

f (y)g(x − y)dy ,

then
ĥ(t) = f̂ (t)ĝ(t).

I Possible application?∫
1[a,b](x)f (x)dx = ̂(1[a,b]f )(0)=(f̂ ∗1̂[a,b])(0)=

∫
f̂ (t)1̂[a,b](−t)dx .
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Characteristic function inversion formula

I If the map µX → φX is linear, is the map φ→ µ[a, b] (for
some fixed [a, b]) a linear map? How do we recover µ[a, b]
from φ?

I Say φ(t) =
∫
e itxµ(x).

I Inversion theorem:

lim
T→∞

(2π)−1

∫ T

−T

e−ita − e−itb

it
φ(t)dt = µ(a, b) +

1

2
µ({a, b})

I Main ideas of proof: Write

IT =

∫
e−ita − e−itb

it
φ(t)dt =

∫ T

−T

∫
e−ita − e−itb

it
e itxµ(x)dt.

I Observe that e−ita−e−itb

it =
∫ b
a e−itydy has modulus bounded

by b − a.

I That means we can use Fubini to compute IT .
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Bochner’s theorem

I Given any function φ and any points t1, . . . , tn, we can
consider the matrix with i , j entry given by φ(ti − tj). Call φ
positive definite if this matrix is always positive semidefinite
Hermitian.

I Bochner’s theorem: a continuous function from R to C with
φ(0) = 1 is a characteristic function of a some probability
measure on R if and only if it is positive definite.

I Why positive definite?

I Write Y =
∑n

j=1 aje
tjX . This is a complex-valued random

variable. What is E|Y |2?

I YY =
∑n

j=1

∑n
k=1 ajake

(ti−tj )X and

EYY =
∑n

j=1

∑n
k=1 ajakφ(ti − tj).

I Set of possible characteristic functions is a pretty nice set.
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Continuity theorems

I Lévy’s continuity theorem: if

lim
n→∞

φXn(t) = φX (t)

for all t, then Xn converge in law to X .

I Slightly stronger theorem: If µn =⇒ µ∞ then
φn(t)→ φ∞(t) for all t. Conversely, if φn(t) converges to a
limit that is continuous at 0, then the associated sequence of
distributions µn is tight and converges weakly to measure µ
with characteristic function φ.

I Proof ideas: First statement easy (since Xn =⇒ X implies
Eg(Xn)→ Eg(X ) for any bounded continuous g). For second
statement, try to use fact that u−1

∫ u
−u(1− φ(t))dt → 0 to

get tightness of the µn. Then note that any subsequential
limit of the µn must be equal to µ. Use this to argue that∫
fdµn converges to

∫
fdµ for every bounded continuous f .
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Moments, derivatives, CLT

I If
∫
|x |nµ(x) <∞ then the characteristic function φ of µ has

a continuous derivative of order n given by
φ(n)(t) =

∫
(ix)ne itxµ(dx).

I Indeed, if E |X |2 <∞ and EX = 0 then
φ(t) = 1− t2E (X 2)/2o(t2).

I This and the continuity theorem together imply the central
limit theorem.

I Theorem: Let X1,X2, . . . by i.i.d. with EXi = µ,
Var(Xi ) = σ2 ∈ (0,∞). If Sn = X1 + . . .+ Xn then
(Sn − nµ)/(σn1/2) converges in law to a standard normal.
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