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Recall continuity theorem

I Strong continuity theorem: If µn =⇒ µ∞ then
φn(t)→ φ∞(t) for all t. Conversely, if φn(t) converges to a
limit that is continuous at 0, then the associated sequence of
distributions µn is tight and converges weakly to a measure µ
with characteristic function φ.
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Recall CLT idea

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ].

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I In particular, if E [X ] = 0 and E [X 2] = 1 then φX (0) = 1 and
φ′X (0) = 0 and φ′′X (0) = −1.

I Write LX := − log φX . Then LX (0) = 0 and
L′X (0) = −φ′X (0)/φX (0) = 0 and
L′′X = −(φ′′X (0)φX (0)− φ′X (0)2)/ φX (0)2 = 1.

I If Vn = n−1/2
∑n

i=1 Xi where Xi are i.i.d. with law of X , then
LVn(t) = nLX (n−1/2t).

I When we zoom in on a twice differentiable function near zero
(scaling vertically by n and horizontally by

√
n) the picture

looks increasingly like a parabola.
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Stable laws

I Question? Is it possible for something like a CLT to hold if X
has infinite variance? Say we write Vn = n−a

∑n
i=1 Xi for

some a. Could the law of these guys converge to something
non-Gaussian?

I What if the LVn converge to something else as we increase n,
maybe to some other power of |t| instead of |t|2?

I The the appropriately normalized sum should be converge in
law to something with characteristic function e−|t|

α
instead of

e−|t|
2
.

I We already saw that this should work for Cauchy random
variables.
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Stable laws

I Example: Suppose that P(X1 > x) = P(X1 < −x) = x−α/2
for 0 < α < 2. This is a random variable with a “power law
tail”.

I Compute 1− φ(t) ≈ C |t|α when |t| is large.

I If X1,X2, . . . have same law as X1 then we have
E exp(itSn/n

1/α) = φ(t/nα)n =
(
1− (1− φ(t/n1/α))

)
. As

n→∞, this converges pointwise to exp(−C |t|α).

I Conclude by continuity theorems that Xn/n
1/α =⇒ Y where

Y is a random variable with φY (t) = exp(−C |t|α)

I Let’s look up stable distributions. Up to affine
transformations, this is just a two-parameter family with
characteristic functions exp[−|t|α(1− iβsgn(t)Φ)] where
Φ = tan(πα/2) where β ∈ [−1, 1] and α ∈ (0, 2].
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Stable-Poisson connection

I Let’s think some more about this example, where
P(X1 > x) = P(X1 < −x) = x−α/2 for 0 < α < 2 and
X1,X2, . . . are i.i.d.

I Now P(an1/α < X1 < bn1α = 1
2(a−α − b−α)n−1.

I So {m ≤ n : Xm/n
1/α ∈ (a, b)} converges to a Poisson

distribution with mean (a−α − b−α)/2.

I More generally {m ≤ n : Xm/n
1/α ∈ (a, b)} converges in law

to Poisson with mean
∫
A

α
2|x |α+1 dx <∞.
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Domain of attraction to stable random variable

I More generality: suppose that
limx→∞ P(X1 > x)/P(|X1| > x) = θ ∈ [0, 1] and
P(|X1| > x) = x−αL(x) where L is slowly varying (which
means limx→∞ L(tx)/L(x) = 1 for all t > 0).

I Theorem: Then (Sn − bn)/an converges in law to limiting
random variable, for appropriate an and bn values.
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Infinitely divisible laws

I Say a random variable X is infinitely divisible, for each n,
there is a random variable Y such that X has the same law as
the sum of n i.i.d. copies of Y .

I What random variables are infinitely divisible?

I Poisson, Cauchy, normal, stable, etc.

I Let’s look at the characteristic functions of these objects.
What about compound Poisson random variables (linear
combinations of Poisson random variables)? What are their
characteristic functions like?

I More general constructions are possible via Lévy Khintchine
representation.

18.175 Lecture 18



Infinitely divisible laws

I Say a random variable X is infinitely divisible, for each n,
there is a random variable Y such that X has the same law as
the sum of n i.i.d. copies of Y .

I What random variables are infinitely divisible?

I Poisson, Cauchy, normal, stable, etc.

I Let’s look at the characteristic functions of these objects.
What about compound Poisson random variables (linear
combinations of Poisson random variables)? What are their
characteristic functions like?

I More general constructions are possible via Lévy Khintchine
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Higher dimensional limit theorems

I Much of the CLT story generalizes to higher dimensional
random variables.

I For example, given a random vector (X ,Y ,Z ), we can define
φ(a, b, c) = Ee i(aX+bY+cZ).

I This is just a higher dimensional Fourier transform of the
density function.

I The inversion theorems and continuity theorems that apply
here are essentially the same as in the one-dimensional case.
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