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Markov chains: general definition

I Consider a measurable space (S ,S).

I A function p : S × S → R is a transition probability if

I For each x ∈ S , A→ p(x ,A) is a probability measure on S ,S).
I For each A ∈ S , the map x → p(x ,A) is a measurable function.

I Say that Xn is a Markov chain w.r.t. Fn with transition
probability p if P(Xn+1 ∈ B|Fn) = p(Xn,B).

I How do we construct an infinite Markov chain? Choose p and
initial distribution µ on (S ,S). For each n <∞ write

P(Xj ∈ Bj , 0 ≤ j ≤ n) =

∫
B0

µ(dx0)

∫
B1

p(x0, dx1) · · ·

∫
Bn

p(xn−1, dxn).

Extend to n =∞ by Kolmogorov’s extension theorem.
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Markov chains

I Definition, again: Say Xn is a Markov chain w.r.t. Fn with
transition probability p if P(Xn+1 ∈ B|Fn) = p(Xn,B).

I Construction, again: Fix initial distribution µ on (S ,S). For
each n <∞ write

P(Xj ∈ Bj , 0 ≤ j ≤ n) =

∫
B0

µ(dx0)

∫
B1

p(x0, dx1) · · ·

∫
Bn

p(xn−1, dxn).

Extend to n =∞ by Kolmogorov’s extension theorem.

I Notation: Extension produces probability measure Pµ on
sequence space (S0,1,...,S0,1,...).

I Theorem: (X0,X1, . . .) chosen from Pµ is Markov chain.

I Theorem: If Xn is any Markov chain with initial distribution
µ and transition p, then finite dim. probabilities are as above.
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Markov properties

I Markov property: Take (Ω0,F) =
(
S{0,1,...},S{0,1,...}

)
, and

let Pµ be Markov chain measure and θn the shift operator on
Ω0 (shifts sequence n units to left, discarding elements shifted
off the edge). If Y : Ω0 → R is bounded and measurable then

Eµ(Y ◦ θn|Fn) = EXnY .

I Strong Markov property: Can replace n with a.s. finite
stopping time N and function Y can vary with time. Suppose
that for each n, Yn : Ωn → R is measurable and |Yn| ≤ M for
all n. Then

Eµ(YN ◦ θN |FN) = EXN
YN ,

where RHS means ExYn evaluated at x = Xn, n = N.
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Properties

I Property of infinite opportunities: Suppose Xn is Markov
chain and

P(∪∞m=n+1{Xm ∈ Bm}|Xn) ≥ δ > 0

on {Xn ∈ An}. Then P({Xn ∈ An i .o.} − {Xn ∈ Bn i .o.}) = 0.

I Reflection principle: Symmetric random walks on R. Have
P(supm≥n Sm > a) ≤ 2P(Sn > a).

I Proof idea: Reflection picture.
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Reversibility

I Measure µ called reversible if µ(x)p(x , y) = µ(y)p(y , x) for
all x , y .

I Reversibility implies stationarity. Implies that amount of mass
moving from x to y is same as amount moving from y to x .
Net flow of zero along each edge.

I Markov chain called reversible if admits a reversible probability
measure.

I Are all random walks on (undirected) graphs reversible?

I What about directed graphs?
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Cycle theorem

I Kolmogorov’s cycle theorem: Suppose p is irreducible.
Then exists reversible measure if and only if

I p(x , y) > 0 implies p(y , x) > 0
I for any loop x0, x1, . . . xn with

∏n
i=1 p(xi , xi−1) > 0, we have

n∏
i=1

p(xi−1, xi )

p(xi , xi−1)
= 1.

I Useful idea to have in mind when constructing Markov chains
with given reversible distribution, as needed in Monte Carlo
Markov Chains (MCMC) applications.
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Query

I Interesting question: If A is an infinite probability transition
matrix on a countable state space, what does the (infinite)
matrix I + A + A2 + A3 + . . . = (I − A)−1 represent (if the
sum converges)?

I Question: Does it describe the expected number of y hits
when starting at x? Is there a similar interpretation for other
power series?

I How about eA or eλA?

I Related to distribution after a Poisson random number of
steps?
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Recurrence

I Consider probability walk from y ever returns to y .

I If it’s 1, return to y infinitely often, else don’t. Call y a
recurrent state if we return to y infinitely often.
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