18.175: Lecture 5

More integration and expectation

Scott Sheffield

MIT

Outline

Integration

Expectation
18.175 Lecture 5

Outline

Integration

Expectation

18.175 Lecture 5

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty)$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty)$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty)$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty)$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty)$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
- f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \rightarrow \infty)$.

Recall Lebesgue integration

- Lebesgue: If you can measure, you can integrate.
- In more words: if (Ω, \mathcal{F}) is a measure space with a measure μ with $\mu(\Omega)<\infty)$ and $f: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}-measurable, then we can define $\int f d \mu$ (for non-negative f, also if both $f \vee 0$ and $-f \wedge 0$ and have finite integrals...)
- Idea: define integral, verify linearity and positivity (a.e. non-negative functions have non-negative integrals) in 4 cases:
- f takes only finitely many values.
- f is bounded (hint: reduce to previous case by rounding down or up to nearest multiple of ϵ for $\epsilon \rightarrow 0$).
- f is non-negative (hint: reduce to previous case by taking $f \wedge N$ for $N \rightarrow \infty)$.
- f is any measurable function (hint: treat positive/negative parts separately, difference makes sense if both integrals finite).

Lebesgue integration

- Theorem: if f and g are integrable then:

Lebesgue integration

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.

Lebesgue integration

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.

Lebesgue integration

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
- If $g \leq f$ a.s. then $\int g d \mu \leq \int f d \mu$.

Lebesgue integration

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
- If $g \leq f$ a.s. then $\int g d \mu \leq \int f d \mu$.
- If $g=f$ a.e. then $\int g d \mu=\int f d \mu$.

Lebesgue integration

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
- If $g \leq f$ a.s. then $\int g d \mu \leq \int f d \mu$.
- If $g=f$ a.e. then $\int g d \mu=\int f d \mu$.
- $\left|\int f d \mu\right| \leq \int|f| d \mu$.

Lebesgue integration

- Theorem: if f and g are integrable then:
- If $f \geq 0$ a.s. then $\int f d \mu \geq 0$.
- For $a, b \in \mathbb{R}$, have $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.
- If $g \leq f$ a.s. then $\int g d \mu \leq \int f d \mu$.
- If $g=f$ a.e. then $\int g d \mu=\int f d \mu$.
- $\left|\int f d \mu\right| \leq \int|f| d \mu$.
- When $(\Omega, \mathcal{F}, \mu)=\left(\mathbb{R}^{d}, \mathcal{R}^{d}, \lambda\right)$, write $\int_{E} f(x) d x=\int 1_{E} f d \lambda$.

Outline

Integration

Expectation
18.175 Lecture 5

Outline

Integration

Expectation

Expectation

- Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $E X=\int X d P$. Always defined if $X \geq 0$, or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.

Expectation

- Given probability space (Ω, \mathcal{F}, P) and random variable X, we write $E X=\int X d P$. Always defined if $X \geq 0$, or if integrals of $\max \{X, 0\}$ and $\min \{X, 0\}$ are separately finite.
- $E X^{k}$ is called k th moment of X. Also, if $m=E X$ then $E(X-m)^{2}$ is called the variance of X.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.
- Main idea of proof: Rescale so that $\|f\|_{p}\|g\|_{q}=1$. Use some basic calculus to check that for any positive x and y we have $x y \leq x^{p} / p+y^{q} / p$. Write $x=|f|, y=|g|$ and integrate to get $\int|f g| d \mu \leq \frac{1}{p}+\frac{1}{q}=1=\|f\|_{p}\|g\|_{q}$.

Properties of expectation/integration

- Jensen's inequality: If μ is probability measure and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu$. If X is random variable then $E \phi(X) \geq \phi(E X)$.
- Main idea of proof: Approximate ϕ below by linear function L that agrees with ϕ at $E X$.
- Applications: Utility, hedge fund payout functions.
- Hölder's inequality: Write $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$ for $1 \leq p<\infty$. If $1 / p+1 / q=1$, then $\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}$.
- Main idea of proof: Rescale so that $\|f\|_{p}\|g\|_{q}=1$. Use some basic calculus to check that for any positive x and y we have $x y \leq x^{p} / p+y^{q} / p$. Write $x=|f|, y=|g|$ and integrate to get $\int|f g| d \mu \leq \frac{1}{p}+\frac{1}{q}=1=\|f\|_{p}\|g\|_{q}$.
- Cauchy-Schwarz inequality: Special case $p=q=2$. Gives $\int|f g| d \mu \leq\|f\|_{2}\|g\|_{2}$. Says that dot product of two vectors is at most product of vector lengths.

Bounded convergence theorem

- Bounded convergence theorem: Consider probability measure μ and suppose $\left|f_{n}\right| \leq M$ a.s. for all n and some fixed $M>0$, and that $f_{n} \rightarrow f$ in probability (i.e., $\lim _{n \rightarrow \infty} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=0$ for all $\left.\epsilon>0\right)$. Then

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

Bounded convergence theorem

- Bounded convergence theorem: Consider probability measure μ and suppose $\left|f_{n}\right| \leq M$ a.s. for all n and some fixed $M>0$, and that $f_{n} \rightarrow f$ in probability (i.e., $\lim _{n \rightarrow \infty} \mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}=0$ for all $\left.\epsilon>0\right)$. Then

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

(Build counterexample for infinite measure space using wide and short rectangles?...)

- Main idea of proof: for any ϵ, δ can take n large enough so $\int\left|f_{n}-f\right| d \mu<M \delta+\epsilon$.

Fatou's lemma

- Fatou's lemma: If $f_{n} \geq 0$ then

$$
\liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu
$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

Fatou's lemma

- Fatou's lemma: If $f_{n} \geq 0$ then

$$
\liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu
$$

(Counterexample for opposite-direction inequality using thin and tall rectangles?)

- Main idea of proof: first reduce to case that the f_{n} are increasing by writing $g_{n}(x)=\inf _{m \geq n} f_{m}(x)$ and observing that $g_{n}(x) \uparrow g(x)=\lim \inf _{n \rightarrow \infty} f_{n}(x)$. Then truncate, used bounded convergence, take limits.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.
- Dominated convergence: If $f_{n} \rightarrow f$ a.e. and $\left|f_{n}\right| \leq g$ for all n and g is integrable, then $\int f_{n} d \mu \rightarrow \int f d \mu$.

More integral properties

- Monotone convergence: If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu
$$

- Main idea of proof: one direction obvious, Fatou gives other.
- Dominated convergence: If $f_{n} \rightarrow f$ a.e. and $\left|f_{n}\right| \leq g$ for all n and g is integrable, then $\int f_{n} d \mu \rightarrow \int f d \mu$.
- Main idea of proof: Fatou for functions $g+f_{n} \geq 0$ gives one side. Fatou for $g-f_{n} \geq 0$ gives other.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.

Computing expectations

- Change of variables. Measure space (Ω, \mathcal{F}, P). Let X be random variable in (S, \mathcal{S}) with distribution μ. Then if $f(S, \mathcal{S}) \rightarrow(R, \mathcal{R})$ is measurable we have $E f(X)=\int_{S} f(y) \mu(d y)$.
- Prove by checking for indicators, simple functions, non-negative functions, integrable functions.
- Examples: normal, exponential, Bernoulli, Poisson, geometric...

