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Recall: conditional expectation

I Say we’re given a probability space (Ω,F0,P) and a σ-field
F ⊂ F0 and a random variable X measurable w.r.t. F0, with
E |X | <∞. The conditional expectation of X given F is a
new random variable, which we can denote by Y = E (X |F).

I We require that Y is F measurable and that for all A in F ,
we have

∫
A XdP =

∫
A YdP.

I Any Y satisfying these properties is called a version of
E (X |F).

I Theorem: Up to redefinition on a measure zero set, the
random variable E (X |F) exists and is unique.

I This follows from Radon-Nikodym theorem.
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Conditional expectation observations

I Linearity: E (aX + Y |F) = aE (X |F) + E (Y |F).

I If X ≤ Y then E (E |F) ≤ E (Y |F).

I If Xn ≥ 0 and Xn ↑ X with EX <∞, then E (Xn|F) ↑ E (X |F)
(by dominated convergence).

I If F1 ⊂ F2 then

I E (E (X |F1)|F2) = E (X |F1).
I E (E (X |F2)|F1) = E (X |F1).

I Second is kind of interesting: says, after I learn F1, my best
guess of what my best guess for X will be after learning F2 is
simply my current best guess for X .

I Deduce that E (X |Fi ) is a martingale if Fi is an increasing
sequence of σ-algebras and E (|X |) <∞.
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Regular conditional probability

I Consider probability space (Ω,F ,P), a measurable map
X : (Ω,F)→ (S ,S) and G ⊂ F a σ-field. Then
µ : Ω× S → [0, 1] is a regular conditional distribution for
X given G if

I For each A, ω → µ(ω,A) is a version of P(X ∈ A|G).
I For a.e. ω, A→ µ(ω,A) is a probability measure on (S ,S).

I Theorem: Regular conditional probabilities exist if (S ,S) is
nice.
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Martingales

I Let Fn be increasing sequence of σ-fields (called a filtration).

I A sequence Xn is adapted to Fn if Xn ∈ Fn for all n. If Xn is
an adapted sequence (with E |Xn| <∞) then it is called a
martingale if

E (Xn+1|Fn) = Xn

for all n. It’s a supermartingale (resp., submartingale) if
same thing holds with = replaced by ≤ (resp., ≥).
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Martingale observations

I Claim: If Xn is a supermartingale then for n > m we have
E (Xn|Fm) ≤ Xm.

I Proof idea: Follows if n = m + 1 by definition; take
n = m + k and use induction on k.

I Similar result holds for submartingales. Also, if Xn is a
martingale and n > m then E (Xn|Fm) = Xm.

I Claim: if Xn is a martingale w.r.t. Fn and φ is convex with
E |φ(Xn)| <∞ then φ(Xn) is a submartingale.

I Proof idea: Immediate from Jensen’s inequality and
martingale definition.

I Example: take φ(x) = max{x , 0}.
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Predictable sequence

I Call Hn predictable if each H + n is Fn−1 measurable.

I Maybe Hn represents amount of shares of asset investor has at
nth stage.

I Write (H · X )n =
∑n

m=1Hm(Xm − Xm−1).

I Observe: If Xn is a supermartingale and the Hn ≥ 0 are
bounded, then (H · X )n is a supermartingale.

I Example: take Hn = 1N≥n for stopping time N.
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Two big results

I Optional stopping theorem: Can’t make money in
expectation by timing sale of asset whose price is non-negative
martingale.

I Proof: Just a special case of statement about (H · X ).

I Martingale convergence: A non-negative martingale almost
surely has a limit.

I Idea of proof: Count upcrossings (times martingale crosses a
fixed interval) and devise gambling strategy that makes lots of
money if the number of these is not a.s. finite.
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Problems

I How many primary candidates ever get above twenty percent
in expected probability of victory? (Asked by Aldous.)

I Compute probability of having conditional probability reach a
before b.
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Wald

I Wald’s equation: Let Xi be i.i.d. with E |Xi | <∞. If N is a
stopping time with EN <∞ then ESN = EX1EN.

I Wald’s second equation: Let Xi be i.i.d. with E |Xi | = 0 and
EX 2

i = σ2 <∞. If N is a stopping time with EN <∞ then
ESN = σ2EN.
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Wald applications to SRW

I S0 = a ∈ Z and at each time step Sj independently changes
by ±1 according to a fair coin toss. Fix A ∈ Z and let
N = inf{k : Sk ∈ {0,A}. What is ESN?

I What is EN?
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Reflection principle

I How many walks from (0, x) to (n, y) that don’t cross the
horizontal axis?

I Try counting walks that do cross by giving bijection to walks
from (0,−x) to (n, y).
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Ballot Theorem

I Suppose that in election candidate A gets α votes and B gets
β < α votes. What’s probability that A is ahead throughout
the counting?

I Answer: (α− β)/(α + β). Can be proved using reflection
principle.
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Arcsin theorem

I Theorem for last hitting time.

I Theorem for amount of positive positive time.
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