
18.175: Lecture 25

Reflections and martingales

Scott Sheffield

MIT

18.175 Lecture 25



Outline

Conditional expectation

Martingales

Arcsin law, other SRW stories

18.175 Lecture 25



Outline

Conditional expectation

Martingales

Arcsin law, other SRW stories

18.175 Lecture 25



Conditional expectation

I Say we’re given a probability space (Ω,F0,P) and a σ-field
F ⊂ F0 and a random variable X measurable w.r.t. F0, with
E |X | <∞. The conditional expectation of X given F is a
new random variable, which we can denote by Y = E (X |F).

I We require that Y is F measurable and that for all A in F ,
we have

∫
A XdP =

∫
A YdP.

I Any Y satisfying these properties is called a version of
E (X |F).

I Is it possible that there exists more than one version of
E (X |F) (which would mean that in some sense the
conditional expectation is not canonically defined)?

I Is there some sense in which E (X |F) always exists and is
always uniquely defined (maybe up to set of measure zero)?
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Conditional expectation

I Claim: Assuming Y = E (X |F) as above, and E |X | <∞, we
have E |Y | ≤ E |X |. In particular, Y is integrable.

I Proof: let A = {Y > 0} ∈ F and observe:∫
A YdP

∫
A XdP ≤

∫
A |X |dP. By similarly argument,∫

Ac −YdP ≤
∫
Ac |X |dP.

I Uniqueness of Y : Suppose Y ′ is F-measurable and satisfies∫
A Y ′dP =

∫
A XdP =

∫
A YdP for all A ∈ F . Then consider

the set Y − Y ′ ≥ ε}. Integrating over that gives zero. Must
hold for any ε. Conclude that Y = Y ′ almost everywhere.
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Radon-Nikodym theorem

I Let µ and ν be σ-finite measures on (Ω,F). Say ν << µ (or
ν is absolutely continuous w.r.t. µ if µ(A) = 0 implies
ν(A) = 0.

I Recall Radon-Nikodym theorem: If µ and ν are σ-finite
measures on (Ω,F) and ν is absolutely continuous w.r.t. µ,
then there exists a measurable f : Ω→ [0,∞) such that
ν(A) =

∫
A fdµ.

I Observe: this theorem implies existence of conditional
expectation.
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Two big results

I Optional stopping theorem: Can’t make money in
expectation by timing sale of asset whose price is non-negative
martingale.

I Martingale convergence: A non-negative martingale almost
surely has a limit.
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Wald

I Wald’s equation: Let Xi be i.i.d. with E |Xi | <∞. If N is a
stopping time with EN <∞ then ESN = EX1EN.

I Wald’s second equation: Let Xi be i.i.d. with E |Xi | = 0 and
EX 2

i = σ2 <∞. If N is a stopping time with EN <∞ then
ESN = σ2EN.
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Wald applications to SRW

I S0 = a ∈ Z and at each time step Sj independently changes
by ±1 according to a fair coin toss. Fix A ∈ Z and let
N = inf{k : Sk ∈ {0,A}. What is ESN?

I What is EN?
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Reflection principle

I How many walks from (0, x) to (n, y) that don’t cross the
horizontal axis?

I Try counting walks that do cross by giving bijection to walks
from (0,−x) to (n, y).
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Ballot Theorem

I Suppose that in election candidate A gets α votes and B gets
β < α votes. What’s probability that A is ahead throughout
the counting?

I Answer: (α− β)/(α + β). Can be proved using reflection
principle.
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Arcsin theorem

I Theorem for last hitting time.

I Theorem for amount of positive positive time.
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