18.175: Lecture 17

Poisson random variables

Scott Sheffield

MIT

More on random walks and local CLT

Poisson random variable convergence

Extend CLT idea to stable random variables

More on random walks and local CLT

Poisson random variable convergence

Extend CLT idea to stable random variables

Suppose $X \in b + h\mathbb{Z}$ a.s. for some fixed constants b and h.

- Suppose $X \in b + h\mathbb{Z}$ a.s. for some fixed constants b and h.
- Observe that if φ_X(λ) = 1 for some λ ≠ 0 then X is supported on (some translation of) (2π/λ)ℤ. If this holds for all λ, then X is a.s. some constant. When the former holds but not the latter (i.e., φ_X is periodic but not identically 1) we call X a **lattice random variable**.

- Suppose $X \in b + h\mathbb{Z}$ a.s. for some fixed constants b and h.
- Observe that if φ_X(λ) = 1 for some λ ≠ 0 then X is supported on (some translation of) (2π/λ)ℤ. If this holds for all λ, then X is a.s. some constant. When the former holds but not the latter (i.e., φ_X is periodic but not identically 1) we call X a **lattice random variable**.

▶ Write
$$p_n(x) = P(S_n/\sqrt{n} = x)$$
 for $x \in \mathcal{L}_n := (nb + h\mathbb{Z})/\sqrt{n}$
and $n(x) = (2\pi\sigma^2)^{-1/2} \exp(-x^2/2\sigma^2)$.

- Suppose $X \in b + h\mathbb{Z}$ a.s. for some fixed constants b and h.
- Observe that if φ_X(λ) = 1 for some λ ≠ 0 then X is supported on (some translation of) (2π/λ)ℤ. If this holds for all λ, then X is a.s. some constant. When the former holds but not the latter (i.e., φ_X is periodic but not identically 1) we call X a **lattice random variable**.

► Write
$$p_n(x) = P(S_n/\sqrt{n} = x)$$
 for $x \in \mathcal{L}_n := (nb + h\mathbb{Z})/\sqrt{n}$
and $n(x) = (2\pi\sigma^2)^{-1/2} \exp(-x^2/2\sigma^2)$.

► Assume X_i are i.i.d. lattice with $EX_i = 0$ and $EX_i^2 = \sigma^2 \in (0, \infty)$. Theorem: As $n \to \infty$,

$$\left|\sup_{x\in\mathcal{L}^n}|n^{1/2}/hp_n(x)-n(x)|\to 0.\right.$$

Proof idea: Use characteristic functions, reduce to periodic integral problem. Look up "Fourier series". Note that for Y supported on a + θZ, we have P(Y = x) = 1/(2π/θ) ∫^{π/θ}_{-π/θ} e^{-itx}φ_Y(t)dt.

► Example: suppose we have random walk on Z that at each step tosses fair 4-sided coin to decide whether to go 1 unit left, 1 unit right, 2 units left, or 2 units right?

- ► Example: suppose we have random walk on Z that at each step tosses fair 4-sided coin to decide whether to go 1 unit left, 1 unit right, 2 units left, or 2 units right?
- What is the probability that the walk is back at the origin after one step? Two steps? Three steps?

- ► Example: suppose we have random walk on Z that at each step tosses fair 4-sided coin to decide whether to go 1 unit left, 1 unit right, 2 units left, or 2 units right?
- What is the probability that the walk is back at the origin after one step? Two steps? Three steps?
- Let's compute this in Mathematica by writing out the characteristic function ϕ_X for one-step increment X and calculating $\int_0^{2\pi} \phi_X^k(t) dt/2\pi$.

- ► Example: suppose we have random walk on Z that at each step tosses fair 4-sided coin to decide whether to go 1 unit left, 1 unit right, 2 units left, or 2 units right?
- What is the probability that the walk is back at the origin after one step? Two steps? Three steps?
- Let's compute this in Mathematica by writing out the characteristic function ϕ_X for one-step increment X and calculating $\int_0^{2\pi} \phi_X^k(t) dt/2\pi$.
- How about a random walk on \mathbb{Z}^2 ?

- ► Example: suppose we have random walk on Z that at each step tosses fair 4-sided coin to decide whether to go 1 unit left, 1 unit right, 2 units left, or 2 units right?
- What is the probability that the walk is back at the origin after one step? Two steps? Three steps?
- Let's compute this in Mathematica by writing out the characteristic function ϕ_X for one-step increment X and calculating $\int_0^{2\pi} \phi_X^k(t) dt/2\pi$.
- How about a random walk on \mathbb{Z}^2 ?
- ► Can one use this to establish when a random walk on Z^d is recurrent versus transient?

More on random walks and local CLT

Poisson random variable convergence

Extend CLT idea to stable random variables

More on random walks and local CLT

Poisson random variable convergence

Extend CLT idea to stable random variables

How many raindrops hit a given square inch of sidewalk during a ten minute period?

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5?

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5?
- How many calls to call center during a given minute?

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?
- How many notable gaffes during 90 minute debate?

- How many raindrops hit a given square inch of sidewalk during a ten minute period?
- How many people fall down the stairs in a major city on a given day?
- How many plane crashes in a given year?
- How many radioactive particles emitted during a time period in which the expected number emitted is 5?
- How many calls to call center during a given minute?
- How many goals scored during a 90 minute soccer game?
- How many notable gaffes during 90 minute debate?
- Key idea for all these examples: Divide time into large number of small increments. Assume that during each increment, there is some small probability of thing happening (independently of other increments).

Let λ be some moderate-sized number. Say λ = 2 or λ = 3. Let n be a huge number, say n = 10⁶.

- Let λ be some moderate-sized number. Say λ = 2 or λ = 3. Let n be a huge number, say n = 10⁶.
- Suppose I have a coin that comes up heads with probability λ/n and I toss it n times.

- Let λ be some moderate-sized number. Say λ = 2 or λ = 3. Let n be a huge number, say n = 10⁶.
- Suppose I have a coin that comes up heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?

- Let λ be some moderate-sized number. Say λ = 2 or λ = 3. Let n be a huge number, say n = 10⁶.
- Suppose I have a coin that comes up heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?

• Answer:
$$np = \lambda$$
.

- Let λ be some moderate-sized number. Say λ = 2 or λ = 3. Let n be a huge number, say n = 10⁶.
- Suppose I have a coin that comes up heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k = 4). What is the probability that I see exactly k heads?

- Let λ be some moderate-sized number. Say λ = 2 or λ = 3. Let n be a huge number, say n = 10⁶.
- Suppose I have a coin that comes up heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k = 4). What is the probability that I see exactly k heads?
- Binomial formula: $\binom{n}{k}p^k(1-p)^{n-k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}p^k(1-p)^{n-k}.$

- Let λ be some moderate-sized number. Say λ = 2 or λ = 3. Let n be a huge number, say n = 10⁶.
- Suppose I have a coin that comes up heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k = 4). What is the probability that I see exactly k heads?
- Binomial formula: $\binom{n}{k}p^{k}(1-p)^{n-k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}p^{k}(1-p)^{n-k}.$

• This is approximately $\frac{\lambda^k}{k!}(1-p)^{n-k} \approx \frac{\lambda^k}{k!}e^{-\lambda}$.

- Let λ be some moderate-sized number. Say λ = 2 or λ = 3. Let n be a huge number, say n = 10⁶.
- Suppose I have a coin that comes up heads with probability λ/n and I toss it n times.
- How many heads do I expect to see?
- Answer: $np = \lambda$.
- Let k be some moderate sized number (say k = 4). What is the probability that I see exactly k heads?
- Binomial formula: $\binom{n}{k}p^{k}(1-p)^{n-k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}p^{k}(1-p)^{n-k}.$
- This is approximately $\frac{\lambda^k}{k!}(1-p)^{n-k} \approx \frac{\lambda^k}{k!}e^{-\lambda}$.
- A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.

• A Poisson random variable X with parameter λ satisfies $p(k) = P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.

- A Poisson random variable X with parameter λ satisfies $p(k) = P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k) = 1$?

- A Poisson random variable X with parameter λ satisfies $p(k) = P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.
- How can we show that $\sum_{k=0}^{\infty} p(k) = 1$?
- Use Taylor expansion $e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$.

• A **Poisson random variable** X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.

Expectation

- A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.
- What is E[X]?

- A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.
- ▶ What is *E*[X]?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.

- A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.
- ▶ What is *E*[X]?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.
- ► This would suggest E[X] = λ. Can we show this directly from the formula for P{X = k}?

- A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.
- ▶ What is E[X]?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.
- ► This would suggest E[X] = λ. Can we show this directly from the formula for P{X = k}?
- By definition of expectation

$$E[X] = \sum_{k=0}^{\infty} P\{X=k\}k = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda}.$$

- A Poisson random variable X with parameter λ satisfies $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$ for integer $k \ge 0$.
- ▶ What is E[X]?
- We think of a Poisson random variable as being (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.
- ► This would suggest E[X] = λ. Can we show this directly from the formula for P{X = k}?
- By definition of expectation

$$E[X] = \sum_{k=0}^{\infty} P\{X=k\}k = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda}.$$

• Setting
$$j = k - 1$$
, this is $\lambda \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} e^{-\lambda} = \lambda$.

18.175 Lecture 16

• Given
$$P{X = k} = \frac{\lambda^k}{k!}e^{-\lambda}$$
 for integer $k \ge 0$, what is $Var[X]$?

- Given $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$, what is Var[X]?
- ► Think of X as (roughly) a Bernoulli (n, p) random variable with *n* very large and $p = \lambda/n$.

- Given $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$, what is Var[X]?
- ► Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.
- This suggests Var[X] ≈ npq ≈ λ (since np ≈ λ and q = 1 − p ≈ 1). Can we show directly that Var[X] = λ?

- Given $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$, what is Var[X]?
- ► Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.
- This suggests Var[X] ≈ npq ≈ λ (since np ≈ λ and q = 1 − p ≈ 1). Can we show directly that Var[X] = λ?

- Given $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$, what is Var[X]?
- ► Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.
- This suggests Var[X] ≈ npq ≈ λ (since np ≈ λ and q = 1 − p ≈ 1). Can we show directly that Var[X] = λ?

Compute

$$E[X^{2}] = \sum_{k=0}^{\infty} P\{X = k\} k^{2} = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}.$$

- Given $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$, what is Var[X]?
- ► Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.
- This suggests Var[X] ≈ npq ≈ λ (since np ≈ λ and q = 1 − p ≈ 1). Can we show directly that Var[X] = λ?

Compute

$$E[X^{2}] = \sum_{k=0}^{\infty} P\{X = k\} k^{2} = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}.$$

• Setting j = k - 1, this is

$$\lambda\left(\sum_{j=0}^{\infty}(j+1)rac{\lambda^{j}}{j!}e^{-\lambda}
ight)=\lambda E[X+1]=\lambda(\lambda+1).$$

- Given $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ for integer $k \ge 0$, what is Var[X]?
- ► Think of X as (roughly) a Bernoulli (n, p) random variable with n very large and p = λ/n.
- ► This suggests $\operatorname{Var}[X] \approx npq \approx \lambda$ (since $np \approx \lambda$ and $q = 1 p \approx 1$). Can we show directly that $\operatorname{Var}[X] = \lambda$?

Compute

$$E[X^{2}] = \sum_{k=0}^{\infty} P\{X = k\} k^{2} = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}.$$

• Setting j = k - 1, this is

$$\lambda\left(\sum_{j=0}^{\infty}(j+1)\frac{\lambda^{j}}{j!}e^{-\lambda}
ight)=\lambda E[X+1]=\lambda(\lambda+1).$$

• Then
$$\operatorname{Var}[X] = E[X^2] - E[X]^2 = \lambda(\lambda + 1) - \lambda^2 = \lambda$$
.

18.175 Lecture 16

 Idea: if we have lots of independent random events, each with very small probability to occur, and expected number to occur is λ, then total number that occur is roughly Poisson λ.

- Idea: if we have lots of independent random events, each with very small probability to occur, and expected number to occur is λ, then total number that occur is roughly Poisson λ.
- ▶ **Theorem:** Let $X_{n,m}$ be independent $\{0, 1\}$ -valued random variables with $P(X_{n,m} = 1) = p_{n,m}$. Suppose $\sum_{m=1}^{n} p_{n,m} \rightarrow \lambda$ and $\max_{1 \le m \le n} p_{n,m} \rightarrow 0$. Then $S_n = X_{n,1} + \ldots + X_{n,n} \implies Z$ were Z is $Poisson(\lambda)$.

- Idea: if we have lots of independent random events, each with very small probability to occur, and expected number to occur is λ, then total number that occur is roughly Poisson λ.
- ▶ **Theorem:** Let $X_{n,m}$ be independent $\{0, 1\}$ -valued random variables with $P(X_{n,m} = 1) = p_{n,m}$. Suppose $\sum_{m=1}^{n} p_{n,m} \rightarrow \lambda$ and $\max_{1 \le m \le n} p_{n,m} \rightarrow 0$. Then $S_n = X_{n,1} + \ldots + X_{n,n} \implies Z$ were Z is $Poisson(\lambda)$.
- Proof idea: Just write down the log characteristic functions for Bernoulli and Poisson random variables. Check the conditions of the continuity theorem.

More on random walks and local CLT

Poisson random variable convergence

Extend CLT idea to stable random variables

18.175 Lecture 16

More on random walks and local CLT

Poisson random variable convergence

Extend CLT idea to stable random variables

18.175 Lecture 16

Strong continuity theorem: If µ_n ⇒ µ_∞ then φ_n(t) → φ_∞(t) for all t. Conversely, if φ_n(t) converges to a limit that is continuous at 0, then the associated sequence of distributions µ_n is tight and converges weakly to a measure µ with characteristic function φ. • Let X be a random variable.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$

• And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- ▶ In particular, if E[X] = 0 and $E[X^2] = 1$ then $\phi_X(0) = 1$ and $\phi'_X(0) = 0$ and $\phi''_X(0) = -1$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- ▶ In particular, if E[X] = 0 and $E[X^2] = 1$ then $\phi_X(0) = 1$ and $\phi'_X(0) = 0$ and $\phi''_X(0) = -1$.

▶ Write
$$L_X := -\log \phi_X$$
. Then $L_X(0) = 0$ and $L'_X(0) = -\phi'_X(0)/\phi_X(0) = 0$ and $L''_X = -(\phi''_X(0)\phi_X(0) - \phi'_X(0)^2)/\phi_X(0)^2 = 1$.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- ▶ In particular, if E[X] = 0 and $E[X^2] = 1$ then $\phi_X(0) = 1$ and $\phi'_X(0) = 0$ and $\phi''_X(0) = -1$.
- Write L_X := -log φ_X. Then L_X(0) = 0 and L'_X(0) = -φ'_X(0)/φ_X(0) = 0 and L''_X = -(φ''_X(0)φ_X(0) - φ'_X(0)²)/φ_X(0)² = 1.
 If V_n = n^{-1/2} ∑ⁿ_{i=1} X_i where X_i are i.i.d. with law of X, then L_Y(t) = nL_X(n^{-1/2}t).

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}].$
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- ▶ In particular, if E[X] = 0 and $E[X^2] = 1$ then $\phi_X(0) = 1$ and $\phi'_X(0) = 0$ and $\phi''_X(0) = -1$.
- Write $L_X := -\log \phi_X$. Then $L_X(0) = 0$ and $L'_X(0) = -\phi'_X(0)/\phi_X(0) = 0$ and $L''_X = -(\phi''_X(0)\phi_X(0) - \phi'_X(0)^2)/\phi_X(0)^2 = 1.$
- If $V_n = n^{-1/2} \sum_{i=1}^n X_i$ where X_i are i.i.d. with law of X, then $L_{V_n}(t) = nL_X(n^{-1/2}t)$.
- When we zoom in on a twice differentiable function near zero (scaling vertically by n and horizontally by √n) the picture looks increasingly like a parabola.

► Question? Is it possible for something like a CLT to hold if X has infinite variance? Say we write V_n = n^{-a} ∑ⁿ_{i=1} X_i for some a. Could the law of these guys converge to something non-Gaussian?

- ► Question? Is it possible for something like a CLT to hold if X has infinite variance? Say we write V_n = n^{-a} ∑_{i=1}ⁿ X_i for some a. Could the law of these guys converge to something non-Gaussian?
- What if the L_{Vn} converge to something else as we increase n, maybe to some other power of |t| instead of |t|²?

- Question? Is it possible for something like a CLT to hold if X has infinite variance? Say we write $V_n = n^{-a} \sum_{i=1}^n X_i$ for some a. Could the law of these guys converge to something non-Gaussian?
- What if the L_{Vn} converge to something else as we increase n, maybe to some other power of |t| instead of |t|²?
- ► The the appropriately normalized sum should be converge in law to something with characteristic function e^{-|t|^α} instead of e^{-|t|²}.

- Question? Is it possible for something like a CLT to hold if X has infinite variance? Say we write $V_n = n^{-a} \sum_{i=1}^n X_i$ for some a. Could the law of these guys converge to something non-Gaussian?
- What if the L_{Vn} converge to something else as we increase n, maybe to some other power of |t| instead of |t|²?
- ► The the appropriately normalized sum should be converge in law to something with characteristic function e^{-|t|^α} instead of e^{-|t|²}.
- We already saw that this should work for Cauchy random variables. What's the characteristic function in that case?

- ► Question? Is it possible for something like a CLT to hold if X has infinite variance? Say we write V_n = n^{-a} ∑_{i=1}ⁿ X_i for some a. Could the law of these guys converge to something non-Gaussian?
- What if the L_{Vn} converge to something else as we increase n, maybe to some other power of |t| instead of |t|²?
- ► The the appropriately normalized sum should be converge in law to something with characteristic function e^{-|t|^α} instead of e^{-|t|²}.
- We already saw that this should work for Cauchy random variables. What's the characteristic function in that case?
- Let's look up stable distributions.

Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.

- ► Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?

- ► Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?
- Poisson, Cauchy, normal, stable, etc.

- ► Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?
- ▶ Poisson, Cauchy, normal, stable, etc.
- Let's look at the characteristic functions of these objects. What about compound Poisson random variables (linear combinations of Poisson random variables)? What are their characteristic functions like?

- ► Say a random variable X is infinitely divisible, for each n, there is a random variable Y such that X has the same law as the sum of n i.i.d. copies of Y.
- What random variables are infinitely divisible?
- Poisson, Cauchy, normal, stable, etc.
- Let's look at the characteristic functions of these objects. What about compound Poisson random variables (linear combinations of Poisson random variables)? What are their characteristic functions like?
- More general constructions are possible via Lévy Khintchine representation.