18.175: Lecture 38 Even more Brownian motion

Scott Sheffield

MIT

Recollections

Markov property, Blumenthal's 0-1 law

Recollections

Markov property, Blumenthal's 0-1 law

• Brownian motion is real-valued process B_t , $t \ge 0$.

- Brownian motion is real-valued process B_t , $t \ge 0$.
- Independent increments: If $t_0 < t_1 < t_2 \dots$ then $B(t_0), B(t_1 t_0), B(t_2 t_1), \dots$ are independent.

- Brownian motion is real-valued process B_t , $t \ge 0$.
- Independent increments: If $t_0 < t_1 < t_2 \dots$ then $B(t_0), B(t_1 t_0), B(t_2 t_1), \dots$ are independent.
- ► Gaussian increments: If s, t ≥ 0 then B(s + t) B(s) is normal with variance t.

- Brownian motion is real-valued process B_t , $t \ge 0$.
- Independent increments: If $t_0 < t_1 < t_2 \dots$ then $B(t_0), B(t_1 t_0), B(t_2 t_1), \dots$ are independent.
- ► Gaussian increments: If s, t ≥ 0 then B(s + t) B(s) is normal with variance t.
- **Continuity:** With probability one, $t \rightarrow B_t$ is continuous.

- Brownian motion is real-valued process B_t , $t \ge 0$.
- Independent increments: If $t_0 < t_1 < t_2 \dots$ then $B(t_0), B(t_1 t_0), B(t_2 t_1), \dots$ are independent.
- ► Gaussian increments: If s, t ≥ 0 then B(s + t) B(s) is normal with variance t.
- **Continuity:** With probability one, $t \rightarrow B_t$ is continuous.
- Hmm... does this mean we need to use a σ-algebra in which the event "B_t is continuous" is a measurable?

- Brownian motion is real-valued process B_t , $t \ge 0$.
- Independent increments: If $t_0 < t_1 < t_2 \dots$ then $B(t_0), B(t_1 t_0), B(t_2 t_1), \dots$ are independent.
- ► Gaussian increments: If s, t ≥ 0 then B(s + t) B(s) is normal with variance t.
- **Continuity:** With probability one, $t \rightarrow B_t$ is continuous.
- Hmm... does this mean we need to use a σ-algebra in which the event "B_t is continuous" is a measurable?
- Suppose Ω is set of all functions of t, and we use smallest σ-field that makes each B_t a measurable random variable... does that fail?

▶ Translation invariance: is $B_{t_0+t} - B_{t_0}$ a Brownian motion?

- Translation invariance: is $B_{t_0+t} B_{t_0}$ a Brownian motion?
- Brownian scaling: fix c, then B_{ct} agrees in law with $c^{1/2}B_t$.

- ► Translation invariance: is $B_{t_0+t} B_{t_0}$ a Brownian motion?
- Brownian scaling: fix c, then B_{ct} agrees in law with $c^{1/2}B_t$.
- ▶ Another characterization: *B* is jointly Gaussian, $EB_s = 0$, $EB_sB_t = s \land t$, and $t \to B_t$ a.s. continuous.

 Can define joint law of B_t values for any finite collection of values.

- Can define joint law of B_t values for any finite collection of values.
- Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in σ-field F₀ generated by cylinder sets.

- Can define joint law of B_t values for any finite collection of values.
- Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in σ-field F₀ generated by cylinder sets.
- But not enough to get a.s. continuity.

- Can define joint law of B_t values for any finite collection of values.
- Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in σ-field F₀ generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.

- Can define joint law of B_t values for any finite collection of values.
- Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in σ-field F₀ generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.
- ▶ We can use the Kolmogorov continuity theorem (next slide).

- Can define joint law of B_t values for any finite collection of values.
- Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in σ-field F₀ generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.
- ▶ We can use the Kolmogorov continuity theorem (next slide).
- Can prove Hölder continuity using similar estimates (see problem set).

- Can define joint law of B_t values for any finite collection of values.
- Can observe consistency and extend to countable set by Kolmogorov. This gives us measure in σ-field F₀ generated by cylinder sets.
- But not enough to get a.s. continuity.
- Can define Brownian motion jointly on diadic rationals pretty easily. And claim that this a.s. extends to continuous path in unique way.
- ▶ We can use the Kolmogorov continuity theorem (next slide).
- Can prove Hölder continuity using similar estimates (see problem set).
- Can extend to higher dimensions: make each coordinate independent Brownian motion.

Continuity theorem

• Kolmogorov continuity theorem: Suppose $E|X_s - X_t|^{\beta} \le K|t - s|^{1+\alpha}$ where $\alpha, \beta > 0$. If $\gamma < \alpha/\beta$ then with probability one there is a constant $C(\omega)$ so that $|X(q) - X(r)| \le C|q - r|^{\gamma}$ for all $q, r \in \mathbb{Q}_2 \cap [0, 1]$.

Continuity theorem

- Kolmogorov continuity theorem: Suppose $E|X_s X_t|^{\beta} \le K|t s|^{1+\alpha}$ where $\alpha, \beta > 0$. If $\gamma < \alpha/\beta$ then with probability one there is a constant $C(\omega)$ so that $|X(q) X(r)| \le C|q r|^{\gamma}$ for all $q, r \in \mathbb{Q}_2 \cap [0, 1]$.
- ▶ Proof idea: First look at values at all multiples of 2⁻⁰, then at all multiples of 2⁻¹, then multiples of 2⁻², etc.

Continuity theorem

- ▶ Kolmogorov continuity theorem: Suppose $E|X_s - X_t|^{\beta} \le K|t - s|^{1+\alpha}$ where $\alpha, \beta > 0$. If $\gamma < \alpha/\beta$ then with probability one there is a constant $C(\omega)$ so that $|X(q) - X(r)| \le C|q - r|^{\gamma}$ for all $q, r \in \mathbb{Q}_2 \cap [0, 1]$.
- ▶ Proof idea: First look at values at all multiples of 2⁻⁰, then at all multiples of 2⁻¹, then multiples of 2⁻², etc.
- At each stage we can draw a nice piecewise linear approximation of the process. How much does the approximation change in supremum norm (or some other Hölder norm) on the *i*th step? Can we say it probably doesn't change very much? Can we say the sequence of approximations is a.s. Cauchy in the appropriate normed spaced?

Continuity theorem proof

▶ Kolmogorov continuity theorem: Suppose $E|X_s - X_t|^{\beta} \le K|t - s|^{1+\alpha}$ where $\alpha, \beta > 0$. If $\gamma < \alpha/\beta$ then with probability one there is a constant $C(\omega)$ so that $|X(q) - X(r)| \le C|q - r|^{\gamma}$ for all $q, r \in \mathbb{Q}_2 \cap [0, 1]$.

Continuity theorem proof

- ▶ Kolmogorov continuity theorem: Suppose $E|X_s - X_t|^{\beta} \le K|t - s|^{1+\alpha}$ where $\alpha, \beta > 0$. If $\gamma < \alpha/\beta$ then with probability one there is a constant $C(\omega)$ so that $|X(q) - X(r)| \le C|q - r|^{\gamma}$ for all $q, r \in \mathbb{Q}_2 \cap [0, 1]$.
- Argument from Durrett (Pemantle): Write

$$G_n = \{ |X(i/2^n) - X((i-1)/2^n)| \} \le C |q-r|^{\lambda} \text{ for } 0 < i \le 2^n \}.$$

Continuity theorem proof

- ▶ Kolmogorov continuity theorem: Suppose $E|X_s - X_t|^{\beta} \le K|t - s|^{1+\alpha}$ where $\alpha, \beta > 0$. If $\gamma < \alpha/\beta$ then with probability one there is a constant $C(\omega)$ so that $|X(q) - X(r)| \le C|q - r|^{\gamma}$ for all $q, r \in \mathbb{Q}_2 \cap [0, 1]$.
- Argument from Durrett (Pemantle): Write

$$G_n = \{ |X(i/2^n) - X((i-1)/2^n)| \} \le C |q-r|^{\lambda} \text{ for } 0 < i \le 2^n \}.$$

Chebyshev implies P(|Y| > a) ≤ a^{-β}E|Y|^β, so if λ = α − βγ > 0 then

$$P(G_n^c) \leq 2^n \cdot 2^{n\beta\gamma} \cdot E|X(j2^{-n})|^{\beta} = K2^{-n\lambda}$$

Brownian motion is Hölder continuous for any γ < 1/2 (apply theorem with β = 2m, α = m − 1).</p>

- Brownian motion is Hölder continuous for any γ < 1/2 (apply theorem with β = 2m, α = m − 1).</p>
- Brownian motion is almost surely not differentiable.

- Brownian motion is Hölder continuous for any γ < 1/2 (apply theorem with β = 2m, α = m − 1).</p>
- Brownian motion is almost surely not differentiable.
- Brownian motion is almost surely not Lipschitz.

- Brownian motion is Hölder continuous for any γ < 1/2 (apply theorem with β = 2m, α = m − 1).</p>
- Brownian motion is almost surely not differentiable.
- Brownian motion is almost surely not Lipschitz.
- ▶ Kolmogorov-Centsov theorem applies to higher dimensions (with adjusted exponents). One can construct a.s. continuous functions from ℝⁿ to ℝ.

Recollections

Markov property, Blumenthal's 0-1 law

Recollections

Markov property, Blumenthal's 0-1 law

• Write
$$\mathcal{F}_s^o = \sigma(B_r : r \leq s)$$
.

- Write $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$.
- Write $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$

- Write $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$.
- Write $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$
- Note right continuity: $\cap_{t>s} \mathcal{F}_t^+ = \mathcal{F}_s^+$.

- Write $\mathcal{F}_s^o = \sigma(B_r : r \leq s)$.
- Write $\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o$
- Note right continuity: $\cap_{t>s} \mathcal{F}_t^+ = \mathcal{F}_s^+$.
- \mathcal{F}_s^+ allows an "infinitesimal peek at future"

▶ If $s \ge 0$ and Y is bounded and C-measurable, then for all $x \in \mathbb{R}^d$, we have

$$E_{\mathsf{x}}(\mathsf{Y} \circ \theta_{\mathsf{s}} | \mathcal{F}_{\mathsf{s}}^+) = E_{B_{\mathsf{s}}}\mathsf{Y},$$

where the RHS is function $\phi(x) = E_x Y$ evaluated at $x = B_s$.

▶ If $s \ge 0$ and Y is bounded and C-measurable, then for all $x \in \mathbb{R}^d$, we have

$$E_{x}(Y \circ \theta_{s} | \mathcal{F}_{s}^{+}) = E_{B_{s}}Y,$$

where the RHS is function $\phi(x) = E_x Y$ evaluated at $x = B_s$.

Proof idea: First establish this for some simple functions Y (depending on finitely many time values) and then use measure theory (monotone class theorem) to extend to general case. ► Expectation equivalence theorem If Z is bounded and measurable then for all s ≥ 0 and x ∈ ℝ^d have

$$E_{x}(Z|\mathcal{F}_{s}^{+})=E_{x}(Z|\mathcal{F}_{s}^{o}).$$

► Expectation equivalence theorem If Z is bounded and measurable then for all s ≥ 0 and x ∈ ℝ^d have

$$E_{x}(Z|\mathcal{F}_{s}^{+})=E_{x}(Z|\mathcal{F}_{s}^{o}).$$

▶ **Proof idea:** Consider case that $Z = \sum_{i=1}^{m} f_m(B(t_m))$ and the f_m are bounded and measurable. Kind of obvious in this case. Then use same measure theory as in Markov property proof to extend general Z.

► Expectation equivalence theorem If Z is bounded and measurable then for all s ≥ 0 and x ∈ ℝ^d have

$$E_{x}(Z|\mathcal{F}_{s}^{+})=E_{x}(Z|\mathcal{F}_{s}^{o}).$$

- ▶ Proof idea: Consider case that Z = ∑_{i=1}^m f_m(B(t_m)) and the f_m are bounded and measurable. Kind of obvious in this case. Then use same measure theory as in Markov property proof to extend general Z.
- ▶ Observe: If Z ∈ F⁺_s then Z = E_x(Z|F^o_s). Conclude that F⁺_s and F^o_s agree up to null sets.

 If A ∈ F₀⁺, then P(A) ∈ {0,1} (if P is probability law for Brownian motion started at fixed value x at time 0).

- If A ∈ F₀⁺, then P(A) ∈ {0,1} (if P is probability law for Brownian motion started at fixed value x at time 0).
- There's nothing you can learn from infinitesimal neighborhood of future.

- If A ∈ F₀⁺, then P(A) ∈ {0,1} (if P is probability law for Brownian motion started at fixed value x at time 0).
- There's nothing you can learn from infinitesimal neighborhood of future.
- ▶ **Proof:** If we have $A \in \mathcal{F}_0^+$, then previous theorem implies

$$1_A = E_x(1_A | \mathcal{F}_0^+) = E_x(1_A | \mathcal{F}_0^o) = P_x(A) \quad P_x \text{a.s.}$$

• If $\tau = \inf\{t \ge 0 : B_t > 0\}$ then $P_0(\tau = 0) = 1$.

• If
$$\tau = \inf\{t \ge 0 : B_t > 0\}$$
 then $P_0(\tau = 0) = 1$.

• If
$$T_0 = \inf\{t > 0 : B_t = 0\}$$
 then $P_0(T_0 = 0) = 1$.

- If $\tau = \inf\{t \ge 0 : B_t > 0\}$ then $P_0(\tau = 0) = 1$.
- If $T_0 = \inf\{t > 0 : B_t = 0\}$ then $P_0(T_0 = 0) = 1$.
- If B_t is Brownian motion started at 0, then so is process defined by X₀ = 0 and X_t = tB(1/t). (Proved by checking E(X_sX_t) = stE(B(1/s)B(1/t)) = s when s < t. Then check continuity at zero.)

What can we say about continuous martingales?

- What can we say about continuous martingales?
- Do they all kind of look like Brownian motion?