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Recall Fourier inversion formula

I If f : R→ C is in L1, write f̂ (t) :=
∫∞
−∞ f (x)e−itxdx .

I Fourier inversion: If f is nice: f (x) = 1
2π

∫
f̂ (t)e itxdt.

I Easy to check this when f is density function of a Gaussian.
Use linearity of f → f̂ to extend to linear combinations of
Gaussians, or to convolutions with Gaussians.

I Show f → f̂ is an isometry of Schwartz space (endowed with
L2 norm). Extend definition to L2 completion.

I Convolution theorem: If

h(x) = (f ∗ g)(x) =

∫ ∞
−∞

f (y)g(x − y)dy ,

then
ĥ(t) = f̂ (t)ĝ(t).

I Observation: can define Fourier transforms of generalized
functions. Can interpret finite measure as generalized
function.
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I Observation: can define Fourier transforms of generalized
functions. Can interpret finite measure as generalized
function.

18.175 Lecture 16



Recall Fourier inversion formula

I If f : R→ C is in L1, write f̂ (t) :=
∫∞
−∞ f (x)e−itxdx .

I Fourier inversion: If f is nice: f (x) = 1
2π

∫
f̂ (t)e itxdt.

I Easy to check this when f is density function of a Gaussian.
Use linearity of f → f̂ to extend to linear combinations of
Gaussians, or to convolutions with Gaussians.

I Show f → f̂ is an isometry of Schwartz space (endowed with
L2 norm). Extend definition to L2 completion.

I Convolution theorem: If

h(x) = (f ∗ g)(x) =

∫ ∞
−∞

f (y)g(x − y)dy ,

then
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Recall Bochner’s theorem

I Given any function φ and any points x1, . . . , xn, we can
consider the matrix with i , j entry given by φ(xi − xj). Call φ
positive definite if this matrix is always positive semidefinite
Hermitian.

I Bochner’s theorem: a continuous function from R to R with
φ(1) = 1 is a characteristic function of a some probability
measure on R if and only if it is positive definite.

I Positive definiteness kind of comes from fact that variances of
random variables are non-negative.

I The set of all possible characteristic functions is a pretty nice
set.

I The Fourier transform is a natural map from set of all
probability measures on R (which can be described by their
distribution functions F ) to the set of possible characteristic
functions.
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Recall continuity theorem

I Strong continuity theorem: If µn =⇒ µ∞ then
φn(t)→ φ∞(t) for all t. Conversely, if φn(t) converges to a
limit that is continuous at 0, then the associated sequence of
distributions µn is tight and converges weakly to a measure µ
with characteristic function φ.
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Recall CLT idea

I Let X be a random variable.

I The characteristic function of X is defined by
φ(t) = φX (t) := E [e itX ].

I And if X has an mth moment then E [Xm] = imφ
(m)
X (0).

I In particular, if E [X ] = 0 and E [X 2] = 1 then φX (0) = 1 and
φ′X (0) = 0 and φ′′X (0) = −1.

I Write LX := − log φX . Then LX (0) = 0 and
L′X (0) = −φ′X (0)/φX (0) = 0 and
L′′X = −(φ′′X (0)φX (0)− φ′X (0)2)/ φX (0)2 = 1.

I If Vn = n−1/2
∑n

i=1 Xi where Xi are i.i.d. with law of X , then
LVn(t) = nLX (n−1/2t).

I When we zoom in on a twice differentiable function near zero
(scaling vertically by n and horizontally by

√
n) the picture

looks increasingly like a parabola.
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Lindeberg-Feller theorem

I CLT is pretty special. What other kinds of sums are
approximately Gaussian?

I Triangular arrays: Suppose Xn,m are independent
expectation-zero random variables when 1 ≤ m ≤ n.

I Suppose
∑n

m=1 EX
2
n,m → σ2 > 0 and for all ε,

limn→∞ E (|Xn,m|2; |Xn,m| > ε) = 0.

I Then Sn = Xn,1 + Xn,2 + . . .+ Xn,n =⇒ σχ (where χ is
standard normal) as n→∞.

I Proof idea: Use characteristic functions φn,m = φXn,m . Try to
get some uniform handle on how close they are to their
quadratic approximations.
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Berry-Esseen theorem

I If Xi are i.i.d. with mean zero, variance σ2, and
E |Xi |3 = ρ <∞, and Fn(x) is distribution of
(X1 + . . .+ Xn)/(σ

√
n) and Φ(x) is standard normal

distribution, then |Fn(x)− Φ(x)| ≤ 3ρ/(σ3
√
n).

I Provided one has a third moment, CLT convergence is very
quick.

I Proof idea: You can convolve with something that has a
characteristic function with compact support. Play around
with Fubini, error estimates.
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Local limit theorems for walks on Z

I Suppose X ∈ b + hZ a.s. for some fixed constants b and h.

I Observe that if φX (λ) = 1 for some λ 6= 0 then X is
supported on (some translation of) (2π/λ)Z. If this holds for
all λ, then X is a.s. some constant. When the former holds
but not the latter (i.e., φX is periodic but not identically 1)
we call X a lattice random variable.

I Write pn(x) = P(Sn/
√
n = x) for x ∈ Ln := (nb + hZ)/

√
n

and n(x) = (2πσ2)−1/2 exp(−x2/2σ2).

I Assume Xi are i.i.d. lattice with EXi = 0 and
EX 2

i = σ2 ∈ (0,∞). Theorem: As n→∞,∣∣ sup
x∈Ln
|n1/2/hpn(x)− n(x)

∣∣→ 0.

I Proof idea: Use characteristic functions, reduce to periodic
integral problem. Note that for Y supported on a + θZ, we

have P(Y = x) = 1
2π/θ

∫ π/θ
−π/θ e

−itxφY (t)dt.
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I Assume Xi are i.i.d. lattice with EXi = 0 and
EX 2

i = σ2 ∈ (0,∞). Theorem: As n→∞,∣∣ sup
x∈Ln
|n1/2/hpn(x)− n(x)

∣∣→ 0.

I Proof idea: Use characteristic functions, reduce to periodic
integral problem. Note that for Y supported on a + θZ, we

have P(Y = x) = 1
2π/θ

∫ π/θ
−π/θ e

−itxφY (t)dt.
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