18.175: Lecture 5 <u>More integration</u> and expectation

Scott Sheffield

MIT

Integration

Expectation

Integration

Expectation

► Lebesgue: If you can measure, you can integrate.

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞) and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>

- Lebesgue: If you can measure, you can integrate.
- ▶ In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega) < \infty$) and $f : \Omega \to \mathbb{R}$ is \mathcal{F} -measurable, then we can define $\int f d\mu$ (for non-negative f, also if both $f \lor 0$ and $-f \land 0$ and have finite integrals...)
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞) and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.

- Lebesgue: If you can measure, you can integrate.
- ▶ In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega) < \infty$) and $f : \Omega \to \mathbb{R}$ is \mathcal{F} -measurable, then we can define $\int f d\mu$ (for non-negative f, also if both $f \lor 0$ and $-f \land 0$ and have finite integrals...)
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.
 - *f* is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of *e* for *e* → 0).

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞) and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.
 - *f* is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of *e* for *e* → 0).
 - ▶ *f* is non-negative (hint: reduce to previous case by taking $f \land N$ for $N \to \infty$).

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, F) is a measure space with a measure µ with µ(Ω) < ∞) and f : Ω → ℝ is F-measurable, then we can define ∫ fdµ (for non-negative f, also if both f ∨ 0 and −f ∧ 0 and have finite integrals...)</p>
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
 - f takes only finitely many values.
 - ▶ *f* is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
 - ▶ *f* is non-negative (hint: reduce to previous case by taking $f \land N$ for $N \to \infty$).
 - f is any measurable function (hint: treat positive/negative parts separately, difference makes sense if both integrals finite).

Theorem: if *f* and *g* are integrable then:

• **Theorem:** if *f* and *g* are integrable then:

• If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.

Theorem: if *f* and *g* are integrable then:

- If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.
- For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int fd\mu + b \int gd\mu$.

Theorem: if *f* and *g* are integrable then:

- If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.
- For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu$.
- If $g \leq f$ a.s. then $\int g d\mu \leq \int f d\mu$.

• **Theorem:** if f and g are integrable then:

- If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.
- For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int fd\mu + b \int gd\mu$.
- If $g \leq f$ a.s. then $\int g d\mu \leq \int f d\mu$.
- If g = f a.e. then $\int g d\mu = \int f d\mu$.

Theorem: if *f* and *g* are integrable then:

- If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.
- For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu$.
- If $g \leq f$ a.s. then $\int g d\mu \leq \int f d\mu$.
- If g = f a.e. then $\int g d\mu = \int f d\mu$.
- $|\int f d\mu| \leq \int |f| d\mu.$

Theorem: if *f* and *g* are integrable then:

- If $f \ge 0$ a.s. then $\int f d\mu \ge 0$.
- For $a, b \in \mathbb{R}$, have $\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu$.
- If $g \leq f$ a.s. then $\int g d\mu \leq \int f d\mu$.
- If g = f a.e. then $\int g d\mu = \int f d\mu$.
- $|\int f d\mu| \leq \int |f| d\mu.$

• When $(\Omega, \mathcal{F}, \mu) = (\mathbb{R}^d, \mathcal{R}^d, \lambda)$, write $\int_E f(x) dx = \int 1_E f d\lambda$.

Integration

Expectation

Integration

Expectation

Given probability space (Ω, F, P) and random variable X, we write EX = ∫ XdP. Always defined if X ≥ 0, or if integrals of max{X,0} and min{X,0} are separately finite.

- Given probability space (Ω, F, P) and random variable X, we write EX = ∫ XdP. Always defined if X ≥ 0, or if integrals of max{X,0} and min{X,0} are separately finite.
- EX^k is called *k*th moment of *X*. Also, if m = EX then $E(X m)^2$ is called the variance of *X*.

▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int fd\mu) \leq \int \phi(f)d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int fd\mu) \leq \int \phi(f)d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- ► Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.
- **Applications:** Utility, hedge fund payout functions.

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.
- **Applications:** Utility, hedge fund payout functions.
- ► Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.
- Applications: Utility, hedge fund payout functions.
- ▶ Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.
- Main idea of proof: Rescale so that ||f||_p||g||_q = 1. Use some basic calculus to check that for any positive x and y we have xy ≤ x^p/p + y^q/p. Write x = |f|, y = |g| and integrate to get ∫ |fg|dµ ≤ 1/p + 1/q = 1 = ||f||_p||g||_q.

- ▶ Jensen's inequality: If μ is probability measure and $\phi : \mathbb{R} \to \mathbb{R}$ is convex then $\phi(\int f d\mu) \leq \int \phi(f) d\mu$. If X is random variable then $E\phi(X) \geq \phi(EX)$.
- Main idea of proof: Approximate φ below by linear function L that agrees with φ at EX.
- Applications: Utility, hedge fund payout functions.
- ▶ Hölder's inequality: Write $||f||_p = (\int |f|^p d\mu)^{1/p}$ for $1 \le p < \infty$. If 1/p + 1/q = 1, then $\int |fg| d\mu \le ||f||_p ||g||_q$.
- Main idea of proof: Rescale so that ||f||_p||g||_q = 1. Use some basic calculus to check that for any positive x and y we have xy ≤ x^p/p + y^q/p. Write x = |f|, y = |g| and integrate to get ∫ |fg|dµ ≤ ¹/_p + ¹/_q = 1 = ||f||_p||g||_q.
- Cauchy-Schwarz inequality: Special case p = q = 2. Gives ∫ |fg|dµ ≤ ||f||₂||g||₂. Says that dot product of two vectors is at most product of vector lengths.

Bounded convergence theorem

▶ Bounded convergence theorem: Consider probability measure μ and suppose $|f_n| \le M$ a.s. for all n and some fixed M > 0, and that $f_n \to f$ in probability (i.e., $\lim_{n\to\infty} \mu\{x : |f_n(x) - f(x)| > \epsilon\} = 0$ for all $\epsilon > 0$). Then

$$\int f d\mu = \lim_{n\to\infty} \int f_n d\mu.$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

٠

Bounded convergence theorem

▶ Bounded convergence theorem: Consider probability measure μ and suppose $|f_n| \le M$ a.s. for all *n* and some fixed M > 0, and that $f_n \to f$ in probability (i.e., $\lim_{n\to\infty} \mu\{x : |f_n(x) - f(x)| > \epsilon\} = 0$ for all $\epsilon > 0$). Then

$$\int f d\mu = \lim_{n\to\infty} \int f_n d\mu.$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

▶ Main idea of proof: for any ϵ , δ can take *n* large enough so $\int |f_n - f| d\mu < M\delta + \epsilon$.

Fatou's lemma: If $f_n \ge 0$ then

$$\liminf_{n\to\infty}\int f_n d\mu\geq\int (\liminf_{n\to\infty}f_n)d\mu.$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

Fatou's lemma: If $f_n \ge 0$ then

$$\liminf_{n\to\infty}\int f_nd\mu\geq\int (\liminf_{n\to\infty}f_n)d\mu.$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

Main idea of proof: first reduce to case that the f_n are increasing by writing g_n(x) = inf_{m≥n} f_m(x) and observing that g_n(x) ↑ g(x) = lim inf_{n→∞} f_n(x). Then truncate, used bounded convergence, take limits.

• Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

▶ Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

> Main idea of proof: one direction obvious, Fatou gives other.

• Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

- ► Main idea of proof: one direction obvious, Fatou gives other.
- ▶ **Dominated convergence:** If $f_n \to f$ a.e. and $|f_n| \le g$ for all n and g is integrable, then $\int f_n d\mu \to \int f d\mu$.

• Monotone convergence: If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

- ► Main idea of proof: one direction obvious, Fatou gives other.
- ▶ **Dominated convergence:** If $f_n \to f$ a.e. and $|f_n| \le g$ for all n and g is integrable, then $\int f_n d\mu \to \int f d\mu$.
- ► Main idea of proof: Fatou for functions g + f_n ≥ 0 gives one side. Fatou for g f_n ≥ 0 gives other.

Change of variables. Measure space (Ω, F, P). Let X be random variable in (S, S) with distribution µ. Then if f(S, S) → (R, R) is measurable we have Ef(X) = ∫_S f(y)µ(dy).

- Change of variables. Measure space (Ω, F, P). Let X be random variable in (S, S) with distribution µ. Then if f(S, S) → (R, R) is measurable we have Ef(X) = ∫_S f(y)µ(dy).
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.

- Change of variables. Measure space (Ω, F, P). Let X be random variable in (S, S) with distribution µ. Then if f(S, S) → (R, R) is measurable we have Ef(X) = ∫_S f(y)µ(dy).
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.
- Examples: normal, exponential, Bernoulli, Poisson, geometric...