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Moment generating functions

I Let X be a random variable.

I The moment generating function of X is defined by
M(t) = MX (t) := E [etX ].

I When X is discrete, can write M(t) =
∑

x e
txpX (x). So M(t)

is a weighted average of countably many exponential
functions.

I When X is continuous, can write M(t) =
∫∞
−∞ etx f (x)dx . So

M(t) is a weighted average of a continuum of exponential
functions.

I We always have M(0) = 1.

I If b > 0 and t > 0 then
E [etX ] ≥ E [etmin{X ,b}] ≥ P{X ≥ b}etb.

I If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in |t|
as |t| → ∞.
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Moment generating functions actually generate moments

I Let X be a random variable and M(t) = E [etX ].

I Then M ′(t) = d
dtE [etX ] = E

[
d
dt (etX )

]
= E [XetX ].

I in particular, M ′(0) = E [X ].

I Also M ′′(t) = d
dtM

′(t) = d
dtE [XetX ] = E [X 2etX ].

I So M ′′(0) = E [X 2]. Same argument gives that nth derivative
of M at zero is E [X n].

I Interesting: knowing all of the derivatives of M at a single
point tells you the moments E [X k ] for all integer k ≥ 0.

I Another way to think of this: write
etX = 1 + tX + t2X 2

2! + t3X 3

3! + . . ..

I Taking expectations gives
E [etX ] = 1 + tm1 + t2m2

2! + t3m3
3! + . . ., where mk is the kth

moment. The kth derivative at zero is mk .
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Moment generating functions for independent sums

I Let X and Y be independent random variables and
Z = X + Y .

I Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

I If you knew MX and MY , could you compute MZ?

I By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

I In other words, adding independent random variables
corresponds to multiplying moment generating functions.
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Moment generating functions for sums of i.i.d. random
variables

I We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X . Follows by repeatedly applying formula above.

I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.
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Other observations

I If Z = aX then can I use MX to determine MZ?

I Answer: Yes. MZ (t) = E [etZ ] = E [etaX ] = MX (at).

I If Z = X + b then can I use MX to determine MZ?

I Answer: Yes. MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).

I Latter answer is the special case of MZ (t) = MX (t)MY (t)
where Y is the constant random variable b.
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Existence issues

I Seems that unless fX (x) decays superexponentially as x tends
to infinity, we won’t have MX (t) defined for all t.

I What is MX if X is standard Cauchy, so that fX (x) = 1
π(1+x2)

.

I Answer: MX (0) = 1 (as is true for any X ) but otherwise
MX (t) is infinite for all t 6= 0.

I Informal statement: moment generating functions are not
defined for distributions with fat tails.
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Markov’s and Chebyshev’s inequalities

I Markov’s inequality: Let X be non-negative random
variable. Fix a > 0. Then P{X ≥ a} ≤ E [X ]

a .

I Proof: Consider a random variable Y defined by

Y =

{
a X ≥ a

0 X < a
. Since X ≥ Y with probability one, it

follows that E [X ] ≥ E [Y ] = aP{X ≥ a}. Divide both sides by
a to get Markov’s inequality.

I Chebyshev’s inequality: If X has finite mean µ, variance σ2,
and k > 0 then

P{|X − µ| ≥ k} ≤ σ2

k2
.

I Proof: Note that (X − µ)2 is a non-negative random variable
and P{|X − µ| ≥ k} = P{(X − µ)2 ≥ k2}. Now apply
Markov’s inequality with a = k2.
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Markov and Chebyshev: rough idea

I Markov’s inequality: Let X be non-negative random variable
with finite mean. Fix a constant a > 0. Then
P{X ≥ a} ≤ E [X ]

a .

I Chebyshev’s inequality: If X has finite mean µ, variance σ2,
and k > 0 then

P{|X − µ| ≥ k} ≤ σ2

k2
.

I Inequalities allow us to deduce limited information about a
distribution when we know only the mean (Markov) or the
mean and variance (Chebyshev).

I Markov: if E [X ] is small, then it is not too likely that X is
large.

I Chebyshev: if σ2 = Var[X ] is small, then it is not too likely
that X is far from its mean.
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Statement of weak law of large numbers

I Suppose Xi are i.i.d. random variables with mean µ.

I Then the value An := X1+X2+...+Xn
n is called the empirical

average of the first n trials.

I We’d guess that when n is large, An is typically close to µ.

I Indeed, weak law of large numbers states that for all ε > 0
we have limn→∞ P{|An − µ| > ε} = 0.

I Example: as n tends to infinity, the probability of seeing more
than .50001n heads in n fair coin tosses tends to zero.
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Proof of weak law of large numbers in finite variance case

I As above, let Xi be i.i.d. random variables with mean µ and
write An := X1+X2+...+Xn

n .

I By additivity of expectation, E[An] = µ.

I Similarly, Var[An] = nσ2

n2
= σ2/n.

I By Chebyshev P
{
|An − µ| ≥ ε

}
≤ Var[An]

ε2
= σ2

nε2
.

I No matter how small ε is, RHS will tend to zero as n gets
large.
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L2 weak law of large numbers

I Say Xi and Xj are uncorrelated if E (XiXj) = EXiEXj .

I Chebyshev/Markov argument works whenever variables are
uncorrelated (does not actually require independence).

18.175 Lecture 8



L2 weak law of large numbers

I Say Xi and Xj are uncorrelated if E (XiXj) = EXiEXj .

I Chebyshev/Markov argument works whenever variables are
uncorrelated (does not actually require independence).

18.175 Lecture 8



What else can you do with just variance bounds?

I Having “almost uncorrelated” Xi is sometimes enough: just
need variance of An to go to zero.

I Toss αn bins into n balls. How many bins are filled?

I When n is large, the number of balls in the first bin is
approximately a Poisson random variable with expectation α.

I Probability first bin contains no ball is (1− 1/n)αn ≈ e−α.

I We can explicitly compute variance of the number of bins
with no balls. Allows us to show that fraction of bins with no
balls concentrates about its expectation, which is e−α.
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How do you extend to random variables without variance?

I Assume Xn are i.i.d. non-negative instances of random
variable X with finite mean. Can one prove law of large
numbers for these?

I Try truncating. Fix large N and write A = X1X>N and
B = X1X≤N so that X = A + B. Choose N so that EB is
very small. Law of large numbers holds for A.
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Extent of weak law

I Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?

I Is it always the case that if we define An := X1+X2+...+Xn
n then

An is typically close to some fixed value when n is large?

I What if X is Cauchy?

I In this strange and delightful case An actually has the same
probability distribution as X .

I In particular, the An are not tightly concentrated around any
particular value even when n is very large.

I But weak law holds as long as E [|X |] is finite, so that µ is
well defined.

I One standard proof uses characteristic functions.
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Characteristic functions

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ]. Like M(t) except with i thrown in.

I Recall that by definition e it = cos(t) + i sin(t).

I Characteristic functions are similar to moment generating
functions in some ways.

I For example, φX+Y = φXφY , just as MX+Y = MXMY , if X
and Y are independent.

I And φaX (t) = φX (at) just as MaX (t) = MX (at).

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I But characteristic functions have an advantage: they are well
defined at all t for all random variables X .
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Continuity theorems

I Let X be random variable, Xn a sequence of random variables.

I Say Xn converge in distribution or converge in law to X if
limn→∞ FXn(x) = FX (x) at all x ∈ R at which FX is
continuous.

I The weak law of large numbers can be rephrased as the
statement that An converges in law to µ (i.e., to the random
variable that is equal to µ with probability one).

I Lévy’s continuity theorem (coming later): if

lim
n→∞

φXn(t) = φX (t)

for all t, then Xn converge in law to X .
I By this theorem, we can prove weak law of large numbers by

showing limn→∞ φAn(t) = φµ(t) = e itµ for all t. When µ = 0,
amounts to showing limn→∞ φAn(t) = 1 for all t.

I Moment generating analog: if moment generating
functions MXn(t) are defined for all t and n and, for all t,
limn→∞MXn(t) = MX (t), then Xn converge in law to X .
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continuous.

I The weak law of large numbers can be rephrased as the
statement that An converges in law to µ (i.e., to the random
variable that is equal to µ with probability one).

I Lévy’s continuity theorem (coming later): if

lim
n→∞

φXn(t) = φX (t)

for all t, then Xn converge in law to X .

I By this theorem, we can prove weak law of large numbers by
showing limn→∞ φAn(t) = φµ(t) = e itµ for all t. When µ = 0,
amounts to showing limn→∞ φAn(t) = 1 for all t.

I Moment generating analog: if moment generating
functions MXn(t) are defined for all t and n and, for all t,
limn→∞MXn(t) = MX (t), then Xn converge in law to X .
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Proof sketch for weak law of large numbers, finite mean
case

I As above, let Xi be i.i.d. instances of random variable X with
mean zero. Write An := X1+X2+...+Xn

n . Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X − µ. Thus it suffices to prove the
weak law in the mean zero case.

I Consider the characteristic function φX (t) = E [e itX ].
I Since E [X ] = 0, we have φ′X (0) = E [ ∂∂t e

itX ]t=0 = iE [X ] = 0.

I Write g(t) = log φX (t) so φX (t) = eg(t). Then g(0) = 0 and

(by chain rule) g ′(0) = limε→0
g(ε)−g(0)

ε = limε→0
g(ε)
ε = 0.

I Now φAn(t) = φX (t/n)n = eng(t/n). Since g(0) = g ′(0) = 0

we have limn→∞ ng(t/n) = limn→∞ t
g( t

n
)

t
n

= 0 if t is fixed.

Thus limn→∞ eng(t/n) = 1 for all t.
I By Lévy’s continuity theorem, the An converge in law to 0

(i.e., to the random variable that is 0 with probability one).
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