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Recall Lebesgue integration

I Lebesgue: If you can measure, you can integrate.

I In more words: if (Ω,F) is a measure space with a measure µ
with µ(Ω) <∞) and f : Ω→ R is F-measurable, then we
can define

∫
fdµ (for non-negative f , also if both f ∨ 0 and

−f ∧ 0 and have finite integrals...)
I Idea: define integral, verify linearity and positivity (a.e.

non-negative functions have non-negative integrals) in 4
cases:

I f takes only finitely many values.
I f is bounded (hint: reduce to previous case by rounding down

or up to nearest multiple of ε for ε→ 0).
I f is non-negative (hint: reduce to previous case by taking

f ∧ N for N →∞).
I f is any measurable function (hint: treat positive/negative

parts separately, difference makes sense if both integrals finite).
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Lebesgue integration

I Theorem: if f and g are integrable then:

I If f ≥ 0 a.s. then
∫
fdµ ≥ 0.

I For a, b ∈ R, have
∫

(af + bg)dµ = a
∫
fdµ+ b

∫
gdµ.

I If g ≤ f a.s. then
∫
gdµ ≤

∫
fdµ.

I If g = f a.e. then
∫
gdµ =

∫
fdµ.

I |
∫
fdµ| ≤

∫
|f |dµ.

I When (Ω,F , µ) = (Rd ,Rd , λ), write
∫
E f (x)dx =

∫
1E fdλ.
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Expectation

I Given probability space (Ω,F ,P) and random variable X , we
write EX =

∫
XdP. Always defined if X ≥ 0, or if integrals of

max{X , 0} and min{X , 0} are separately finite.

I EX k is called kth moment of X . Also, if m = EX then
E (X −m)2 is called the variance of X .
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Properties of expectation/integration

I Jensen’s inequality: If µ is probability measure and
φ : R→ R is convex then φ(

∫
fdµ) ≤

∫
φ(f )dµ. If X is

random variable then Eφ(X ) ≥ φ(EX ).

I Main idea of proof: Approximate φ below by linear function
L that agrees with φ at EX .

I Applications: Utility, hedge fund payout functions.

I Hölder’s inequality: Write ‖f ‖p = (
∫
|f |pdµ)1/p for

1 ≤ p <∞. If 1/p + 1/q = 1, then
∫
|fg |dµ ≤ ‖f ‖p‖g‖q.

I Main idea of proof: Rescale so that ‖f ‖p‖g‖q = 1. Use
some basic calculus to check that for any positive x and y we
have xy ≤ xp/p + yq/p. Write x = |f |, y = |g | and integrate
to get

∫
|fg |dµ ≤ 1

p + 1
q = 1 = ‖f ‖p‖g‖q.

I Cauchy-Schwarz inequality: Special case p = q = 2. Gives∫
|fg |dµ ≤ ‖f ‖2‖g‖2. Says that dot product of two vectors is

at most product of vector lengths.
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I Hölder’s inequality: Write ‖f ‖p = (
∫
|f |pdµ)1/p for

1 ≤ p <∞. If 1/p + 1/q = 1, then
∫
|fg |dµ ≤ ‖f ‖p‖g‖q.

I Main idea of proof: Rescale so that ‖f ‖p‖g‖q = 1. Use
some basic calculus to check that for any positive x and y we
have xy ≤ xp/p + yq/p. Write x = |f |, y = |g | and integrate
to get

∫
|fg |dµ ≤ 1

p + 1
q = 1 = ‖f ‖p‖g‖q.

I Cauchy-Schwarz inequality: Special case p = q = 2. Gives∫
|fg |dµ ≤ ‖f ‖2‖g‖2. Says that dot product of two vectors is

at most product of vector lengths.

18.175 Lecture 5



Properties of expectation/integration

I Jensen’s inequality: If µ is probability measure and
φ : R→ R is convex then φ(

∫
fdµ) ≤

∫
φ(f )dµ. If X is

random variable then Eφ(X ) ≥ φ(EX ).

I Main idea of proof: Approximate φ below by linear function
L that agrees with φ at EX .

I Applications: Utility, hedge fund payout functions.
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Bounded convergence theorem

I Bounded convergence theorem: Consider probability
measure µ and suppose |fn| ≤ M a.s. for all n and some fixed
M > 0, and that fn → f in probability (i.e.,
limn→∞ µ{x : |fn(x)− f (x)| > ε} = 0 for all ε > 0). Then∫

fdµ = lim
n→∞

∫
fndµ.

(Build counterexample for infinite measure space using wide
and short rectangles?...)

I Main idea of proof: for any ε, δ can take n large enough so∫
|fn − f |dµ < Mδ + ε.
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Fatou’s lemma

I Fatou’s lemma: If fn ≥ 0 then

lim inf
n→∞

∫
fndµ ≥

∫ (
lim inf
n→∞

fn)dµ.

(Counterexample for opposite-direction inequality using thin
and tall rectangles?)

I Main idea of proof: first reduce to case that the fn are
increasing by writing gn(x) = infm≥n fm(x) and observing that
gn(x) ↑ g(x) = lim infn→∞ fn(x). Then truncate, used
bounded convergence, take limits.
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More integral properties

I Monotone convergence: If fn ≥ 0 and fn ↑ f then∫
fndµ ↑

∫
fdµ.

I Main idea of proof: one direction obvious, Fatou gives other.

I Dominated convergence: If fn → f a.e. and |fn| ≤ g for all
n and g is integrable, then

∫
fndµ→

∫
fdµ.

I Main idea of proof: Fatou for functions g + fn ≥ 0 gives one
side. Fatou for g − fn ≥ 0 gives other.
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Computing expectations

I Change of variables. Measure space (Ω,F ,P). Let X be
random variable in (S ,S) with distribution µ. Then if
f (S ,S)→ (R,R) is measurable we have
Ef (X ) =

∫
S f (y)µ(dy).

I Prove by checking for indicators, simple functions,
non-negative functions, integrable functions.

I Examples: normal, exponential, Bernoulli, Poisson,
geometric...
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