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Recall expectation definition

I Given probability space (Ω,F ,P) and random variable X (i.e.,
measurable function X from Ω to R), we write EX =

∫
XdP.

I Expectation is always defined if X ≥ 0 a.s., or if integrals of
max{X , 0} and min{X , 0} are separately finite.
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Strong law of large numbers

I Theorem (strong law): If X1,X2, . . . are i.i.d. real-valued
random variables with expectation m and An := n−1

∑n
i=1 Xi

are the empirical means then limn→∞ An = m almost surely.

I Last time we defined independent. We showed how to use
Kolmogorov to construct infinite i.i.d. random variables on a
measure space with a natural σ-algebra (in which the
existence of a limit of the Xi is a measurable event). So we’ve
come far enough to say that the statement makes sense.
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Recall some definitions

I Two events A and B are independent if
P(A ∩ B) = P(A)P(B).

I Random variables X and Y are independent if for all
C ,D ∈ R, we have
P(X ∈ C ,Y ∈ D) = P(X ∈ C )P(Y ∈ D), i.e., the events
{X ∈ C} and {Y ∈ D} are independent.

I Two σ-fields F and G are independent if A and B are
independent whenever A ∈ F and B ∈ G. (This definition also
makes sense if F and G are arbitrary algebras, semi-algebras,
or other collections of measurable sets.)
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∏
i∈I P(Ai ).

I Say random variables X1,X2, . . . ,Xn are independent if for
any measurable sets B1,B2, . . . ,Bn, the events that Xi ∈ Bi
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I Say σ-algebras F1,F2, . . . ,Fn if any collection of events (one
from each σ-algebra) are independent. (This definition also
makes sense if the Fi are algebras, semi-algebras, or other
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Recall Kolmogorov

I Kolmogorov extension theorem: If we have consistent
probability measures on (Rn,Rn), then we can extend them
uniquely to a probability measure on RN.

I Proved using semi-algebra variant of Carathéeodory’s
extension theorem.
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Extend Kolmogorov

I Kolmogorov extension theorem not generally true if replace
(R,R) with any measure space.

I But okay if we use standard Borel spaces. Durrett calls such
spaces nice: a set (S ,S) is nice if have 1-1 map from S to R
so that φ and φ−1 are both measurable.

I Are there any interesting nice measure spaces?

I Theorem: Yes, lots. In fact, if S is a complete separable
metric space M (or a Borel subset of such a space) and S is
the set of Borel subsets of S , then (S ,S) is nice.

I separable means containing a countable dense set.
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Standard Borel spaces

I Main idea of proof: Reduce to case that diameter less than
one (e.g., by replacing d(x , y) with d(x , y)/(1 + d(x , y))).
Then map M continuously into [0, 1]N by considering
countable dense set q1, q2, . . . and mapping x to(
d(q1, x), d(q2, x), . . .

)
. Then give measurable one-to-one

map from [0, 1]N to [0, 1] via binary expansion (to send
N×N-indexed matrix of 0’s and 1’s to an N-indexed sequence
of 0’s and 1’s).

I In practice: say I want to let Ω be set of closed subsets of a
disc, or planar curves, or functions from one set to another,
etc. If I want to construct natural σ-algebra F , I just need to
produce metric that makes Ω complete and separable (and if I
have to enlarge Ω to make it complete, that might be okay).
Then I check that the events I care about belong to this
σ-algebra.
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Fubini’s theorem

I Consider σ-finite measure spaces (X ,A, µ1) and (Y ,B, µ2).

I Let Ω = X × Y and F be product σ-algebra.
I Check: unique measure µ on F with µ(A×B) = µ1(A)µ2(B).
I Fubini’s theorem: If f ≥ 0 or

∫
|f |dµ <∞ then∫

X

∫
Y
f (x , y)µ2(dy)µ1(dx) =

∫
X×Y

fdµ =∫
Y

∫
X
f (x , y)µ1(dx)µ2(dy).

I Main idea of proof: Check definition makes sense: if f
measurable, show that restriction of f to slice
{(x , y) : x = x0} is measurable as function of y , and the
integral over slice is measurable as function of x0. Check
Fubini for indicators of rectangular sets, use π − λ to extend
to measurable indicators. Extend to simple, bounded, L1 (or
non-negative) functions.
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Non-measurable Fubini counterexample

I What if we take total ordering ≺ or reals in [0, 1] (such that
for each y the set {x : x ≺ y} is countable) and consider
indicator function of {(x , y) : x ≺ y}?
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More observations

I If Xi are independent with distributions µi , then (X1, . . . ,Xn)
has distribution µ1 × . . . µn.

I If Xi are independent and satisfy either Xi ≥ 0 for all i or
E |Xi | <∞ for all i then

E
n∏

i=1

Xi =
n∏

i=1

Xi .
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Summing two random variables

I Say we have independent random variables X and Y with
density functions fX and fY .

I Now let’s try to find FX+Y (a) = P{X + Y ≤ a}.
I This is the integral over {(x , y) : x + y ≤ a} of

f (x , y) = fX (x)fY (y). Thus,

I

P{X + Y ≤ a} =

∫ ∞
−∞

∫ a−y

−∞
fX (x)fY (y)dxdy

=

∫ ∞
−∞

FX (a− y)fY (y)dy .

I Differentiating both sides gives
fX+Y (a) = d

da

∫∞
−∞ FX (a−y)fY (y)dy =

∫∞
−∞ fX (a−y)fY (y)dy .

I Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.

I Can also write P(X + Y ≤ z) =
∫
F (z − y)dG (y).
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Summing i.i.d. uniform random variables

I Suppose that X and Y are i.i.d. and uniform on [0, 1]. So
fX = fY = 1 on [0, 1].

I What is the probability density function of X + Y ?

I fX+Y (a) =
∫∞
−∞ fX (a− y)fY (y)dy =

∫ 1
0 fX (a− y) which is

the length of [0, 1] ∩ [a− 1, a].

I That’s a when a ∈ [0, 1] and 2− a when a ∈ [0, 2] and 0
otherwise.
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Summing two normal variables

I X is normal with mean zero, variance σ21, Y is normal with
mean zero, variance σ22.

I fX (x) = 1√
2πσ1

e
−x2

2σ2
1 and fY (y) = 1√

2πσ2
e

−y2

2σ2
2 .

I We just need to compute fX+Y (a) =
∫∞
−∞ fX (a− y)fY (y)dy .

I We could compute this directly.

I Or we could argue with a multi-dimensional bell curve picture
that if X and Y have variance 1 then fσ1X+σ2Y is the density
of a normal random variable (and note that variances and
expectations are additive).

I Or use fact that if Ai ∈ {−1, 1} are i.i.d. coin tosses then
1√
N

∑σ2N
i=1 Ai is approximately normal with variance σ2 when

N is large.

I Generally: if independent random variables Xj are normal
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Summing two normal variables

I X is normal with mean zero, variance σ21, Y is normal with
mean zero, variance σ22.

I fX (x) = 1√
2πσ1
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2σ2
1 and fY (y) = 1√

2πσ2
e

−y2

2σ2
2 .

I We just need to compute fX+Y (a) =
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L2 weak laws of large numbers

I Say Xi and Xj are uncorrelated if E (XiXj) = EXiEXj .

I When random variables are uncorrelated, their variances add.

I If we have a sequence X1,X2, . . . of uncorrelated random
variables with common mean µ and uniformly bounded
variance, and we write Sn = X1 + . . .+ Xn, then Sn/n→ µ in
probability.

I Weak versus strong. Convergence in probability versus a.s.
convergence.
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