18.175: Lecture 7 Sums of random variables

Scott Sheffield

MIT

Definitions

Sums of random variables

Definitions

Sums of random variables

Given probability space (Ω, F, P) and random variable X (i.e., measurable function X from Ω to ℝ), we write EX = ∫ XdP.

- Given probability space (Ω, F, P) and random variable X (i.e., measurable function X from Ω to ℝ), we write EX = ∫ XdP.
- ► Expectation is always defined if X ≥ 0 a.s., or if integrals of max{X,0} and min{X,0} are separately finite.

▶ **Theorem (strong law):** If $X_1, X_2, ...$ are i.i.d. real-valued random variables with expectation m and $A_n := n^{-1} \sum_{i=1}^n X_i$ are the *empirical means* then $\lim_{n\to\infty} A_n = m$ almost surely.

- ▶ **Theorem (strong law):** If $X_1, X_2, ...$ are i.i.d. real-valued random variables with expectation m and $A_n := n^{-1} \sum_{i=1}^n X_i$ are the *empirical means* then $\lim_{n\to\infty} A_n = m$ almost surely.
- Last time we defined independent. We showed how to use Kolmogorov to construct infinite i.i.d. random variables on a measure space with a natural σ-algebra (in which the existence of a limit of the X_i is a measurable event). So we've come far enough to say that the statement makes sense.

• Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.

- Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.
- Random variables X and Y are independent if for all C, D ∈ R, we have
 P(X ∈ C, Y ∈ D) = P(X ∈ C)P(Y ∈ D), i.e., the events {X ∈ C} and {Y ∈ D} are independent.

- Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.
- Random variables X and Y are independent if for all C, D ∈ R, we have
 P(X ∈ C, Y ∈ D) = P(X ∈ C)P(Y ∈ D), i.e., the events {X ∈ C} and {Y ∈ D} are independent.
- ► Two σ-fields F and G are independent if A and B are independent whenever A ∈ F and B ∈ G. (This definition also makes sense if F and G are arbitrary algebras, semi-algebras, or other collections of measurable sets.)

▶ Say events $A_1, A_2, ..., A_n$ are independent if for each $I \subset \{1, 2, ..., n\}$ we have $P(\cap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$.

- ► Say events $A_1, A_2, ..., A_n$ are independent if for each $I \subset \{1, 2, ..., n\}$ we have $P(\cap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$.
- Say random variables X₁, X₂,..., X_n are independent if for any measurable sets B₁, B₂,..., B_n, the events that X_i ∈ B_i are independent.

- ► Say events $A_1, A_2, ..., A_n$ are independent if for each $I \subset \{1, 2, ..., n\}$ we have $P(\cap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$.
- Say random variables X₁, X₂,..., X_n are independent if for any measurable sets B₁, B₂,..., B_n, the events that X_i ∈ B_i are independent.
- Say σ-algebras F₁, F₂,..., F_n if any collection of events (one from each σ-algebra) are independent. (This definition also makes sense if the F_i are algebras, semi-algebras, or other collections of measurable sets.)

► Kolmogorov extension theorem: If we have consistent probability measures on (ℝⁿ, ℝⁿ), then we can extend them uniquely to a probability measure on ℝ^N.

- ► Kolmogorov extension theorem: If we have consistent probability measures on (ℝⁿ, ℝⁿ), then we can extend them uniquely to a probability measure on ℝ^N.
- Proved using semi-algebra variant of Carathéeodory's extension theorem.

► Kolmogorov extension theorem not generally true if replace (ℝ, 𝔅) with any measure space.

Extend Kolmogorov

- ► Kolmogorov extension theorem not generally true if replace (ℝ, 𝔅) with any measure space.
- But okay if we use standard Borel spaces. Durrett calls such spaces nice: a set (S, S) is nice if have 1-1 map from S to ℝ so that φ and φ⁻¹ are both measurable.

- ► Kolmogorov extension theorem not generally true if replace (ℝ, 𝔅) with any measure space.
- But okay if we use standard Borel spaces. Durrett calls such spaces nice: a set (S, S) is nice if have 1-1 map from S to ℝ so that φ and φ⁻¹ are both measurable.
- Are there any interesting nice measure spaces?

- ► Kolmogorov extension theorem not generally true if replace (ℝ, 𝔅) with any measure space.
- But okay if we use standard Borel spaces. Durrett calls such spaces nice: a set (S, S) is nice if have 1-1 map from S to ℝ so that φ and φ⁻¹ are both measurable.
- Are there any interesting nice measure spaces?
- ► Theorem: Yes, lots. In fact, if S is a complete separable metric space M (or a Borel subset of such a space) and S is the set of Borel subsets of S, then (S,S) is nice.

- ► Kolmogorov extension theorem not generally true if replace (ℝ, 𝔅) with any measure space.
- But okay if we use standard Borel spaces. Durrett calls such spaces nice: a set (S, S) is nice if have 1-1 map from S to ℝ so that φ and φ⁻¹ are both measurable.
- Are there any interesting nice measure spaces?
- ► Theorem: Yes, lots. In fact, if S is a complete separable metric space M (or a Borel subset of such a space) and S is the set of Borel subsets of S, then (S,S) is nice.
- **separable** means containing a countable dense set.

Standard Borel spaces

Main idea of proof: Reduce to case that diameter less than one (e.g., by replacing d(x, y) with d(x, y)/(1 + d(x, y))). Then map M continuously into [0, 1]^N by considering countable dense set q₁, q₂,... and mapping x to (d(q₁, x), d(q₂, x),...). Then give measurable one-to-one map from [0, 1]^N to [0, 1] via binary expansion (to send N × N-indexed matrix of 0's and 1's to an N-indexed sequence of 0's and 1's).

Standard Borel spaces

- Main idea of proof: Reduce to case that diameter less than one (e.g., by replacing d(x, y) with d(x, y)/(1 + d(x, y))). Then map M continuously into [0, 1]^N by considering countable dense set q₁, q₂,... and mapping x to (d(q₁, x), d(q₂, x),...). Then give measurable one-to-one map from [0, 1]^N to [0, 1] via binary expansion (to send N × N-indexed matrix of 0's and 1's to an N-indexed sequence of 0's and 1's).
- In practice: say I want to let Ω be set of closed subsets of a disc, or planar curves, or functions from one set to another, etc. If I want to construct natural σ-algebra F, I just need to produce metric that makes Ω complete and separable (and if I have to enlarge Ω to make it complete, that might be okay). Then I check that the events I care about belong to this σ-algebra.

• Consider σ -finite measure spaces (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) .

- Consider σ -finite measure spaces (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) .
- Let $\Omega = X \times Y$ and \mathcal{F} be product σ -algebra.

- Consider σ -finite measure spaces (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) .
- Let $\Omega = X \times Y$ and \mathcal{F} be product σ -algebra.
- Check: unique measure μ on \mathcal{F} with $\mu(A \times B) = \mu_1(A)\mu_2(B)$.

- Consider σ -finite measure spaces (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) .
- Let $\Omega = X \times Y$ and \mathcal{F} be product σ -algebra.
- Check: unique measure μ on \mathcal{F} with $\mu(A \times B) = \mu_1(A)\mu_2(B)$.
- ▶ Fubini's theorem: If $f \ge 0$ or $\int |f| d\mu < \infty$ then

$$\int_{X} \int_{Y} f(x, y) \mu_2(dy) \mu_1(dx) = \int_{X \times Y} f d\mu =$$
$$\int_{Y} \int_{X} f(x, y) \mu_1(dx) \mu_2(dy).$$

- Consider σ -finite measure spaces (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) .
- Let $\Omega = X \times Y$ and \mathcal{F} be product σ -algebra.
- Check: unique measure μ on \mathcal{F} with $\mu(A \times B) = \mu_1(A)\mu_2(B)$.
- ▶ Fubini's theorem: If $f \ge 0$ or $\int |f| d\mu < \infty$ then

$$\int_X \int_Y f(x,y)\mu_2(dy)\mu_1(dx) = \int_{X \times Y} fd\mu =$$
$$\int_Y \int_X f(x,y)\mu_1(dx)\mu_2(dy).$$

Main idea of proof: Check definition makes sense: if f measurable, show that restriction of f to slice {(x, y) : x = x₀} is measurable as function of y, and the integral over slice is measurable as function of x₀. Check Fubini for indicators of rectangular sets, use π - λ to extend to measurable indicators. Extend to simple, bounded, L¹ (or non-negative) functions.

What if we take total ordering ≺ or reals in [0,1] (such that for each y the set {x : x ≺ y} is countable) and consider indicator function of {(x, y) : x ≺ y}? If X_i are independent with distributions µ_i, then (X₁,...,X_n) has distribution µ₁ × ... µ_n.

- If X_i are independent with distributions µ_i, then (X₁,...,X_n) has distribution µ₁ × ... µ_n.
- If X_i are independent and satisfy either X_i ≥ 0 for all i or E|X_i| < ∞ for all i then

$$E\prod_{i=1}^n X_i = \prod_{i=1}^n X_i.$$

Definitions

Sums of random variables

Definitions

Sums of random variables

► Say we have independent random variables X and Y with density functions f_X and f_Y.

- ► Say we have independent random variables X and Y with density functions f_X and f_Y.
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.

- ► Say we have independent random variables X and Y with density functions f_X and f_Y.
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over {(x, y) : x + y ≤ a} of f(x, y) = f_X(x)f_Y(y). Thus,

- ► Say we have independent random variables X and Y with density functions f_X and f_Y.
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over {(x, y) : x + y ≤ a} of f(x, y) = f_X(x)f_Y(y). Thus,

$$P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$
$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$$

Summing two random variables

- ► Say we have independent random variables X and Y with density functions f_X and f_Y.
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over {(x, y) : x + y ≤ a} of f(x, y) = f_X(x)f_Y(y). Thus,

$$P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$
$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$$

• Differentiating both sides gives $f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy.$

Summing two random variables

- ► Say we have independent random variables X and Y with density functions f_X and f_Y.
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over {(x, y) : x + y ≤ a} of f(x, y) = f_X(x)f_Y(y). Thus,

$$P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$
$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$$

- Differentiating both sides gives $f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy.$
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.

Summing two random variables

- ► Say we have independent random variables X and Y with density functions f_X and f_Y.
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over {(x, y) : x + y ≤ a} of f(x, y) = f_X(x)f_Y(y). Thus,

$$P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$
$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$$

- Differentiating both sides gives $f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy.$
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.
- Can also write $P(X + Y \le z) = \int F(z y) dG(y)$.

18.175 Lecture 7

Suppose that X and Y are i.i.d. and uniform on [0,1]. So $f_X = f_Y = 1$ on [0,1].

- Suppose that X and Y are i.i.d. and uniform on [0, 1]. So $f_X = f_Y = 1$ on [0, 1].
- What is the probability density function of X + Y?

- Suppose that X and Y are i.i.d. and uniform on [0, 1]. So $f_X = f_Y = 1$ on [0, 1].
- ▶ What is the probability density function of *X* + *Y*?
- ► $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy = \int_0^1 f_X(a-y)$ which is the length of $[0,1] \cap [a-1,a]$.

- Suppose that X and Y are i.i.d. and uniform on [0,1]. So $f_X = f_Y = 1$ on [0,1].
- ▶ What is the probability density function of *X* + *Y*?
- ► $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy = \int_0^1 f_X(a-y)$ which is the length of $[0,1] \cap [a-1,a]$.
- ► That's a when a ∈ [0, 1] and 2 − a when a ∈ [0, 2] and 0 otherwise.

•
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{\frac{-x^2}{2\sigma_1^2}}$$
 and $f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{\frac{-y^2}{2\sigma_2^2}}$.

X is normal with mean zero, variance σ²₁, Y is normal with mean zero, variance σ²₂.

•
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{\frac{-x^2}{2\sigma_1^2}}$$
 and $f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{\frac{-y^2}{2\sigma_2^2}}$.

• We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.

X is normal with mean zero, variance σ²₁, Y is normal with mean zero, variance σ²₂.

•
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{\frac{-x^2}{2\sigma_1^2}}$$
 and $f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{\frac{-y^2}{2\sigma_2^2}}$.

• We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.

• We could compute this directly.

•
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{\frac{-x^2}{2\sigma_1^2}}$$
 and $f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{\frac{-y^2}{2\sigma_2^2}}$.

- We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then f_{σ1X+σ2Y} is the density of a normal random variable (and note that variances and expectations are additive).

•
$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-x^2}{2\sigma_1^2}}$$
 and $f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-y^2}{2\sigma_2^2}}$.

- We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then f_{σ1X+σ2Y} is the density of a normal random variable (and note that variances and expectations are additive).
- Or use fact that if $A_i \in \{-1, 1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^2 N} A_i$ is approximately normal with variance σ^2 when N is large.

X is normal with mean zero, variance σ²₁, Y is normal with mean zero, variance σ²₂.

•
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{\frac{-x^2}{2\sigma_1^2}}$$
 and $f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{\frac{-y^2}{2\sigma_2^2}}$.

- We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- We could compute this directly.
- Or we could argue with a multi-dimensional bell curve picture that if X and Y have variance 1 then f_{σ1X+σ2Y} is the density of a normal random variable (and note that variances and expectations are additive).
- Or use fact that if $A_i \in \{-1, 1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^2 N} A_i$ is approximately normal with variance σ^2 when N is large.
- Generally: if independent random variables X_j are normal (μ_j, σ_j^2) then $\sum_{j=1}^n X_j$ is normal $(\sum_{j=1}^n \mu_j, \sum_{j=1}^n \sigma_j^2)$.

18.175 Lecture 7

Say X_i and X_j are uncorrelated if $E(X_iX_j) = EX_iEX_j$.

- Say X_i and X_j are uncorrelated if $E(X_iX_j) = EX_iEX_j$.
- ▶ When random variables are uncorrelated, their variances add.

- Say X_i and X_j are uncorrelated if $E(X_iX_j) = EX_iEX_j$.
- ▶ When random variables are uncorrelated, their variances add.
- If we have a sequence X₁, X₂,... of uncorrelated random variables with common mean µ and uniformly bounded variance, and we write S_n = X₁ + ... + X_n, then S_n/n → µ in probability.

- Say X_i and X_j are uncorrelated if $E(X_iX_j) = EX_iEX_j$.
- ▶ When random variables are uncorrelated, their variances add.
- ▶ If we have a sequence $X_1, X_2, ...$ of uncorrelated random variables with common mean μ and uniformly bounded variance, and we write $S_n = X_1 + ... + X_n$, then $S_n/n \rightarrow \mu$ in probability.
- Weak versus strong. Convergence in probability versus a.s. convergence.