18.175: Lecture 15

Characteristic functions and central limit theorem

Scott Sheffield

MIT

Outline

Characteristic functions

Outline

Characteristic functions

Characteristic functions

- Let X be a random variable.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- Characteristic functions are well defined at all t for all random variables X.

Characteristic function properties

- $\phi(0)=1$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.
- $|\phi(t+h)-\phi(t)| \leq E\left|e^{i h X}-1\right|$, so $\phi(t)$ uniformly continuous on $(-\infty, \infty)$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.
- $|\phi(t+h)-\phi(t)| \leq E\left|e^{i h X}-1\right|$, so $\phi(t)$ uniformly continuous on $(-\infty, \infty)$
- $E e^{i t(a X+b)}=e^{i t b} \phi(a t)$

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then $\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k} e^{i t k}}{k!}=\exp \left(\lambda\left(e^{i t}-1\right)\right)$.
- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?
- Exponential: If X is standard exponential (density e^{-x} on $(0, \infty))$ then $\phi_{X}(t)=1 /(1-i t)$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then $\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)$.
- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?
- Exponential: If X is standard exponential (density e^{-x} on $(0, \infty))$ then $\phi_{X}(t)=1 /(1-i t)$.
- Bilateral exponential: if $f_{X}(t)=e^{-|x|} / 2$ on \mathbb{R} then $\phi_{X}(t)=1 /\left(1+t^{2}\right)$. Use linearity of $f_{X} \rightarrow \phi_{X}$.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.
- Convolution theorem: If

$$
h(x)=(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

then

$$
\hat{h}(t)=\hat{f}(t) \hat{g}(t)
$$

Fourier inversion formula

- If $f: \mathbb{R} \rightarrow \mathbb{C}$ is in L^{1}, write $\hat{f}(t):=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x$.
- Fourier inversion: If f is nice: $f(x)=\frac{1}{2 \pi} \int \hat{f}(t) e^{i t x} d t$.
- Easy to check this when f is density function of a Gaussian. Use linearity of $f \rightarrow \hat{f}$ to extend to linear combinations of Gaussians, or to convolutions with Gaussians.
- Show $f \rightarrow \hat{f}$ is an isometry of Schwartz space (endowed with L^{2} norm). Extend definition to L^{2} completion.
- Convolution theorem: If

$$
h(x)=(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

then

$$
\hat{h}(t)=\hat{f}(t) \hat{g}(t)
$$

- Possible application?

$$
\int 1_{[a, b]}(x) f(x) d x=\left(\widehat{1_{[a, b]} f}\right)(0)=\left(\hat{f} * \widehat{1_{[a, b]}}\right)(0)=\int \hat{f}(t) \widehat{1_{[a, b]}}(-t) d x
$$

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.
- Inversion theorem:

$$
\lim _{T \rightarrow \infty}(2 \pi)^{-1} \int_{-T}^{T} \frac{e^{-i t a}-e^{i t b}}{i t} \phi(t) d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\})
$$

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.
- Inversion theorem:

$$
\lim _{T \rightarrow \infty}(2 \pi)^{-1} \int_{-T}^{T} \frac{e^{-i t a}-e^{i t b}}{i t} \phi(t) d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\})
$$

- Main ideas of proof: Write

$$
I_{T}=\int \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\int_{-T}^{T} \int \frac{e^{-i t a}-e^{-i t b}}{i t} e^{i t x} \mu(x) d t .
$$

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.
- Inversion theorem:

$$
\lim _{T \rightarrow \infty}(2 \pi)^{-1} \int_{-T}^{T} \frac{e^{-i t a}-e^{i t b}}{i t} \phi(t) d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\})
$$

- Main ideas of proof: Write

$$
I_{T}=\int \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\int_{-T}^{T} \int \frac{e^{-i t a}-e^{-i t b}}{i t} e^{i t x} \mu(x) d t .
$$

- Observe that $\frac{e^{-i t a}-e^{-i t b}}{i t}=\int_{a}^{b} e^{-i t y} d y$ has modulus bounded by $b-a$.

Characteristic function inversion formula

- If the map $\mu_{X} \rightarrow \phi_{X}$ is linear, is the map $\phi \rightarrow \mu[a, b]$ (for some fixed $[a, b]$) a linear map? How do we recover $\mu[a, b]$ from ϕ ?
- Say $\phi(t)=\int e^{i t x} \mu(x)$.
- Inversion theorem:

$$
\lim _{T \rightarrow \infty}(2 \pi)^{-1} \int_{-T}^{T} \frac{e^{-i t a}-e^{i t b}}{i t} \phi(t) d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\})
$$

- Main ideas of proof: Write

$$
I_{T}=\int \frac{e^{-i t a}-e^{-i t b}}{i t} \phi(t) d t=\int_{-T}^{T} \int \frac{e^{-i t a}-e^{-i t b}}{i t} e^{i t x} \mu(x) d t .
$$

- Observe that $\frac{e^{-i t a}-e^{-i t b}}{i t}=\int_{a}^{b} e^{-i t y} d y$ has modulus bounded by $b-a$.
- That means we can use Fubini to compute I_{T}.

Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.

Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{R} with $\phi(1)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.

Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{R} with $\phi(1)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Positive definiteness kind of comes from fact that variances of random variables are non-negative.

Bochner's theorem

- Given any function ϕ and any points x_{1}, \ldots, x_{n}, we can consider the matrix with i, j entry given by $\phi\left(x_{i}-x_{j}\right)$. Call ϕ positive definite if this matrix is always positive semidefinite Hermitian.
- Bochner's theorem: a continuous function from \mathbb{R} to \mathbb{R} with $\phi(1)=1$ is a characteristic function of a some probability measure on \mathbb{R} if and only if it is positive definite.
- Positive definiteness kind of comes from fact that variances of random variables are non-negative.
- The set of all possible characteristic functions is a pretty nice set.

Continuity theorems

- Lévy's continuity theorem: if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

Continuity theorems

- Lévy's continuity theorem: if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

- Slightly stronger theorem: If $\mu_{n} \Longrightarrow \mu_{\infty}$ then $\phi_{n}(t) \rightarrow \phi_{\infty}(t)$ for all t. Conversely, if $\phi_{n}(t)$ converges to a limit that is continuous at 0 , then the associated sequence of distributions μ_{n} is tight and converges weakly to measure μ with characteristic function ϕ.

Continuity theorems

- Lévy's continuity theorem: if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

- Slightly stronger theorem: If $\mu_{n} \Longrightarrow \mu_{\infty}$ then $\phi_{n}(t) \rightarrow \phi_{\infty}(t)$ for all t. Conversely, if $\phi_{n}(t)$ converges to a limit that is continuous at 0 , then the associated sequence of distributions μ_{n} is tight and converges weakly to measure μ with characteristic function ϕ.
- Proof ideas: First statement easy (since $X_{n} \Longrightarrow X$ implies $E g\left(X_{n}\right) \rightarrow E g(X)$ for any bounded continuous g). To get second statement, first play around with Fubini and establish tightness of the μ_{n}. Then note that any subsequential limit of the μ_{n} must be equal to μ. Use this to argue that $\int f d \mu_{n}$ converges to $\int f d \mu$ for every bounded continuous f.

Moments, derivatives, CLT

- If $\int|x|^{n} \mu(x)<\infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by $\phi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)$.

Moments, derivatives, CLT

- If $\int|x|^{n} \mu(x)<\infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by

$$
\phi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)
$$

- Indeed, if $E|X|^{2}<\infty$ and $E X=0$ then $\phi(t)=1-t^{2} E\left(X^{2}\right) / 2 o\left(t^{2}\right)$.

Moments, derivatives, CLT

- If $\int|x|^{n} \mu(x)<\infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by

$$
\phi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)
$$

- Indeed, if $E|X|^{2}<\infty$ and $E X=0$ then $\phi(t)=1-t^{2} E\left(X^{2}\right) / 2 o\left(t^{2}\right)$.
- This and the continuity theorem together imply the central limit theorem.

Moments, derivatives, CLT

- If $\int|x|^{n} \mu(x)<\infty$ then the characteristic function ϕ of μ has a continuous derivative of order n given by $\phi^{(n)}(t)=\int(i x)^{n} e^{i t x} \mu(d x)$.
- Indeed, if $E|X|^{2}<\infty$ and $E X=0$ then $\phi(t)=1-t^{2} E\left(X^{2}\right) / 2 o\left(t^{2}\right)$.
- This and the continuity theorem together imply the central limit theorem.
- Theorem: Let X_{1}, X_{2}, \ldots by i.i.d. with $E X_{i}=\mu$, $\operatorname{Var}\left(X_{i}\right)=\sigma^{2} \in(0, \infty)$. If $S_{n}=X_{1}+\ldots+X_{n}$ then $\left(S_{n}-n \mu\right) /\left(\sigma n^{1 / 2}\right)$ converges in law to a standard normal.

