18.175: Lecture 35 Ergodic theory

Scott Sheffield

MIT

Recall setup

Recall setup

▶ Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.

- ▶ Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.
- ▶ Observe: class \mathcal{I} of invariant events is a σ -field.

- Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.
- ▶ Observe: class \mathcal{I} of invariant events is a σ -field.
- ▶ Measure preserving transformation is called **ergodic** if \mathcal{I} is trivial, i.e., every set $A \in \mathcal{I}$ satisfies $P(A) \in \{0,1\}$.

- Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.
- ▶ Observe: class \mathcal{I} of invariant events is a σ -field.
- ▶ Measure preserving transformation is called **ergodic** if \mathcal{I} is trivial, i.e., every set $A \in \mathcal{I}$ satisfies $P(A) \in \{0,1\}$.
- ▶ **Example:** If $\Omega = \mathbb{R}^{\{0,1,\ldots\}}$ and A is invariant, then A is necessarily in tail σ -field \mathcal{T} , hence has probability zero or one by Kolmogorov's 0-1 law. So sequence is ergodic (the shift on sequence space $\mathbb{R}^{\{0,1,2,\ldots\}}$ is ergodic.

- Say that A is **invariant** if the symmetric difference between $\phi(A)$ and A has measure zero.
- ▶ Observe: class \mathcal{I} of invariant events is a σ -field.
- ▶ Measure preserving transformation is called **ergodic** if \mathcal{I} is trivial, i.e., every set $A \in \mathcal{I}$ satisfies $P(A) \in \{0,1\}$.
- ▶ **Example:** If $\Omega = \mathbb{R}^{\{0,1,\ldots\}}$ and A is invariant, then A is necessarily in tail σ -field \mathcal{T} , hence has probability zero or one by Kolmogorov's 0-1 law. So sequence is ergodic (the shift on sequence space $\mathbb{R}^{\{0,1,2,\ldots\}}$ is ergodic.
- ▶ Other examples: What about fair coin toss $(\Omega = \{H, T\})$ with $\phi(H) = T$ and $\phi(T) = H$? What about stationary Markov chain sequences?

Recall setup

Recall setup

Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

Note: if sequence is ergodic, then $E(X|\mathcal{I}) = E(X)$, so the limit is just the mean.

Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

- Note: if sequence is ergodic, then $E(X|\mathcal{I}) = E(X)$, so the limit is just the mean.
- ▶ Proof takes a couple of pages. Shall we work through it?

Let ϕ be a measure preserving transformation of (Ω, \mathcal{F}, P) . Then for any $X \in L^1$ we have

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to E(X|\mathcal{I})$$

a.s. and in L^1 .

- Note: if sequence is ergodic, then $E(X|\mathcal{I}) = E(X)$, so the limit is just the mean.
- ▶ Proof takes a couple of pages. Shall we work through it?
- ▶ There's this lemma: let A_k be the event the maximum M_k of X_0 and $X_0 + X_1$ up to $X_1 + \ldots + X_{k-1}$ is non-negative. Then $EX_01_{A_k} \ge 0$ is non-negative.

Benford's law

► Typical starting digit of a physical constant? Look up Benford's law.

Benford's law

- Typical starting digit of a physical constant? Look up Benford's law.
- ► Does ergodic theorem kind of give a mathematical framework for this law?