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Recall the dilemma

I Want, a priori, to define measure of any subsets of [0, 1).

I Find that if we allow the axiom of choice and require
measures to be countably additive (as we do) then we run
into trouble. No valid translation invariant way to assign a
finite measure to all subsets of [0, 1).

I Could toss out the axiom of choice... but we don’t want to.
Instead we will only define measure for certain “measurable
sets”. We will construct a σ-algebra of measurable sets and
let probability measure be function from σ-algebra to [0, 1].

I Price to this decision: for the rest of our lives, whenever we
talk about a measure on any space (a Euclidean space, a
space of differentiable functions, a space of fractal curves
embedded in a plane, etc.), we have to worry about what the
σ-algebra might be.
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Recall the dilemma

I On the other hand: always have to ensure that any measure
we produce assigns actual number to every measurable set. A
bigger σ-algebra means more sets whose measures have to be
defined. So if we want to make it easy to construct measures,
maybe it’s a good thing if our σ-algebra doesn’t have too
many elements... unless it’s easier to...

I Come to think of it, how do we define a measure anyway?

I If the σ-algebra is something like the Borel σ-algebra (smallest
σ-algebra containing all open sets) it’s a pretty big collection
of sets. How do we go about producing a measure (any
measure) that’s defined for every set in this family?

I Answer: use extension theorems.
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Recall definitions

I Probability space is triple (Ω,F ,P) where Ω is sample
space, F is set of events (the σ-algebra) and P : F → [0, 1] is
the probability function.

I σ-algebra is collection of subsets closed under
complementation and countable unions. Call (Ω,F) a
measure space.

I Measure is function µ : F → R satisfying µ(A) ≥ µ(∅) = 0
for all A ∈ F and countable additivity: µ(∪iAi ) =

∑
i µ(Ai )

for disjoint Ai .

I Measure µ is probability measure if µ(Ω) = 1.

I The Borel σ-algebra B on a topological space is the smallest
σ-algebra containing all open sets.
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How do we produce measures on R?

I Write F (a) = P
(
(−∞, a]

)
.

I Theorem: for each right continuous, non-decreasing function
F , tending to 0 at −∞ and to 1 at ∞, there is a unique
measure defined on the Borel sets of R with
P((a, b]) = F (b)− F (a).

I If we’re given such a function F , then we know how to
compute the measure of any set of the form (a, b].

I We would like to extend the measure defined for these subsets
to a measure defined for the whole σ algebra generated by
these subsets.

I Seems clear how to define measure of countable union of
disjoint intervals of the form (a, b] (just using countable
additivity). But are we confident we can extend the definition
to all Borel measurable sets in a consistent way?
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Algebras and semi-algebras

I algebra: collection A of sets closed under finite unions and
complementation.

I measure on algebra: Have µ(A) ≥ µ(∅) = 0 for all A in A,
and for disjoint Ai with union in A we have
µ(∪∞i=1Ai ) =

∑∞
i=1 µ(Ai ) (countable additivity).

I Measure µ on A is σ-finite if exists countable collection
An ∈ A with µ(An) <∞ and ∪An = Ω.

I semi-algebra: collection S of sets closed under intersection
and such that S ∈ S implies that Sc is a finite disjoint union
of sets in S. (Example: empty set plus sets of form
(a1, b1]× . . .× (ad , bd ] ∈ Rd .)

I One lemma: If S is a semialgebra, then the set S of finite
disjoint unions of sets in S is an algebra, called the algebra
generated by S.
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π-systems and λ-systems

I Say collection of sets P is a π-system if closed under
intersection.

I Say collection of sets L is a λ-system if

I Ω ∈ L
I If A,B ∈ L and A ⊂ B, then B − A ∈ L.
I If An ∈ L and An ↑ A then A ∈ L.

I THEOREM: If P is a π-system and L is a λ-system that
contains P, then σ(P) ⊂ L, where σ(A) denotes smallest
σ-algebra containing A.
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Caratheéodory Extension Theorem

I Theorem: If µ is a σ-finite measure on an algebra A then µ
has a unique extension to the σ algebra generated by A.

I Detailed proof is somewhat involved, but let’s take a look at
it.

I We can use this extension theorem prove existence of a unique
translation invariant measure (Lebesgue measure) on the
Borel sets of Rd that assigns unit mass to a unit cube. (Borel
σ-algebra Rd is the smallest one containing all open sets of
Rd . Given any space with a topology, we can define a
σ-algebra this way.)
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Caratheéodory Extension Theorem

I Theorem: If µ is a σ-finite measure on an algebra A then µ
has a unique extension to the σ algebra generated by A.

I Detailed proof is somewhat involved, but let’s take a look at
it.

I We can use this extension theorem prove existence of a unique
translation invariant measure (Lebesgue measure) on the
Borel sets of Rd that assigns unit mass to a unit cube. (Borel
σ-algebra Rd is the smallest one containing all open sets of
Rd . Given any space with a topology, we can define a
σ-algebra this way.)

18.175 Lecture 2



Extension theorem for semialgebras

I Say S is semialgebra and µ is defined on S with µ(∅ = 0),
such that µ is finitely additive and countably subadditive.
[This means that if S ∈ S is a finite disjoint union of sets
Si ∈ S then µ(S) =

∑
i µ(Si ). If it is a countable disjoint

union of Si ∈ S then µ(S) ≤
∑

i µ(Si ).] Then µ has a unique
extension µ̄ that is a measure on the algebra S generated by
S. If µ̄ is sigma-finite, then there is an extension that is a
measure on σ(S).
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