18.175: Lecture 16

Central limit theorem variants

Scott Sheffield

MIT

Outline

CLT idea

CLT variants

Outline

CLT idea

CLT variants

18.175 Lecture 16

Recall Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.

Recall Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.

Recall Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.

Recall Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.

Recall Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.
- Convolution theorem: If

$$
h(x)=(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

then

$$
\hat{h}(t)=\hat{f}(t) \hat{g}(t)
$$

Recall Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.
- Convolution theorem: If

$$
h(x)=(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

then

$$
\hat{h}(t)=\hat{f}(t) \hat{g}(t)
$$

- Observation: can define Fourier transforms of generalized functions. Can interpret finite measure as generalized function.

Recall Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.

Recall Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{R} with $\phi(1)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.

Recall Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{R} with $\phi(1)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Positive definiteness kind of comes from fact that variances of random variables are non-negative.

Recall Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{R} with $\phi(1)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Positive definiteness kind of comes from fact that variances of random variables are non-negative.
- The set of all possible characteristic functions is a pretty nice set.

Recall Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{R} with $\phi(1)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Positive definiteness kind of comes from fact that variances of random variables are non-negative.
- The set of all possible characteristic functions is a pretty nice set.
- The Fourier transform is a natural map from set of all probability measures on \mathbb{R} (which can be described by their distribution functions F) to the set of possible characteristic functions.

Recall continuity theorem

- Strong continuity theorem: If $\mu_{n} \Longrightarrow \mu_{\infty}$ then $\phi_{n}(t) \rightarrow \phi_{\infty}(t)$ for all t. Conversely, if $\phi_{n}(t)$ converges to a limit that is continuous at 0 , then the associated sequence of distributions μ_{n} is tight and converges weakly to a measure μ with characteristic function ϕ.

Recall CLT idea

- Let X be a random variable.

Recall CLT idea

- Let X be a random variable.
- The characteristic function of X is defined by

$$
\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right] .
$$

Recall CLT idea

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.

Recall CLT idea

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- In particular, if $E[X]=0$ and $E\left[X^{2}\right]=1$ then $\phi_{X}(0)=1$ and $\phi_{X}^{\prime}(0)=0$ and $\phi_{X}^{\prime \prime}(0)=-1$.

Recall CLT idea

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- In particular, if $E[X]=0$ and $E\left[X^{2}\right]=1$ then $\phi_{X}(0)=1$ and $\phi_{X}^{\prime}(0)=0$ and $\phi_{X}^{\prime \prime}(0)=-1$.
- Write $L_{X}:=-\log \phi_{X}$. Then $L_{X}(0)=0$ and

$$
\begin{aligned}
& L_{X}^{\prime}(0)=-\phi_{X}^{\prime}(0) / \phi_{X}(0)=0 \text { and } \\
& L_{X}^{\prime \prime}=-\left(\phi_{X}^{\prime \prime}(0) \phi_{X}(0)-\phi_{X}^{\prime}(0)^{2}\right) / \phi_{X}(0)^{2}=1
\end{aligned}
$$

Recall CLT idea

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- In particular, if $E[X]=0$ and $E\left[X^{2}\right]=1$ then $\phi_{X}(0)=1$ and $\phi_{X}^{\prime}(0)=0$ and $\phi_{X}^{\prime \prime}(0)=-1$.
- Write $L_{X}:=-\log \phi_{X}$. Then $L_{X}(0)=0$ and
$L_{x}^{\prime}(0)=-\phi_{x}^{\prime}(0) / \phi_{x}(0)=0$ and
$L_{X}^{\prime \prime}=-\left(\phi_{X}^{\prime \prime}(0) \phi_{X}(0)-\phi_{X}^{\prime}(0)^{2}\right) / \phi_{X}(0)^{2}=1$.
- If $V_{n}=n^{-1 / 2} \sum_{i=1}^{n} X_{i}$ where X_{i} are i.i.d. with law of X, then $L_{V_{n}}(t)=n L_{X}\left(n^{-1 / 2} t\right)$.

Recall CLT idea

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- In particular, if $E[X]=0$ and $E\left[X^{2}\right]=1$ then $\phi_{X}(0)=1$ and $\phi_{X}^{\prime}(0)=0$ and $\phi_{X}^{\prime \prime}(0)=-1$.
- Write $L_{X}:=-\log \phi_{X}$. Then $L_{X}(0)=0$ and $L_{X}^{\prime}(0)=-\phi_{X}^{\prime}(0) / \phi_{X}(0)=0$ and $L_{X}^{\prime \prime}=-\left(\phi_{X}^{\prime \prime}(0) \phi_{X}(0)-\phi_{X}^{\prime}(0)^{2}\right) / \phi_{X}(0)^{2}=1$.
- If $V_{n}=n^{-1 / 2} \sum_{i=1}^{n} X_{i}$ where X_{i} are i.i.d. with law of X, then $L_{V_{n}}(t)=n L_{X}\left(n^{-1 / 2} t\right)$.
- When we zoom in on a twice differentiable function near zero (scaling vertically by n and horizontally by \sqrt{n}) the picture looks increasingly like a parabola.

Outline

CLT idea

CLT variants

Outline

CLT idea

CLT variants

Lindeberg-Feller theorem

- CLT is pretty special. What other kinds of sums are approximately Gaussian?

Lindeberg-Feller theorem

- CLT is pretty special. What other kinds of sums are approximately Gaussian?
- Triangular arrays: Suppose $X_{n, m}$ are independent expectation-zero random variables when $1 \leq m \leq n$.

Lindeberg-Feller theorem

- CLT is pretty special. What other kinds of sums are approximately Gaussian?
- Triangular arrays: Suppose $X_{n, m}$ are independent expectation-zero random variables when $1 \leq m \leq n$.
- Suppose $\sum_{m=1}^{n} E X_{n, m}^{2} \rightarrow \sigma^{2}>0$ and for all ϵ, $\lim _{n \rightarrow \infty} E\left(\left|X_{n, m}\right|^{2} ;\left|X_{n, m}\right|>\epsilon\right)=0$.

Lindeberg-Feller theorem

- CLT is pretty special. What other kinds of sums are approximately Gaussian?
- Triangular arrays: Suppose $X_{n, m}$ are independent expectation-zero random variables when $1 \leq m \leq n$.
- Suppose $\sum_{m=1}^{n} E X_{n, m}^{2} \rightarrow \sigma^{2}>0$ and for all ϵ, $\lim _{n \rightarrow \infty} E\left(\left|X_{n, m}\right|^{2} ;\left|X_{n, m}\right|>\epsilon\right)=0$.
- Then $S_{n}=X_{n, 1}+X_{n, 2}+\ldots+X_{n, n} \Longrightarrow \sigma \chi$ (where χ is standard normal) as $n \rightarrow \infty$.

Lindeberg-Feller theorem

- CLT is pretty special. What other kinds of sums are approximately Gaussian?
- Triangular arrays: Suppose $X_{n, m}$ are independent expectation-zero random variables when $1 \leq m \leq n$.
- Suppose $\sum_{m=1}^{n} E X_{n, m}^{2} \rightarrow \sigma^{2}>0$ and for all ϵ, $\lim _{n \rightarrow \infty} E\left(\left|X_{n, m}\right|^{2} ;\left|X_{n, m}\right|>\epsilon\right)=0$.
- Then $S_{n}=X_{n, 1}+X_{n, 2}+\ldots+X_{n, n} \Longrightarrow \sigma \chi$ (where χ is standard normal) as $n \rightarrow \infty$.
- Proof idea: Use characteristic functions $\phi_{n, m}=\phi_{X_{n, m}}$. Try to get some uniform handle on how close they are to their quadratic approximations.

Berry-Esseen theorem

- If X_{i} are i.i.d. with mean zero, variance σ^{2}, and $E\left|X_{i}\right|^{3}=\rho<\infty$, and $F_{n}(x)$ is distribution of $\left(X_{1}+\ldots+X_{n}\right) /(\sigma \sqrt{n})$ and $\Phi(x)$ is standard normal distribution, then $\left|F_{n}(x)-\Phi(x)\right| \leq 3 \rho /\left(\sigma^{3} \sqrt{n}\right)$.

Berry-Esseen theorem

- If X_{i} are i.i.d. with mean zero, variance σ^{2}, and $E\left|X_{i}\right|^{3}=\rho<\infty$, and $F_{n}(x)$ is distribution of $\left(X_{1}+\ldots+X_{n}\right) /(\sigma \sqrt{n})$ and $\Phi(x)$ is standard normal distribution, then $\left|F_{n}(x)-\Phi(x)\right| \leq 3 \rho /\left(\sigma^{3} \sqrt{n}\right)$.
- Provided one has a third moment, CLT convergence is very quick.

Berry-Esseen theorem

- If X_{i} are i.i.d. with mean zero, variance σ^{2}, and $E\left|X_{i}\right|^{3}=\rho<\infty$, and $F_{n}(x)$ is distribution of $\left(X_{1}+\ldots+X_{n}\right) /(\sigma \sqrt{n})$ and $\Phi(x)$ is standard normal distribution, then $\left|F_{n}(x)-\Phi(x)\right| \leq 3 \rho /\left(\sigma^{3} \sqrt{n}\right)$.
- Provided one has a third moment, CLT convergence is very quick.
- Proof idea: You can convolve with something that has a characteristic function with compact support. Play around with Fubini, error estimates.

Local limit theorems for walks on \mathbb{Z}

- Suppose $X \in b+h \mathbb{Z}$ a.s. for some fixed constants b and h.

Local limit theorems for walks on \mathbb{Z}

- Suppose $X \in b+h \mathbb{Z}$ a.s. for some fixed constants b and h.
- Observe that if $\phi_{X}(\lambda)=1$ for some $\lambda \neq 0$ then X is supported on (some translation of) $(2 \pi / \lambda) \mathbb{Z}$. If this holds for all λ, then X is a.s. some constant. When the former holds but not the latter (i.e., ϕ_{X} is periodic but not identically 1) we call X a lattice random variable.

Local limit theorems for walks on \mathbb{Z}

- Suppose $X \in b+h \mathbb{Z}$ a.s. for some fixed constants b and h.
- Observe that if $\phi_{X}(\lambda)=1$ for some $\lambda \neq 0$ then X is supported on (some translation of) $(2 \pi / \lambda) \mathbb{Z}$. If this holds for all λ, then X is a.s. some constant. When the former holds but not the latter (i.e., ϕ_{X} is periodic but not identically 1) we call X a lattice random variable.
- Write $p_{n}(x)=P\left(S_{n} / \sqrt{n}=x\right)$ for $x \in \mathcal{L}_{n}:=(n b+h \mathbb{Z}) / \sqrt{n}$ and $n(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-x^{2} / 2 \sigma^{2}\right)$.

Local limit theorems for walks on \mathbb{Z}

- Suppose $X \in b+h \mathbb{Z}$ a.s. for some fixed constants b and h.
- Observe that if $\phi_{X}(\lambda)=1$ for some $\lambda \neq 0$ then X is supported on (some translation of) $(2 \pi / \lambda) \mathbb{Z}$. If this holds for all λ, then X is a.s. some constant. When the former holds but not the latter (i.e., ϕ_{X} is periodic but not identically 1) we call X a lattice random variable.
- Write $p_{n}(x)=P\left(S_{n} / \sqrt{n}=x\right)$ for $x \in \mathcal{L}_{n}:=(n b+h \mathbb{Z}) / \sqrt{n}$ and $n(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-x^{2} / 2 \sigma^{2}\right)$.
- Assume X_{i} are i.i.d. lattice with $E X_{i}=0$ and $E X_{i}^{2}=\sigma^{2} \in(0, \infty)$. Theorem: As $n \rightarrow \infty$,

$$
\left|\sup _{x \in \mathcal{L}^{n}}\right| n^{1 / 2} / h p_{n}(x)-n(x) \mid \rightarrow 0 .
$$

Local limit theorems for walks on \mathbb{Z}

- Suppose $X \in b+h \mathbb{Z}$ a.s. for some fixed constants b and h.
- Observe that if $\phi_{X}(\lambda)=1$ for some $\lambda \neq 0$ then X is supported on (some translation of) $(2 \pi / \lambda) \mathbb{Z}$. If this holds for all λ, then X is a.s. some constant. When the former holds but not the latter (i.e., ϕ_{X} is periodic but not identically 1) we call X a lattice random variable.
- Write $p_{n}(x)=P\left(S_{n} / \sqrt{n}=x\right)$ for $x \in \mathcal{L}_{n}:=(n b+h \mathbb{Z}) / \sqrt{n}$ and $n(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-x^{2} / 2 \sigma^{2}\right)$.
- Assume X_{i} are i.i.d. lattice with $E X_{i}=0$ and $E X_{i}^{2}=\sigma^{2} \in(0, \infty)$. Theorem: As $n \rightarrow \infty$,

$$
\left|\sup _{x \in \mathcal{L}^{n}}\right| n^{1 / 2} / h p_{n}(x)-n(x) \mid \rightarrow 0
$$

- Proof idea: Use characteristic functions, reduce to periodic integral problem. Note that for Y supported on $a+\theta \mathbb{Z}$, we have $P(Y=x)=\frac{1}{2 \pi / \theta} \int_{-\pi / \theta}^{\pi / \theta} e^{-i t x} \phi_{Y}(t) d t$.

