18.175: Lecture 30 Markov chains

Scott Sheffield

MIT

Outline

Review what you know about finite state Markov chains

Finite state ergodicity and stationarity

More general setup

Outline

Review what you know about finite state Markov chains

Finite state ergodicity and stationarity

More general setup

▶ Consider a sequence of random variables X_0, X_1, X_2, \ldots each taking values in the same state space, which for now we take to be a finite set that we label by $\{0, 1, \ldots, M\}$.

- ▶ Consider a sequence of random variables X_0, X_1, X_2, \ldots each taking values in the same state space, which for now we take to be a finite set that we label by $\{0, 1, \ldots, M\}$.
- ▶ Interpret X_n as state of the system at time n.

- ▶ Consider a sequence of random variables $X_0, X_1, X_2, ...$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0, 1, ..., M\}$.
- ▶ Interpret X_n as state of the system at time n.
- Sequence is called a **Markov chain** if we have a fixed collection of numbers P_{ij} (one for each pair $i,j \in \{0,1,\ldots,M\}$) such that whenever the system is in state i, there is probability P_{ij} that system will next be in state j.

- ▶ Consider a sequence of random variables $X_0, X_1, X_2, ...$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0, 1, ..., M\}$.
- ▶ Interpret X_n as state of the system at time n.
- Sequence is called a **Markov chain** if we have a fixed collection of numbers P_{ij} (one for each pair i, j ∈ {0,1,..., M}) such that whenever the system is in state i, there is probability P_{ij} that system will next be in state j.
- ▶ Precisely, $P\{X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_1 = i_1, X_0 = i_0\} = P_{ij}.$

- ▶ Consider a sequence of random variables $X_0, X_1, X_2, ...$ each taking values in the same state space, which for now we take to be a finite set that we label by $\{0, 1, ..., M\}$.
- ▶ Interpret X_n as state of the system at time n.
- ▶ Sequence is called a **Markov chain** if we have a fixed collection of numbers P_{ij} (one for each pair $i, j \in \{0, 1, ..., M\}$) such that whenever the system is in state i, there is probability P_{ij} that system will next be in state j.
- ▶ Precisely, $P\{X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_1 = i_1, X_0 = i_0\} = P_{ij}.$
- ► Kind of an "almost memoryless" property. Probability distribution for next state depends only on the current state (and not on the rest of the state history).

► For example, imagine a simple weather model with two states: rainy and sunny.

- ► For example, imagine a simple weather model with two states: rainy and sunny.
- ▶ If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny.

- ► For example, imagine a simple weather model with two states: rainy and sunny.
- ▶ If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny.
- ▶ If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.

- For example, imagine a simple weather model with two states: rainy and sunny.
- ▶ If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny.
- ▶ If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.
- In this climate, sun tends to last longer than rain.

- For example, imagine a simple weather model with two states: rainy and sunny.
- ▶ If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny.
- ▶ If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.
- ▶ In this climate, sun tends to last longer than rain.
- Given that it is rainy today, how many days to I expect to have to wait to see a sunny day?

- ► For example, imagine a simple weather model with two states: rainy and sunny.
- ▶ If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny.
- ▶ If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.
- ▶ In this climate, sun tends to last longer than rain.
- Given that it is rainy today, how many days to I expect to have to wait to see a sunny day?
- Given that it is sunny today, how many days to I expect to have to wait to see a rainy day?

- ► For example, imagine a simple weather model with two states: rainy and sunny.
- ▶ If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny.
- ▶ If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.
- ▶ In this climate, sun tends to last longer than rain.
- Given that it is rainy today, how many days to I expect to have to wait to see a sunny day?
- Given that it is sunny today, how many days to I expect to have to wait to see a rainy day?
- Over the long haul, what fraction of days are sunny?

Matrix representation

► To describe a Markov chain, we need to define P_{ij} for any $i, j \in \{0, 1, ..., M\}$.

Matrix representation

- ▶ To describe a Markov chain, we need to define P_{ij} for any $i, j \in \{0, 1, ..., M\}$.
- ▶ It is convenient to represent the collection of transition probabilities *P_{ij}* as a matrix:

$$A = \begin{pmatrix} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{pmatrix}$$

Matrix representation

- ▶ To describe a Markov chain, we need to define P_{ij} for any $i, j \in \{0, 1, ..., M\}$.
- ▶ It is convenient to represent the collection of transition probabilities *P_{ij}* as a matrix:

$$A = \begin{pmatrix} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ \vdots & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{pmatrix}$$

For this to make sense, we require $P_{ij} \ge 0$ for all i, j and $\sum_{i=0}^{M} P_{ij} = 1$ for each i. That is, the rows sum to one.

▶ Suppose that p_i is the probability that system is in state i at time zero.

- Suppose that p_i is the probability that system is in state i at time zero.
- ▶ What does the following product represent?

$$\left(\begin{array}{ccccc} p_{0} & p_{1} & \dots & p_{M} \end{array}\right) \left(\begin{array}{ccccc} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & & \\ \vdots & & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{array}\right)$$

- Suppose that p_i is the probability that system is in state i at time zero.
- What does the following product represent?

$$\left(\begin{array}{ccccc} p_{0} & p_{1} & \dots & p_{M} \end{array}\right) \left(\begin{array}{ccccc} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{array}\right)$$

Answer: the probability distribution at time one.

- Suppose that p_i is the probability that system is in state i at time zero.
- ▶ What does the following product represent?

$$\left(\begin{array}{ccccc} p_{0} & p_{1} & \dots & p_{M} \end{array}\right) \left(\begin{array}{ccccc} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{array}\right)$$

- Answer: the probability distribution at time one.
- How about the following product?

$$(p_0 p_1 \dots p_M) A^n$$

- Suppose that p_i is the probability that system is in state i at time zero.
- ▶ What does the following product represent?

$$\left(\begin{array}{ccccc} p_{0} & p_{1} & \dots & p_{M} \end{array}\right) \left(\begin{array}{ccccc} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{array}\right)$$

- Answer: the probability distribution at time one.
- ▶ How about the following product?

$$(p_0 p_1 \dots p_M) A^n$$

Answer: the probability distribution at time n.

Powers of transition matrix

▶ We write $P_{ij}^{(n)}$ for the probability to go from state i to state j over n steps.

Powers of transition matrix

- We write $P_{ij}^{(n)}$ for the probability to go from state i to state j over n steps.
- ► From the matrix point of view

$$\begin{pmatrix} P_{00}^{(n)} & P_{01}^{(n)} & \dots & P_{0M}^{(n)} \\ P_{10}^{(n)} & P_{11}^{(n)} & \dots & P_{1M}^{(n)} \\ \vdots & & & & & \\ P_{10}^{(n)} & P_{M1}^{(n)} & \dots & P_{MM}^{(n)} \end{pmatrix} = \begin{pmatrix} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & \\ P_{10} & P_{11} & \dots & P_{1M} \\ \end{pmatrix}^{n}$$

Powers of transition matrix

- ▶ We write $P_{ij}^{(n)}$ for the probability to go from state i to state j over n steps.
- ► From the matrix point of view

$$\begin{pmatrix} P_{00}^{(n)} & P_{01}^{(n)} & \dots & P_{0M}^{(n)} \\ P_{10}^{(n)} & P_{11}^{(n)} & \dots & P_{1M}^{(n)} \\ \vdots & & & & & \\ \vdots & & & & & \\ P_{M0}^{(n)} & P_{M1}^{(n)} & \dots & P_{MM}^{(n)} \end{pmatrix} = \begin{pmatrix} P_{00} & P_{01} & \dots & P_{0M} \\ P_{10} & P_{11} & \dots & P_{1M} \\ \vdots & & & & & \\ \vdots & & & & & \\ P_{M0} & P_{M1} & \dots & P_{MM} \end{pmatrix}^{n}$$

▶ If *A* is the one-step transition matrix, then *A*ⁿ is the *n*-step transition matrix.

▶ What does it mean if all of the rows are identical?

- ▶ What does it mean if all of the rows are identical?
- ▶ Answer: state sequence X_i consists of i.i.d. random variables.

- ▶ What does it mean if all of the rows are identical?
- \triangleright Answer: state sequence X_i consists of i.i.d. random variables.
- What if matrix is the identity?

- ▶ What does it mean if all of the rows are identical?
- ▶ Answer: state sequence X_i consists of i.i.d. random variables.
- What if matrix is the identity?
- Answer: states never change.

- What does it mean if all of the rows are identical?
- ▶ Answer: state sequence X_i consists of i.i.d. random variables.
- What if matrix is the identity?
- Answer: states never change.
- ▶ What if each P_{ii} is either one or zero?

- ▶ What does it mean if all of the rows are identical?
- ► Answer: state sequence X_i consists of i.i.d. random variables.
- What if matrix is the identity?
- Answer: states never change.
- ▶ What if each P_{ii} is either one or zero?
- Answer: state evolution is deterministic.

➤ Consider the simple weather example: If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny. If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.

- ► Consider the simple weather example: If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny. If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.
- Let rainy be state zero, sunny state one, and write the transition matrix by

$$A = \left(\begin{array}{cc} .5 & .5 \\ .2 & .8 \end{array}\right)$$

- ➤ Consider the simple weather example: If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny. If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.
- Let rainy be state zero, sunny state one, and write the transition matrix by

$$A = \left(\begin{array}{cc} .5 & .5 \\ .2 & .8 \end{array}\right)$$

Note that

$$A^2 = \left(\begin{array}{cc} .64 & .35 \\ .26 & .74 \end{array}\right)$$

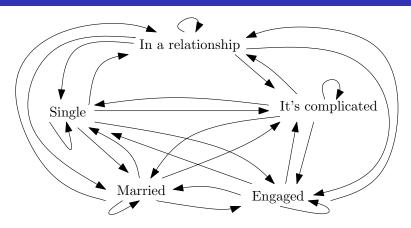
- Consider the simple weather example: If it's rainy one day, there's a .5 chance it will be rainy the next day, a .5 chance it will be sunny. If it's sunny one day, there's a .8 chance it will be sunny the next day, a .2 chance it will be rainy.
- Let rainy be state zero, sunny state one, and write the transition matrix by

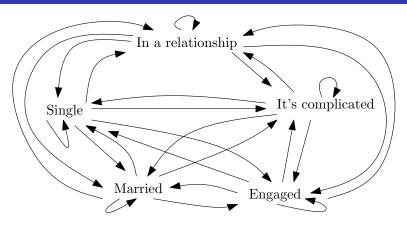
$$A = \left(\begin{array}{cc} .5 & .5 \\ .2 & .8 \end{array}\right)$$

▶ Note that

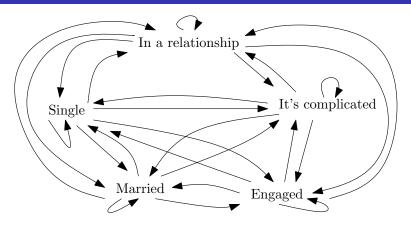
$$A^2 = \begin{pmatrix} .64 & .35 \\ .26 & .74 \end{pmatrix}$$

► Can compute $A^{10} = \begin{pmatrix} .285719 & .714281 \\ .285713 & .714287 \end{pmatrix}$

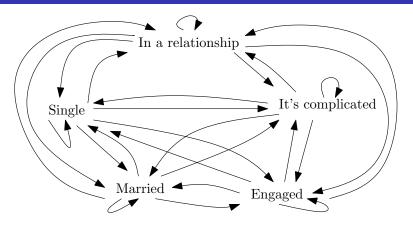




► Can we assign a probability to each arrow?



- Can we assign a probability to each arrow?
- Markov model implies time spent in any state (e.g., a marriage) before leaving is a geometric random variable.



- Can we assign a probability to each arrow?
- Markov model implies time spent in any state (e.g., a marriage) before leaving is a geometric random variable.
- ▶ Not true... Can we make a better model with more states?

Outline

Review what you know about finite state Markov chains

Finite state ergodicity and stationarity

More general setup

Outline

Review what you know about finite state Markov chains

Finite state ergodicity and stationarity

More general setup

► Say Markov chain is **ergodic** if some power of the transition matrix has all non-zero entries.

- Say Markov chain is **ergodic** if some power of the transition matrix has all non-zero entries.
- ▶ Turns out that if chain has this property, then $\pi_j := \lim_{n \to \infty} P_{ij}^{(n)}$ exists and the π_j are the unique non-negative solutions of $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ that sum to one.

- Say Markov chain is **ergodic** if some power of the transition matrix has all non-zero entries.
- ▶ Turns out that if chain has this property, then $\pi_j := \lim_{n \to \infty} P_{ij}^{(n)}$ exists and the π_j are the unique non-negative solutions of $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ that sum to one.
- This means that the row vector

$$\pi = (\pi_0 \quad \pi_1 \quad \dots \quad \pi_M)$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A = \pi$.

- Say Markov chain is **ergodic** if some power of the transition matrix has all non-zero entries.
- ▶ Turns out that if chain has this property, then $\pi_j := \lim_{n \to \infty} P_{ij}^{(n)}$ exists and the π_j are the unique non-negative solutions of $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ that sum to one.
- This means that the row vector

$$\pi = (\pi_0 \quad \pi_1 \quad \dots \quad \pi_M)$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A = \pi$.

• We call π the *stationary distribution* of the Markov chain.

- Say Markov chain is ergodic if some power of the transition matrix has all non-zero entries.
- ▶ Turns out that if chain has this property, then $\pi_j := \lim_{n \to \infty} P_{ij}^{(n)}$ exists and the π_j are the unique non-negative solutions of $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ that sum to one.
- This means that the row vector

$$\pi = (\pi_0 \quad \pi_1 \quad \dots \quad \pi_M)$$

is a left eigenvector of A with eigenvalue 1, i.e., $\pi A = \pi$.

- We call π the *stationary distribution* of the Markov chain.
- One can solve the system of linear equations $\pi_j = \sum_{k=0}^M \pi_k P_{kj}$ to compute the values π_j . Equivalent to considering A fixed and solving $\pi A = \pi$. Or solving $(A-I)\pi = 0$. This determines π up to a multiplicative constant, and fact that $\sum \pi_j = 1$ determines the constant.

► If
$$A = \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix}$$
, then we know

$$\pi A = \begin{pmatrix} \pi_0 & \pi_1 \end{pmatrix} \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix} = \begin{pmatrix} \pi_0 & \pi_1 \end{pmatrix} = \pi.$$

► If $A = \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix}$, then we know

$$\pi A = \begin{pmatrix} \pi_0 & \pi_1 \end{pmatrix} \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix} = \begin{pmatrix} \pi_0 & \pi_1 \end{pmatrix} = \pi.$$

▶ This means that $.5\pi_0 + .2\pi_1 = \pi_0$ and $.5\pi_0 + .8\pi_1 = \pi_1$ and we also know that $\pi_1 + \pi_2 = 1$. Solving these equations gives $\pi_0 = 2/7$ and $\pi_1 = 5/7$, so $\pi = \left(\begin{array}{cc} 2/7 & 5/7 \end{array} \right)$.

▶ If $A = \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix}$, then we know

$$\pi A = \begin{pmatrix} \pi_0 & \pi_1 \end{pmatrix} \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix} = \begin{pmatrix} \pi_0 & \pi_1 \end{pmatrix} = \pi.$$

- ▶ This means that $.5\pi_0 + .2\pi_1 = \pi_0$ and $.5\pi_0 + .8\pi_1 = \pi_1$ and we also know that $\pi_1 + \pi_2 = 1$. Solving these equations gives $\pi_0 = 2/7$ and $\pi_1 = 5/7$, so $\pi = \begin{pmatrix} 2/7 & 5/7 \end{pmatrix}$.
- ► Indeed,

$$\pi A = \begin{pmatrix} 2/7 & 5/7 \end{pmatrix} \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix} = \begin{pmatrix} 2/7 & 5/7 \end{pmatrix} = \pi.$$

▶ If
$$A = \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix}$$
, then we know

$$\pi A = \begin{pmatrix} \pi_0 & \pi_1 \end{pmatrix} \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix} = \begin{pmatrix} \pi_0 & \pi_1 \end{pmatrix} = \pi.$$

- ▶ This means that $.5\pi_0 + .2\pi_1 = \pi_0$ and $.5\pi_0 + .8\pi_1 = \pi_1$ and we also know that $\pi_1 + \pi_2 = 1$. Solving these equations gives $\pi_0 = 2/7$ and $\pi_1 = 5/7$, so $\pi = \begin{pmatrix} 2/7 & 5/7 \end{pmatrix}$.
- ► Indeed,

$$\pi A = \begin{pmatrix} 2/7 & 5/7 \end{pmatrix} \begin{pmatrix} .5 & .5 \\ .2 & .8 \end{pmatrix} = \begin{pmatrix} 2/7 & 5/7 \end{pmatrix} = \pi.$$

► Recall that $A^{10} = \begin{pmatrix} .285719 & .714281 \\ .285713 & .714287 \end{pmatrix} \approx \begin{pmatrix} 2/7 & 5/7 \\ 2/7 & 5/7 \end{pmatrix} = \begin{pmatrix} \pi \\ \pi \end{pmatrix}$

Outline

Review what you know about finite state Markov chains

Finite state ergodicity and stationarity

More general setup

Outline

Review what you know about finite state Markov chains

Finite state ergodicity and stationarity

More general setup

▶ Consider a measurable space (S, S).

- ▶ Consider a measurable space (S, S).
- ▶ A function $p: S \times S \rightarrow \mathbb{R}$ is a **transition probability** if

- ▶ Consider a measurable space (S, S).
- ▶ A function $p: S \times S \rightarrow \mathbb{R}$ is a **transition probability** if
 - ▶ For each $x \in S$, $A \rightarrow p(x, A)$ is a probability measure on S, S).

- ▶ Consider a measurable space (S, S).
- ▶ A function $p: S \times S \rightarrow \mathbb{R}$ is a **transition probability** if
 - ▶ For each $x \in S$, $A \rightarrow p(x, A)$ is a probability measure on S, S).
 - ▶ For each $A \in S$, the map $x \to p(x, A)$ is a measurable function.

- ▶ Consider a measurable space (S, S).
- ▶ A function $p: S \times S \rightarrow \mathbb{R}$ is a **transition probability** if
 - ▶ For each $x \in S$, $A \rightarrow p(x, A)$ is a probability measure on S, S).
 - ▶ For each $A \in S$, the map $x \to p(x, A)$ is a measurable function.
- Say that X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.

- ▶ Consider a measurable space (S, S).
- ▶ A function $p: S \times S \rightarrow \mathbb{R}$ is a **transition probability** if
 - ▶ For each $x \in S$, $A \to p(x, A)$ is a probability measure on S, S).
 - ▶ For each $A \in S$, the map $x \to p(x, A)$ is a measurable function.
- Say that X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ▶ How do we construct an infinite Markov chain? Choose p and initial distribution μ on (S, S). For each $n < \infty$ write

$$P(X_j \in B_j, 0 \le j \le n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots$$

$$\int_{B_n} p(x_{n-1}, dx_n).$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.

- ▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ▶ Construction, again: Fix initial distribution μ on (S, S). For each $n < \infty$ write

$$P(X_j \in B_j, 0 \le j \le n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots$$

$$\int_{B_n} p(x_{n-1}, dx_n).$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

- ▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ▶ Construction, again: Fix initial distribution μ on (S, S). For each $n < \infty$ write

$$P(X_j \in B_j, 0 \le j \le n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots$$

$$\int_{B_n} p(x_{n-1}, dx_n).$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

▶ **Notation:** Extension produces probability measure P_{μ} on sequence space $(S^{0,1,\dots},S^{0,1,\dots})$.

- ▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ▶ Construction, again: Fix initial distribution μ on (S, S). For each $n < \infty$ write

$$P(X_j \in B_j, 0 \le j \le n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots$$

$$\int_{B_n} p(x_{n-1}, dx_n).$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

- ▶ **Notation:** Extension produces probability measure P_{μ} on sequence space $(S^{0,1,\dots}, S^{0,1,\dots})$.
- ▶ **Theorem:** $(X_0, X_1,...)$ chosen from P_μ is Markov chain.

- ▶ **Definition, again:** Say X_n is a **Markov chain** w.r.t. \mathcal{F}_n with transition probability p if $P(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$.
- ▶ Construction, again: Fix initial distribution μ on (S, S). For each $n < \infty$ write

$$P(X_j \in B_j, 0 \le j \le n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots$$

$$\int_{B_n} p(x_{n-1}, dx_n).$$

Extend to $n = \infty$ by Kolmogorov's extension theorem.

- ▶ **Notation:** Extension produces probability measure P_{μ} on sequence space $(S^{0,1,\dots}, S^{0,1,\dots})$.
- ▶ **Theorem:** $(X_0, X_1,...)$ chosen from P_μ is Markov chain.
- ▶ **Theorem:** If X_n is any Markov chain with initial distribution μ and transition p, then finite dim. probabilities are as above.

▶ Random walks on \mathbb{R}^d .

- ▶ Random walks on \mathbb{R}^d .
- ▶ Branching processes: $p(i,j) = P(\sum_{m=1}^{i} \xi_m = j)$ where ξ_i are i.i.d. non-negative integer-valued random variables.

- ▶ Random walks on \mathbb{R}^d .
- ▶ Branching processes: $p(i,j) = P(\sum_{m=1}^{i} \xi_m = j)$ where ξ_i are i.i.d. non-negative integer-valued random variables.
- Renewal chain.

- ▶ Random walks on \mathbb{R}^d .
- ▶ Branching processes: $p(i,j) = P(\sum_{m=1}^{i} \xi_m = j)$ where ξ_i are i.i.d. non-negative integer-valued random variables.
- ▶ Renewal chain.
- Card shuffling.

- ▶ Random walks on \mathbb{R}^d .
- ▶ Branching processes: $p(i,j) = P(\sum_{m=1}^{i} \xi_m = j)$ where ξ_i are i.i.d. non-negative integer-valued random variables.
- ▶ Renewal chain.
- Card shuffling.
- Ehrenfest chain.