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Probability space notation

I Probability space is triple (Ω,F ,P) where Ω is sample
space, F is set of events (the σ-algebra) and P : F → [0, 1] is
the probability function.

I σ-algebra is collection of subsets closed under
complementation and countable unions. Call (Ω,F) a
measure space.

I Measure is function µ : F → R satisfying µ(A) ≥ µ(∅) = 0
for all A ∈ F and countable additivity: µ(∪iAi ) =

∑
i µ(Ai )

for disjoint Ai .

I Measure µ is probability measure if µ(Ω) = 1.
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Basic consequences of definitions

I monotonicity: A ⊂ B implies µ(A) ⊂ µ(B)

I subadditivity: A ⊂ ∪∞m=1Am implies µ(A) ≤
∑∞

m=1 µ(Am).

I continuity from below: measures of sets Ai in increasing
sequence converge to measure of limit ∪iAi

I continuity from above: measures of sets Ai in decreasing
sequence converge to measure of intersection ∩iAi
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Why can’t σ-algebra be all subsets of Ω?

I Uniform probability measure on [0, 1) should satisfy
translation invariance: If B and a horizontal translation of B
are both subsets [0, 1), their probabilities should be equal.

I Consider wrap-around translations τr (x) = (x + r) mod 1.
I By translation invariance, τr (B) has same probability as B.
I Call x , y “equivalent modulo rationals” if x − y is rational

(e.g., x = π − 3 and y = π − 9/4). An equivalence class is
the set of points in [0, 1) equivalent to some given point.

I There are uncountably many of these classes.
I Let A ⊂ [0, 1) contain one point from each class. For each

x ∈ [0, 1), there is one a ∈ A such that r = x − a is rational.
I Then each x in [0, 1) lies in τr (A) for one rational r ∈ [0, 1).
I Thus [0, 1) = ∪τr (A) as r ranges over rationals in [0, 1).
I If P(A) = 0, then P(S) =

∑
r P(τr (A)) = 0. If P(A) > 0 then

P(S) =
∑

r P(τr (A)) =∞. Contradicts P(S) = 1 axiom.
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Three ways to get around this

I 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

I 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Look up Banach-Tarski.)

I 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Restrict attention to
some σ-algebra of measurable sets.

I Most mainstream probability and analysis takes the third
approach. But good to be aware of alternatives (e.g., axiom
of determinacy which implies that all sets are Lebesgue
measurable).
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Borel σ-algebra

I The Borel σ-algebra B on a topological space is the smallest
σ-algebra containing all open sets. In the case of R, it is the
smallest σ-algebra containing all open intervals.

I Say that B is “generated” by the collection of open intervals.
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How do we produce measures on R?

I Write F (a) = P
(
(−∞, a]

)
.

I Theorem: for each right continuous, non-decreasing function
F , tending to 0 at −∞ and to 1 at ∞, there is a unique
measure defined on the Borel sets of R with
P((a, b]) = F (b)− F (a).

I If we’re given such a function F , then we know how to
compute the measure of any set of the form (a, b].

I We would like to extend the measure defined for these subsets
to a measure defined for the whole σ algebra generated by
these subsets.

I Seems clear how to define measure of countable union of
disjoint intervals of the form (a, b] (just using countable
additivity). But are we confident we can extend the definition
to all Borel measurable sets in a consistent way?
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Algebras and semi-algebras

I algebra: collection A of sets closed under finite unions and
complementation.

I measure on algebra: Have µ(A) ≥ µ(∅) = 0 for all A in A,
and for disjoint Ai with union in A we have
µ(∪∞i=1Ai ) =

∑∞
i=1 µ(Ai ) (countable additivity).

I Measure µ on A is σ-finite if exists countable collection
An ∈ A with µ(An) <∞ and ∪An = Ω.

I semi-algebra: collection S of sets closed under intersection
and such that S ∈ S implies that Sc is a finite disjoint union
of sets in S. (Example: empty set plus sets of form
(a1, b1]× . . .× (ad , bd ] ∈ Rd .)

I One lemma: If S is a semialgebra, then the set S of finite
disjoint unions of sets in S is an algebra, called the algebra
generated by S.
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(a1, b1]× . . .× (ad , bd ] ∈ Rd .)

I One lemma: If S is a semialgebra, then the set S of finite
disjoint unions of sets in S is an algebra, called the algebra
generated by S.
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π-systems and λ-systems

I Say collection of sets P is a π-system if closed under
intersection.

I Say collection of sets L is a λ-system if

I Ω ∈ L
I If A,B ∈ L and A ⊂ B, then B − A ∈ L.
I If An ∈ L and An ↑ A then A ∈ L.

I THEOREM: If P is a π-system and L is a λ-system that
contains P, then σ(P) ⊂ L, where σ(A) denotes smallest
σ-algebra containing A.
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Caratheéodory Extension Theorem

I Theorem: If µ is a σ-finite measure on an algebra A then µ
has a unique extension to the σ algebra generated by A.

I Detailed proof is somewhat involved, but let’s take a look at
it.

I We can use this extension theorem prove existence of a unique
translation invariant measure (Lebesgue measure) on the
Borel sets of Rd that assigns unit mass to a unit cube. (Borel
σ-algebra Rd is the smallest one containing all open sets of
Rd . Given any space with a topology, we can define a
σ-algebra this way.)
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Extension theorem for semialgebras

I Say S is semialgebra and µ is defined on S with µ(∅ = 0),
such that µ is finitely additive and countably subadditive.
[This means that if S ∈ S is a finite disjoint union of sets
Si ∈ S then µ(S) =

∑
i µ(Si ). If it is a countable disjoint

union of Si ∈ S then µ(S) ≤
∑

i µ(Si ).] Then µ has a unique
extension µ̄ that is a measure on the algebra S generated by
S. If µ̄ is sigma-finite, then there is an extension that is a
measure on σ(S).
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