18.175: Lecture 26

More on martingales

Scott Sheffield

MIT

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Say we're given a probability space (Ω, F₀, P) and a σ-field F ⊂ F₀ and a random variable X measurable w.r.t. F₀, with E|X| < ∞. The conditional expectation of X given F is a new random variable, which we can denote by Y = E(X|F).

- Say we're given a probability space (Ω, F₀, P) and a σ-field F ⊂ F₀ and a random variable X measurable w.r.t. F₀, with E|X| < ∞. The conditional expectation of X given F is a new random variable, which we can denote by Y = E(X|F).
- We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F} , we have $\int_A XdP = \int_A YdP$.

- Say we're given a probability space (Ω, F₀, P) and a σ-field F ⊂ F₀ and a random variable X measurable w.r.t. F₀, with E|X| < ∞. The conditional expectation of X given F is a new random variable, which we can denote by Y = E(X|F).
- We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F} , we have $\int_A XdP = \int_A YdP$.
- ► Any Y satisfying these properties is called a version of E(X|F).

- Say we're given a probability space (Ω, F₀, P) and a σ-field F ⊂ F₀ and a random variable X measurable w.r.t. F₀, with E|X| < ∞. The conditional expectation of X given F is a new random variable, which we can denote by Y = E(X|F).
- ▶ We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F} , we have $\int_A XdP = \int_A YdP$.
- ► Any Y satisfying these properties is called a version of E(X|F).
- ▶ **Theorem:** Up to redefinition on a measure zero set, the random variable *E*(*X*|*F*) exists and is unique.

- Say we're given a probability space (Ω, F₀, P) and a σ-field F ⊂ F₀ and a random variable X measurable w.r.t. F₀, with E|X| < ∞. The conditional expectation of X given F is a new random variable, which we can denote by Y = E(X|F).
- ▶ We require that Y is \mathcal{F} measurable and that for all A in \mathcal{F} , we have $\int_A XdP = \int_A YdP$.
- ► Any Y satisfying these properties is called a version of E(X|F).
- ▶ **Theorem:** Up to redefinition on a measure zero set, the random variable *E*(*X*|*F*) exists and is unique.
- This follows from Radon-Nikodym theorem.

• Linearity:
$$E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$$
.

- Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- If $X \leq Y$ then $E(E|\mathcal{F}) \leq E(Y|\mathcal{F})$.

- Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- If $X \leq Y$ then $E(E|\mathcal{F}) \leq E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).

- Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- If $X \leq Y$ then $E(E|\mathcal{F}) \leq E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).
- If $\mathcal{F}_1 \subset \mathcal{F}_2$ then

- Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- If $X \leq Y$ then $E(E|\mathcal{F}) \leq E(Y|\mathcal{F})$.
- ▶ If $X_n \ge 0$ and $X_n \uparrow X$ with $EX < \infty$, then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$ (by dominated convergence).
- If $\mathcal{F}_1 \subset \mathcal{F}_2$ then
 - $E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1).$

- Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F})$.
- If $X \leq Y$ then $E(E|\mathcal{F}) \leq E(Y|\mathcal{F})$.
- If X_n ≥ 0 and X_n ↑ X with EX < ∞, then E(X_n|F) ↑ E(X|F) (by dominated convergence).
- If $\mathcal{F}_1 \subset \mathcal{F}_2$ then

•
$$E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1).$$

• $E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1).$

- Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F}).$
- If $X \leq Y$ then $E(E|\mathcal{F}) \leq E(Y|\mathcal{F})$.
- If X_n ≥ 0 and X_n ↑ X with EX < ∞, then E(X_n|F) ↑ E(X|F) (by dominated convergence).
- If $\mathcal{F}_1 \subset \mathcal{F}_2$ then

•
$$E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1).$$

- $E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1).$
- Second is kind of interesting: says, after I learn *F*₁, my best guess of what my best guess for *X* will be after learning *F*₂ is simply my current best guess for *X*.

- Linearity: $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F}).$
- If $X \leq Y$ then $E(E|\mathcal{F}) \leq E(Y|\mathcal{F})$.
- If X_n ≥ 0 and X_n ↑ X with EX < ∞, then E(X_n|F) ↑ E(X|F) (by dominated convergence).
- If $\mathcal{F}_1 \subset \mathcal{F}_2$ then

•
$$E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1).$$

- $E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1).$
- Second is kind of interesting: says, after I learn *F*₁, my best guess of what my best guess for *X* will be after learning *F*₂ is simply my current best guess for *X*.
- Deduce that E(X|F_i) is a martingale if F_i is an increasing sequence of σ-algebras and E(|X|) < ∞.</p>

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

• Consider probability space (Ω, \mathcal{F}, P) , a measurable map $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then $\mu : \Omega \times \mathcal{S} \to [0, 1]$ is a **regular conditional distribution for** X given \mathcal{G} if

- Consider probability space (Ω, \mathcal{F}, P) , a measurable map $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then $\mu : \Omega \times \mathcal{S} \to [0, 1]$ is a **regular conditional distribution for** X given \mathcal{G} if
 - ▶ For each *A*, $\omega \to \mu(\omega, A)$ is a version of *P*(*X* ∈ *A*|*G*).

- Consider probability space (Ω, \mathcal{F}, P) , a measurable map $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then $\mu : \Omega \times \mathcal{S} \to [0, 1]$ is a **regular conditional distribution for** X given \mathcal{G} if
 - ▶ For each *A*, $\omega \to \mu(\omega, A)$ is a version of *P*(*X* ∈ *A*|*G*).
 - ▶ For a.e. ω , $A \rightarrow \mu(\omega, A)$ is a probability measure on (S, S).

- Consider probability space (Ω, \mathcal{F}, P) , a measurable map $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then $\mu : \Omega \times \mathcal{S} \to [0, 1]$ is a **regular conditional distribution for** X given \mathcal{G} if
 - For each A, $\omega \to \mu(\omega, A)$ is a version of $P(X \in A | \mathcal{G})$.
 - ▶ For a.e. ω , $A \rightarrow \mu(\omega, A)$ is a probability measure on (S, S).
- ► Theorem: Regular conditional probabilities exist if (S, S) is nice.

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

• Let \mathcal{F}_n be increasing sequence of σ -fields (called a **filtration**).

- Let \mathcal{F}_n be increasing sequence of σ -fields (called a **filtration**).
- A sequence X_n is adapted to F_n if X_n ∈ F_n for all n. If X_n is an adapted sequence (with E|X_n| < ∞) then it is called a martingale if

$$\mathsf{E}(X_{n+1}|\mathcal{F}_n)=X_n$$

for all *n*. It's a **supermartingale** (resp., **submartingale**) if same thing holds with = replaced by \leq (resp., \geq).

• Claim: If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \leq X_m$.

- Claim: If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \le X_m$.
- Proof idea: Follows if n = m + 1 by definition; take n = m + k and use induction on k.

- Claim: If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \le X_m$.
- ► Proof idea: Follows if n = m + 1 by definition; take n = m + k and use induction on k.
- Similar result holds for submartingales. Also, if X_n is a martingale and n > m then E(X_n|F_m) = X_m.

- Claim: If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \le X_m$.
- Proof idea: Follows if n = m + 1 by definition; take n = m + k and use induction on k.
- Similar result holds for submartingales. Also, if X_n is a martingale and n > m then E(X_n|F_m) = X_m.
- ▶ **Claim:** if X_n is a martingale w.r.t. \mathcal{F}_n and ϕ is convex with $E|\phi(X_n)| < \infty$ then $\phi(X_n)$ is a submartingale.

- Claim: If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \le X_m$.
- Proof idea: Follows if n = m + 1 by definition; take n = m + k and use induction on k.
- Similar result holds for submartingales. Also, if X_n is a martingale and n > m then E(X_n|𝒫_m) = X_m.
- ▶ **Claim:** if X_n is a martingale w.r.t. \mathcal{F}_n and ϕ is convex with $E|\phi(X_n)| < \infty$ then $\phi(X_n)$ is a submartingale.
- Proof idea: Immediate from Jensen's inequality and martingale definition.

- Claim: If X_n is a supermartingale then for n > m we have $E(X_n | \mathcal{F}_m) \le X_m$.
- Proof idea: Follows if n = m + 1 by definition; take n = m + k and use induction on k.
- Similar result holds for submartingales. Also, if X_n is a martingale and n > m then E(X_n|𝒫_m) = X_m.
- ▶ **Claim:** if X_n is a martingale w.r.t. \mathcal{F}_n and ϕ is convex with $E|\phi(X_n)| < \infty$ then $\phi(X_n)$ is a submartingale.
- Proof idea: Immediate from Jensen's inequality and martingale definition.
- Example: take $\phi(x) = \max\{x, 0\}$.

▶ Call H_n predictable if each H + n is \mathcal{F}_{n-1} measurable.

- Call H_n predictable if each H + n is \mathcal{F}_{n-1} measurable.
- ► Maybe H_n represents amount of shares of asset investor has at nth stage.

- Call H_n predictable if each H + n is \mathcal{F}_{n-1} measurable.
- ► Maybe H_n represents amount of shares of asset investor has at nth stage.

• Write
$$(H \cdot X)_n = \sum_{m=1}^n H_m(X_m - X_{m-1}).$$

- Call H_n predictable if each H + n is \mathcal{F}_{n-1} measurable.
- ► Maybe H_n represents amount of shares of asset investor has at nth stage.
- Write $(H \cdot X)_n = \sum_{m=1}^n H_m(X_m X_{m-1}).$
- ► Observe: If X_n is a supermartingale and the H_n ≥ 0 are bounded, then (H · X)_n is a supermartingale.

- Call H_n predictable if each H + n is \mathcal{F}_{n-1} measurable.
- Maybe H_n represents amount of shares of asset investor has at nth stage.
- Write $(H \cdot X)_n = \sum_{m=1}^n H_m(X_m X_{m-1}).$
- ► Observe: If X_n is a supermartingale and the H_n ≥ 0 are bounded, then (H · X)_n is a supermartingale.
- Example: take $H_n = 1_{N \ge n}$ for stopping time N.

 Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- **Proof:** Just a special case of statement about $(H \cdot X)$.

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- **Proof:** Just a special case of statement about $(H \cdot X)$.
- Martingale convergence: A non-negative martingale almost surely has a limit.

- Optional stopping theorem: Can't make money in expectation by timing sale of asset whose price is non-negative martingale.
- **Proof:** Just a special case of statement about $(H \cdot X)$.
- Martingale convergence: A non-negative martingale almost surely has a limit.
- Idea of proof: Count upcrossings (times martingale crosses a fixed interval) and devise gambling strategy that makes lots of money if the number of these is not a.s. finite.

How many primary candidates ever get above twenty percent in expected probability of victory? (Asked by Aldous.)

- How many primary candidates ever get above twenty percent in expected probability of victory? (Asked by Aldous.)
- Compute probability of having conditional probability reach a before b.

► Wald's equation: Let X_i be i.i.d. with E|X_i| < ∞. If N is a stopping time with EN < ∞ then ES_N = EX₁EN.

- ► Wald's equation: Let X_i be i.i.d. with E|X_i| < ∞. If N is a stopping time with EN < ∞ then ES_N = EX₁EN.
- ▶ Wald's second equation: Let X_i be i.i.d. with $E|X_i| = 0$ and $EX_i^2 = \sigma^2 < \infty$. If N is a stopping time with $EN < \infty$ then $ES_N = \sigma^2 EN$.

 S₀ = a ∈ Z and at each time step S_j independently changes by ±1 according to a fair coin toss. Fix A ∈ Z and let N = inf{k : S_k ∈ {0, A}. What is ES_N?

- S₀ = a ∈ Z and at each time step S_j independently changes by ±1 according to a fair coin toss. Fix A ∈ Z and let N = inf{k : S_k ∈ {0, A}. What is ES_N?
- ► What is EN?

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

Regular conditional probabilities

Martingales

Arcsin law, other SRW stories

How many walks from (0, x) to (n, y) that don't cross the horizontal axis?

- ► How many walks from (0, x) to (n, y) that don't cross the horizontal axis?
- ► Try counting walks that *do* cross by giving bijection to walks from (0, -x) to (n, y).

Suppose that in election candidate A gets α votes and B gets β < α votes. What's probability that A is ahead throughout the counting?

- Suppose that in election candidate A gets α votes and B gets β < α votes. What's probability that A is ahead throughout the counting?
- Answer: (α − β)/(α + β). Can be proved using reflection principle.

► Theorem for last hitting time.

- Theorem for last hitting time.
- Theorem for amount of positive positive time.