18.175: Lecture 7

Sums of random variables

Scott Sheffield

MIT

Outline

Definitions

Sums of random variables

Outline

Definitions

Sums of random variables

18.175 Lecture 7

Recall expectation definition

- Given probability space (Ω, \mathcal{F}, P) and random variable X (i.e., measurable function X from Ω to \mathbb{R}), we write $E X=\int X d P$.

Recall expectation definition

- Given probability space (Ω, \mathcal{F}, P) and random variable X (i.e., measurable function X from Ω to \mathbb{R}), we write $E X=\int X d P$.
- Expectation is always defined if $X \geq 0$ a.s., or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.

Strong law of large numbers

- Theorem (strong law): If X_{1}, X_{2}, \ldots are i.i.d. real-valued random variables with expectation m and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.

Strong law of large numbers

- Theorem (strong law): If X_{1}, X_{2}, \ldots are i.i.d. real-valued random variables with expectation m and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.
- Last time we defined independent. We showed how to use Kolmogorov to construct infinite i.i.d. random variables on a measure space with a natural σ-algebra (in which the existence of a limit of the X_{i} is a measurable event). So we've come far enough to say that the statement makes sense.

Recall some definitions

- Two events A and B are independent if $P(A \cap B)=P(A) P(B)$.

Recall some definitions

- Two events A and B are independent if $P(A \cap B)=P(A) P(B)$.
- Random variables X and Y are independent if for all
$C, D \in \mathcal{R}$, we have $P(X \in C, Y \in D)=P(X \in C) P(Y \in D)$, i.e., the events $\{X \in C\}$ and $\{Y \in D\}$ are independent.

Recall some definitions

- Two events A and B are independent if $P(A \cap B)=P(A) P(B)$.
- Random variables X and Y are independent if for all $C, D \in \mathcal{R}$, we have $P(X \in C, Y \in D)=P(X \in C) P(Y \in D)$, i.e., the events $\{X \in C\}$ and $\{Y \in D\}$ are independent.
- Two σ-fields \mathcal{F} and \mathcal{G} are independent if A and B are independent whenever $A \in \mathcal{F}$ and $B \in \mathcal{G}$. (This definition also makes sense if \mathcal{F} and \mathcal{G} are arbitrary algebras, semi-algebras, or other collections of measurable sets.)

Recall some definitions

- Say events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for each $I \subset\{1,2, \ldots, n\}$ we have $P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$.

Recall some definitions

- Say events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for each $I \subset\{1,2, \ldots, n\}$ we have $P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$.
- Say random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if for any measurable sets $B_{1}, B_{2}, \ldots, B_{n}$, the events that $X_{i} \in B_{i}$ are independent.

Recall some definitions

- Say events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for each $I \subset\{1,2, \ldots, n\}$ we have $P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$.
- Say random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if for any measurable sets $B_{1}, B_{2}, \ldots, B_{n}$, the events that $X_{i} \in B_{i}$ are independent.
- Say σ-algebras $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}$ if any collection of events (one from each σ-algebra) are independent. (This definition also makes sense if the \mathcal{F}_{i} are algebras, semi-algebras, or other collections of measurable sets.)

Recall Kolmogorov

- Kolmogorov extension theorem: If we have consistent probability measures on $\left(\mathbb{R}^{n}, \mathcal{R}^{n}\right)$, then we can extend them uniquely to a probability measure on $\mathcal{R}^{\mathbb{N}}$.

Recall Kolmogorov

- Kolmogorov extension theorem: If we have consistent probability measures on $\left(\mathbb{R}^{n}, \mathcal{R}^{n}\right)$, then we can extend them uniquely to a probability measure on $\mathcal{R}^{\mathbb{N}}$.
- Proved using semi-algebra variant of Carathéeodory's extension theorem.

Extend Kolmogorov

- Kolmogorov extension theorem not generally true if replace $(\mathbb{R}, \mathcal{R})$ with any measure space.

Extend Kolmogorov

- Kolmogorov extension theorem not generally true if replace $(\mathbb{R}, \mathcal{R})$ with any measure space.
- But okay if we use standard Borel spaces. Durrett calls such spaces nice: a set (S, \mathcal{S}) is nice if have 1-1 map from S to \mathbb{R} so that ϕ and ϕ^{-1} are both measurable.

Extend Kolmogorov

- Kolmogorov extension theorem not generally true if replace $(\mathbb{R}, \mathcal{R})$ with any measure space.
- But okay if we use standard Borel spaces. Durrett calls such spaces nice: a set (S, \mathcal{S}) is nice if have 1-1 map from S to \mathbb{R} so that ϕ and ϕ^{-1} are both measurable.
- Are there any interesting nice measure spaces?

Extend Kolmogorov

- Kolmogorov extension theorem not generally true if replace $(\mathbb{R}, \mathcal{R})$ with any measure space.
- But okay if we use standard Borel spaces. Durrett calls such spaces nice: a set (S, \mathcal{S}) is nice if have 1-1 map from S to \mathbb{R} so that ϕ and ϕ^{-1} are both measurable.
- Are there any interesting nice measure spaces?
- Theorem: Yes, lots. In fact, if S is a complete separable metric space M (or a Borel subset of such a space) and \mathcal{S} is the set of Borel subsets of S, then (S, \mathcal{S}) is nice.

Extend Kolmogorov

- Kolmogorov extension theorem not generally true if replace $(\mathbb{R}, \mathcal{R})$ with any measure space.
- But okay if we use standard Borel spaces. Durrett calls such spaces nice: a set (S, \mathcal{S}) is nice if have 1-1 map from S to \mathbb{R} so that ϕ and ϕ^{-1} are both measurable.
- Are there any interesting nice measure spaces?
- Theorem: Yes, lots. In fact, if S is a complete separable metric space M (or a Borel subset of such a space) and \mathcal{S} is the set of Borel subsets of S, then (S, \mathcal{S}) is nice.
- separable means containing a countable dense set.

Standard Borel spaces

- Main idea of proof: Reduce to case that diameter less than one (e.g., by replacing $d(x, y)$ with $d(x, y) /(1+d(x, y)))$. Then map M continuously into $[0,1]^{\mathbb{N}}$ by considering countable dense set q_{1}, q_{2}, \ldots and mapping x to $\left(d\left(q_{1}, x\right), d\left(q_{2}, x\right), \ldots\right)$. Then give measurable one-to-one map from $[0,1]^{\mathbb{N}}$ to $[0,1]$ via binary expansion (to send $\mathbb{N} \times \mathbb{N}$-indexed matrix of 0 's and 1 's to an \mathbb{N}-indexed sequence of 0 's and 1 's).

Standard Borel spaces

- Main idea of proof: Reduce to case that diameter less than one (e.g., by replacing $d(x, y)$ with $d(x, y) /(1+d(x, y)))$. Then map M continuously into $[0,1]^{\mathbb{N}}$ by considering countable dense set q_{1}, q_{2}, \ldots and mapping x to $\left(d\left(q_{1}, x\right), d\left(q_{2}, x\right), \ldots\right)$. Then give measurable one-to-one map from $[0,1]^{\mathbb{N}}$ to $[0,1]$ via binary expansion (to send $\mathbb{N} \times \mathbb{N}$-indexed matrix of 0 's and 1 's to an \mathbb{N}-indexed sequence of 0 's and 1 's).
- In practice: say I want to let Ω be set of closed subsets of a disc, or planar curves, or functions from one set to another, etc. If I want to construct natural σ-algebra \mathcal{F}, I just need to produce metric that makes Ω complete and separable (and if I have to enlarge Ω to make it complete, that might be okay). Then I check that the events I care about belong to this σ-algebra.

Fubini's theorem

- Consider σ-finite measure spaces $\left(X, \mathcal{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \mu_{2}\right)$.

Fubini's theorem

- Consider σ-finite measure spaces $\left(X, \mathcal{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \mu_{2}\right)$.
- Let $\Omega=X \times Y$ and \mathcal{F} be product σ-algebra.

Fubini's theorem

- Consider σ-finite measure spaces $\left(X, \mathcal{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \mu_{2}\right)$.
- Let $\Omega=X \times Y$ and \mathcal{F} be product σ-algebra.
- Check: unique measure μ on \mathcal{F} with $\mu(A \times B)=\mu_{1}(A) \mu_{2}(B)$.

Fubini's theorem

- Consider σ-finite measure spaces $\left(X, \mathcal{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \mu_{2}\right)$.
- Let $\Omega=X \times Y$ and \mathcal{F} be product σ-algebra.
- Check: unique measure μ on \mathcal{F} with $\mu(A \times B)=\mu_{1}(A) \mu_{2}(B)$.
- Fubini's theorem: If $f \geq 0$ or $\int|f| d \mu<\infty$ then

$$
\begin{gathered}
\int_{X} \int_{Y} f(x, y) \mu_{2}(d y) \mu_{1}(d x)=\int_{X \times Y} f d \mu= \\
\int_{Y} \int_{X} f(x, y) \mu_{1}(d x) \mu_{2}(d y)
\end{gathered}
$$

Fubini's theorem

- Consider σ-finite measure spaces $\left(X, \mathcal{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \mu_{2}\right)$.
- Let $\Omega=X \times Y$ and \mathcal{F} be product σ-algebra.
- Check: unique measure μ on \mathcal{F} with $\mu(A \times B)=\mu_{1}(A) \mu_{2}(B)$.
- Fubini's theorem: If $f \geq 0$ or $\int|f| d \mu<\infty$ then

$$
\begin{gathered}
\int_{X} \int_{Y} f(x, y) \mu_{2}(d y) \mu_{1}(d x)=\int_{X \times Y} f d \mu= \\
\int_{Y} \int_{X} f(x, y) \mu_{1}(d x) \mu_{2}(d y)
\end{gathered}
$$

- Main idea of proof: Check definition makes sense: if f measurable, show that restriction of f to slice $\left\{(x, y): x=x_{0}\right\}$ is measurable as function of y, and the integral over slice is measurable as function of x_{0}. Check Fubini for indicators of rectangular sets, use $\pi-\lambda$ to extend to measurable indicators. Extend to simple, bounded, L^{1} (or non-negative) functions.

Non-measurable Fubini counterexample

- What if we take total ordering \prec or reals in $[0,1]$ (such that for each y the set $\{x: x \prec y\}$ is countable) and consider indicator function of $\{(x, y): x \prec y\}$?

More observations

- If X_{i} are independent with distributions μ_{i}, then $\left(X_{1}, \ldots, X_{n}\right)$ has distribution $\mu_{1} \times \ldots \mu_{n}$.

More observations

- If X_{i} are independent with distributions μ_{i}, then $\left(X_{1}, \ldots, X_{n}\right)$ has distribution $\mu_{1} \times \ldots \mu_{n}$.
- If X_{i} are independent and satisfy either $X_{i} \geq 0$ for all i or $E\left|X_{i}\right|<\infty$ for all i then

$$
E \prod_{i=1}^{n} X_{i}=\prod_{i=1}^{n} X_{i}
$$

Outline

Definitions

Sums of random variables

Outline

Definitions

Sums of random variables

Summing two random variables

- Say we have independent random variables X and Y with density functions f_{X} and f_{Y}.

Summing two random variables

- Say we have independent random variables X and Y with density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.

Summing two random variables

- Say we have independent random variables X and Y with density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

Summing two random variables

- Say we have independent random variables X and Y with density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

Summing two random variables

- Say we have independent random variables X and Y with density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

- Differentiating both sides gives

$$
f_{X+Y}(a)=\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y
$$

Summing two random variables

- Say we have independent random variables X and Y with density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

- Differentiating both sides gives $f_{X+Y}(a)=\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.

Summing two random variables

- Say we have independent random variables X and Y with density functions f_{X} and f_{Y}.
- Now let's try to find $F_{X+Y}(a)=P\{X+Y \leq a\}$.
- This is the integral over $\{(x, y): x+y \leq a\}$ of $f(x, y)=f_{X}(x) f_{Y}(y)$. Thus,

$$
\begin{aligned}
P\{X+Y & \leq a\}=\int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

- Differentiating both sides gives $f_{X+Y}(a)=\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.
- Can also write $P(X+Y \leq z)=\int F(z-y) d G(y)$.

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on $[0,1]$. So $f_{X}=f_{Y}=1$ on $[0,1]$.

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on $[0,1]$. So $f_{X}=f_{Y}=1$ on $[0,1]$.
- What is the probability density function of $X+Y$?

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on $[0,1]$. So $f_{X}=f_{Y}=1$ on $[0,1]$.
- What is the probability density function of $X+Y$?
- $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y=\int_{0}^{1} f_{X}(a-y)$ which is the length of $[0,1] \cap[a-1, a]$.

Summing i.i.d. uniform random variables

- Suppose that X and Y are i.i.d. and uniform on $[0,1]$. So $f_{X}=f_{Y}=1$ on $[0,1]$.
- What is the probability density function of $X+Y$?
- $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y=\int_{0}^{1} f_{X}(a-y)$ which is the length of $[0,1] \cap[a-1, a]$.
- That's a when $a \in[0,1]$ and $2-a$ when $a \in[0,2]$ and 0 otherwise.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- We could compute this directly.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then $f_{\sigma_{1} X+\sigma_{2} Y}$ is the density of a normal random variable (and note that variances and expectations are additive).

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then $f_{\sigma_{1} X+\sigma_{2} Y}$ is the density of a normal random variable (and note that variances and expectations are additive).
- Or use fact that if $A_{i} \in\{-1,1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^{2} N} A_{i}$ is approximately normal with variance σ^{2} when N is large.

Summing two normal variables

- X is normal with mean zero, variance σ_{1}^{2}, Y is normal with mean zero, variance σ_{2}^{2}.
- $f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{\frac{-x^{2}}{2 \sigma_{1}^{2}}}$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{\frac{-y^{2}}{2 \sigma_{2}^{2}}}$.
- We just need to compute $f_{X+Y}(a)=\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then $f_{\sigma_{1} X+\sigma_{2} Y}$ is the density of a normal random variable (and note that variances and expectations are additive).
- Or use fact that if $A_{i} \in\{-1,1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^{2} N} A_{i}$ is approximately normal with variance σ^{2} when N is large.
- Generally: if independent random variables X_{j} are normal $\left(\mu_{j}, \sigma_{j}^{2}\right)$ then $\sum_{j=1}^{n} X_{j}$ is normal $\left(\sum_{j=1}^{n} \mu_{j}, \sum_{j=1}^{n} \sigma_{j}^{2}\right)$.

L^{2} weak laws of large numbers

- Say X_{i} and X_{j} are uncorrelated if $E\left(X_{i} X_{j}\right)=E X_{i} E X_{j}$.

L^{2} weak laws of large numbers

- Say X_{i} and X_{j} are uncorrelated if $E\left(X_{i} X_{j}\right)=E X_{i} E X_{j}$.
- When random variables are uncorrelated, their variances add.

L^{2} weak laws of large numbers

- Say X_{i} and X_{j} are uncorrelated if $E\left(X_{i} X_{j}\right)=E X_{i} E X_{j}$.
- When random variables are uncorrelated, their variances add.
- If we have a sequence X_{1}, X_{2}, \ldots of uncorrelated random variables with common mean μ and uniformly bounded variance, and we write $S_{n}=X_{1}+\ldots+X_{n}$, then $S_{n} / n \rightarrow \mu$ in probability.

L^{2} weak laws of large numbers

- Say X_{i} and X_{j} are uncorrelated if $E\left(X_{i} X_{j}\right)=E X_{i} E X_{j}$.
- When random variables are uncorrelated, their variances add.
- If we have a sequence X_{1}, X_{2}, \ldots of uncorrelated random variables with common mean μ and uniformly bounded variance, and we write $S_{n}=X_{1}+\ldots+X_{n}$, then $S_{n} / n \rightarrow \mu$ in probability.
- Weak versus strong. Convergence in probability versus a.s. convergence.

