18.175: Lecture 9 <u>Borel-Cantelli</u> and strong law

Scott Sheffield

MIT

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.

- ▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0.$
- ▶ Second Borel-Cantelli lemma: If A_n are independent, then $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n \text{ i.o.}) = 1$.

► Theorem: X_n → X in probability if and only if for every subsequence of the X_n there is a further subsequence converging a.s. to X.

- ► Theorem: X_n → X in probability if and only if for every subsequence of the X_n there is a further subsequence converging a.s. to X.
- Main idea of proof: Consider event E_n that X_n and X differ by ε. Do the E_n occur i.o.? Use Borel-Cantelli.

Pairwise independence example

▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.

Pairwise independence example

- ▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.
- ► Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that VarS_n ≤ ES_n. Then Chebyshev implies

$$P(|S_n - ES_n| > \delta ES_n) \le \operatorname{Var}(S_n)/(\delta ES_n)^2 \to 0,$$

which gives us convergence in probability.

Pairwise independence example

- ▶ **Theorem:** Suppose $A_1, A_2, ...$ are pairwise independent and $\sum P(A_n) = \infty$, and write $S_n = \sum_{i=1}^n 1_{A_i}$. Then the ratio S_n/ES_n tends a.s. to 1.
- ► Main idea of proof: First, pairwise independence implies that variances add. Conclude (by checking term by term) that VarS_n ≤ ES_n. Then Chebyshev implies

$$P(|S_n - ES_n| > \delta ES_n) \le \operatorname{Var}(S_n)/(\delta ES_n)^2 \to 0,$$

which gives us convergence in probability.

Second, take a smart subsequence. Let n_k = inf{n : ES_n ≥ k²}. Use Borel Cantelli to get a.s. convergence along this subsequence. Check that convergence along this subsequence deterministically implies the non-subsequential convergence.

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

Laws of large numbers: Borel-Cantelli applications

Strong law of large numbers

▶ **Theorem (strong law):** If $X_1, X_2, ...$ are i.i.d. real-valued random variables with expectation m and $A_n := n^{-1} \sum_{i=1}^n X_i$ are the *empirical means* then $\lim_{n\to\infty} A_n = m$ almost surely.

• Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .

•
$$E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$$

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .
- ► The first three terms all have expectation zero. There are ⁿ₂ of the fourth type and n of the last type, each equal to at most K. So E[A⁴_n] ≤ n⁻⁴ (6ⁿ₂) + n)K.

- Assume $K := E[X^4] < \infty$. Not necessary, but simplifies proof.
- ▶ Note: $\operatorname{Var}[X^2] = E[X^4] E[X^2]^2 \ge 0$, so $E[X^2]^2 \le K$.
- ► The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of X µ where µ is a constant.
- So we may as well assume E[X] = 0.
- Key to proof is to bound fourth moments of A_n .
- $E[A_n^4] = n^{-4}E[S_n^4] = n^{-4}E[(X_1 + X_2 + \ldots + X_n)^4].$
- Expand $(X_1 + \ldots + X_n)^4$. Five kinds of terms: $X_i X_j X_k X_l$ and $X_i X_j X_k^2$ and $X_i X_j^3$ and $X_i^2 X_j^2$ and X_i^4 .
- The first three terms all have expectation zero. There are ⁿ₂ of the fourth type and n of the last type, each equal to at most K. So E[A⁴_n] ≤ n⁻⁴ (6ⁿ₂) + n)K.
- ► Thus $E[\sum_{n=1}^{\infty} A_n^4] = \sum_{n=1}^{\infty} E[A_n^4] < \infty$. So $\sum_{n=1}^{\infty} A_n^4 < \infty$ (and hence $A_n \to 0$) with probability 1.

Suppose X_k are i.i.d. with finite mean. Let Y_k = X_k1_{|X_k|≤k}. Write T_n = Y₁ + ... + Y_n. Claim: X_k = Y_k all but finitely often a.s. so suffices to show T_n/n → μ. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)

- Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \le k}$. Write $T_n = Y_1 + \ldots + Y_n$. Claim: $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)
- ▶ Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k) / k^2 \le 4E|X_1| < \infty$. How to prove it?

- Suppose X_k are i.i.d. with finite mean. Let $Y_k = X_k 1_{|X_k| \le k}$. Write $T_n = Y_1 + \ldots + Y_n$. Claim: $X_k = Y_k$ all but finitely often a.s. so suffices to show $T_n/n \to \mu$. (Borel Cantelli, expectation of positive r.v. is area between cdf and line y = 1)
- ► Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k) / k^2 \leq 4E|X_1| < \infty$. How to prove it?
- ▶ **Observe:** $Var(Y_k) \le E(Y_k^2) = \int_0^\infty 2yP(|Y_k| > y)dy \le \int_0^k 2yP(|X_1| > y)dy$. Use Fubini (interchange sum/integral, since everything positive)

$$\sum_{k=1}^{\infty} E(Y_k^2)/k^2 \leq \sum_{k=1}^{\infty} k^{-2} \int_0^{\infty} \mathbb{1}_{(y < k)} 2y P(|X_1| > y) dy =$$

$$\int_0^\infty (\sum_{k=1}^\infty k^{-2} \mathbf{1}_{(y < k)}) 2y P(|X_1| > y) dy.$$

Since $E|X_1| = \int_0^\infty P(|X_1| > y) dy$, complete proof of claim by showing that if $y \ge 0$ then $2y \sum_{k>y} k^{-2} \le 4$.

• Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence k(n) = [αⁿ] for arbitrary α > 1. Using Chebyshev, if ε > 0 then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$
$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}(Y_{m}) = \epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_{m}) \sum_{n:k(n) > m} k(n)^{-2}.$$

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence k(n) = [αⁿ] for arbitrary α > 1. Using Chebyshev, if ε > 0 then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_m) \sum_{n:k(n) \ge m} k(n)^{-2}.$$

Sum series:

$$\sum_{n:\alpha^n \ge m} [\alpha^n]^{-2} \le 4 \sum_{n:\alpha^n \ge m} \alpha^{-2n} \le 4(1 - \alpha^{-2})^{-1} m^{-2}.$$

- Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence k(n) = [αⁿ] for arbitrary α > 1. Using Chebyshev, if ε > 0 then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)}) / k(n)^{2}$$

$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}(Y_m) = \epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_m) \sum_{n:k(n) \ge m} k(n)^{-2}.$$

- Sum series:
- $\sum_{n:\alpha^n \ge m} [\alpha^n]^{-2} \le 4 \sum_{n:\alpha^n \ge m} \alpha^{-2n} \le 4(1 \alpha^{-2})^{-1}m^{-2}.$ • Combine computations (observe RHS below is finite):

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_k(n)| > \epsilon k(n)) \le 4(1 - \alpha^{-2})^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E(Y_m^2) m^{-2}.$$

- ► Claim: $\sum_{k=1}^{\infty} \operatorname{Var}(Y_k)/k^2 \le 4E|X_1| < \infty$. How to use it?
- Consider subsequence k(n) = [αⁿ] for arbitrary α > 1. Using Chebyshev, if ε > 0 then

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_{k(n)}| > \epsilon k(n)) \le \epsilon^{-1} \sum_{n=1}^{\infty} \operatorname{Var}(T_{k(n)})/k(n)^{2}$$

$$=\epsilon^{-2}\sum_{n=1}^{\infty}k(n)^{-2}\sum_{m=1}^{k(n)}\operatorname{Var}(Y_m)=\epsilon^{-2}\sum_{m=1}^{\infty}\operatorname{Var}(Y_m)\sum_{n:k(n)\geq m}k(n)^{-2}.$$

- Sum series:
- $\sum_{n:\alpha^n \ge m} [\alpha^n]^{-2} \le 4 \sum_{n:\alpha^n \ge m} \alpha^{-2n} \le 4(1 \alpha^{-2})^{-1}m^{-2}.$ • Combine computations (observe RHS below is finite):

$$\sum_{n=1}^{\infty} P(|T_{k(n)} - ET_k(n)| > \epsilon k(n)) \le 4(1 - \alpha^{-2})^{-1} \epsilon^{-2} \sum_{m=1}^{\infty} E(Y_m^2) m^{-2}$$

Since ϵ is arbitrary, get $(T_{k(n)} - ET_{k(n)})/k(n) \rightarrow 0$ a.s. 18.175 Lecture 9 Conclude by taking α → 1. This finishes the case that the X₁ are a.s. positive.

- Conclude by taking α → 1. This finishes the case that the X₁ are a.s. positive.
- Can extend to the case that X₁ is a.s. positive within infinite mean.

- Conclude by taking α → 1. This finishes the case that the X₁ are a.s. positive.
- Can extend to the case that X₁ is a.s. positive within infinite mean.
- ▶ Generally, can consider X₁⁺ and X₁⁻, and it is enough if one of them has a finite mean.