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Motivating problem

I Consider independent bond percolation on Z2 with some fixed
parameter p > 1/2. Look at some simulations.

I Let Ω be the set of maps from the edges of Z2 to {0, 1}, F
the usual product σ-algebra, and P = Pp the probability
measure.

I Now consider an n × n box centered at 0 and ask: what
fraction of the points in that box belong to an infinite
clusters? Does this fraction converge to a limit (in some
sense: in probability, or maybe almost surely) as n→∞?

I Let Cx = 1x∈infinitecluster. If the Cx were independent or each
other, then this would just be a law of large numbers question.
But the Cx are not independent of each other — far from it.

I We don’t have independence. We have translation invariance
instead. Is that good enough?

I More general: Cx distributed in some translation invariant
way, EC0 <∞. Is mean of Cx (on large box) nearly constant?
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Rephrasing problem

I Let θx be the translation of the Z2 that moves 0 to x . Each
θx induces a measure-preserving translation of Ω. Then
Cx(ω) = C0(θ−x(ω)). So summing up the Cx values is the
same as summing up the C0(θx(ω)) value over a range of x .

I The group of translations is generated by a one-step vertical
and a one-step horizontal translation. Refer to the
corresponding (commuting, P-preserving) maps on Ω as φ1
and φ2.

I We’re interested in averaging C0(φj1φ
k
2ω) over a range of

(j , k) pairs.
I Let’s simplify matters still further and consider the

one-dimensional problem. In this case, we have a random
variable X and we study empirical averages of the form

N−1
N∑

n=1

X (φnω).
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Examples: stationary Xj sequences

I Could take Xj i.i.d.

I Or Xn could be a Markov chain, with each individual Xj

distributed according to a stationary distribution π.

I Rotations of the circle. Say X0 is uniform in [0, 1] and
generally Xj = X0 + αj modulo 1.

I If X0,X1, . . . is stationary and g : R{0,1,...} → R is measurable,
then Yk = g(Xk ,Xk+1, . . .) is stationary.

I Bernoulli shift. X0,X1, . . . are i.i.d. and Yk =
∑∞

j=1 Xk+j2
−j .

I Can constructed two-sided (Z-indexed) stationary sequence
from one-sided stationary sequence by Kolmogorov extension.

I What if Xi are i.i.d. tosses of a p-coin, where p is itself
random?
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Definitions

I Say that A is invariant if the symmetric difference between
φ(A) and A has measure zero.

I Observe: class I of invariant events is a σ-field.

I Measure preserving transformation is called ergodic if I is
trivial, i.e., every set A ∈ I satisfies P(A) ∈ {0, 1}.

I Example: If Ω = R{0,1,...} and A is invariant, then A is
necessarily in tail σ-field T , hence has probability zero or one
by Kolmogorov’s 0− 1 law. So sequence is ergodic (the shift
on sequence space R{0,1,2,...} is ergodic.

I Other examples: What about fair coin toss (Ω = {H,T})
with φ(H) = T and φ(T ) = H? What about stationary
Markov chain sequences?
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Ergodic theorem

I Let φ be a measure preserving transformation of (Ω,F ,P).
Then for any X ∈ L1 we have

1

n

n−1∑
m=0

X (φmω)→ E (X |I)

a.s. and in L1.

I Note: if sequence is ergodic, then E (X |I) = E (X ), so the
limit is just the mean.

I Proof takes a couple of pages. Shall we work through it?

I There’s this lemma: let Ak be the event the maximum Mk of
X0 and X0 + X1 up to X1 + . . .+ Xk−1 is non-negative. Then
EX01Ak

≥ 0 is non-negative.
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Benford’s law

I Typical starting digit of a physical constant? Look up
Benford’s law.

I Does ergodic theorem kind of give a mathematical framework
for this law?
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