18.175: Lecture 14

Weak convergence and characteristic functions

Scott Sheffield

MIT

Outline

Weak convergence

Characteristic functions
18.175 Lecture 14

Outline

Weak convergence

Characteristic functions

18.175 Lecture 14

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.
- Theorem: $X_{n} \Longrightarrow X_{\infty}$ if and only if for every bounded continuous g we have $\operatorname{Eg}\left(X_{n}\right) \rightarrow \operatorname{Eg}\left(X_{\infty}\right)$.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.
- Theorem: $X_{n} \Longrightarrow X_{\infty}$ if and only if for every bounded continuous g we have $E g\left(X_{n}\right) \rightarrow E g\left(X_{\infty}\right)$.
- Proof idea: Define X_{n} on common sample space so converge a.s., use bounded convergence theorem.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.
- Theorem: $X_{n} \Longrightarrow X_{\infty}$ if and only if for every bounded continuous g we have $E g\left(X_{n}\right) \rightarrow E g\left(X_{\infty}\right)$.
- Proof idea: Define X_{n} on common sample space so converge a.s., use bounded convergence theorem.
- Theorem: Suppose g is measurable and its set of discontinuity points has μ_{X} measure zero. Then $X_{n} \Longrightarrow X_{\infty}$ implies $g\left(X_{n}\right) \Longrightarrow g(X)$.

Convergence results

- Theorem: If $F_{n} \rightarrow F_{\infty}$, then we can find corresponding random variables Y_{n} on a common measure space so that $Y_{n} \rightarrow Y_{\infty}$ almost surely.
- Proof idea: Take $\Omega=(0,1)$ and $Y_{n}=\sup \left\{y: F_{n}(y)<x\right\}$.
- Theorem: $X_{n} \Longrightarrow X_{\infty}$ if and only if for every bounded continuous g we have $E g\left(X_{n}\right) \rightarrow E g\left(X_{\infty}\right)$.
- Proof idea: Define X_{n} on common sample space so converge a.s., use bounded convergence theorem.
- Theorem: Suppose g is measurable and its set of discontinuity points has μ_{X} measure zero. Then $X_{n} \Longrightarrow X_{\infty}$ implies $g\left(X_{n}\right) \Longrightarrow g(X)$.
- Proof idea: Define X_{n} on common sample space so converge a.s., use bounded convergence theorem.

Compactness

- Theorem: Every sequence F_{n} of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y)=F(y)$ at all continuity points of F.

Compactness

- Theorem: Every sequence F_{n} of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y)=F(y)$ at all continuity points of F.
- Limit may not be a distribution function.

Compactness

- Theorem: Every sequence F_{n} of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y)=F(y)$ at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say μ_{n} are tight if for every ϵ we can find an M so that $\mu_{n}[-M, M]<\epsilon$ for all n. Define tightness analogously for corresponding real random variables or distributions functions.

Compactness

- Theorem: Every sequence F_{n} of distribution has subsequence converging to right continuous nondecreasing F so that $\lim F_{n(k)}(y)=F(y)$ at all continuity points of F.
- Limit may not be a distribution function.
- Need a "tightness" assumption to make that the case. Say μ_{n} are tight if for every ϵ we can find an M so that $\mu_{n}[-M, M]<\epsilon$ for all n. Define tightness analogously for corresponding real random variables or distributions functions.
- Theorem: Every subsequential limit of the F_{n} above is the distribution function of a probability measure if and only if the F_{n} are tight.

Total variation norm

- If we have two probability measures μ and ν we define the total variation distance between them is

$$
\|\mu-\nu\|:=\sup _{B}|\mu(B)-\nu(B)|
$$

Total variation norm

- If we have two probability measures μ and ν we define the total variation distance between them is $\|\mu-\nu\|:=\sup _{B}|\mu(B)-\nu(B)|$.
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.

Total variation norm

- If we have two probability measures μ and ν we define the total variation distance between them is $\|\mu-\nu\|:=\sup _{B}|\mu(B)-\nu(B)|$.
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.
- Corresponds to L_{1} distance between density functions when these exist.

Total variation norm

- If we have two probability measures μ and ν we define the total variation distance between them is $\|\mu-\nu\|:=\sup _{B}|\mu(B)-\nu(B)|$.
- Intuitively, it two measures are close in the total variation sense, then (most of the time) a sample from one measure looks like a sample from the other.
- Corresponds to L_{1} distance between density functions when these exist.
- Convergence in total variation norm is much stronger than weak convergence. Discrete uniform random variable U_{n} on $(1 / n, 2 / n, 3 / n, \ldots, n / n)$ converges weakly to uniform random variable U on $[0,1]$. But total variation distance between U_{n} and U is 1 for all n.

Outline

Weak convergence

Characteristic functions
18.175 Lecture 14

Outline

Weak convergence

Characteristic functions

Characteristic functions

- Let X be a random variable.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.

Characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic function ϕ_{X} similar to moment generating function M_{X}.
- $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- Characteristic functions are well defined at all t for all random variables X.

Characteristic function properties

- $\phi(0)=1$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.
- $|\phi(t+h)-\phi(t)| \leq E\left|e^{i h X}-1\right|$, so $\phi(t)$ uniformly continuous on $(-\infty, \infty)$

Characteristic function properties

- $\phi(0)=1$
- $\phi(-t)=\overline{\phi(t)}$
- $|\phi(t)|=\left|E e^{i t X}\right| \leq E\left|e^{i t X}\right|=1$.
- $|\phi(t+h)-\phi(t)| \leq E\left|e^{i h X}-1\right|$, so $\phi(t)$ uniformly continuous on $(-\infty, \infty)$
- $E e^{i t(a X+b)}=e^{i t b} \phi(a t)$

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then

$$
\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then $\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k} e^{i t k}}{k!}=\exp \left(\lambda\left(e^{i t}-1\right)\right)$.
- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?
- Exponential: If X is standard exponential (density e^{-x} on $(0, \infty))$ then $\phi_{X}(t)=1 /(1-i t)$.

Characteristic function examples

- Coin: If $P(X=1)=P(X=-1)=1 / 2$ then $\phi_{X}(t)=\left(e^{i t}+e^{-i t}\right) / 2=\cos t$.
- That's periodic. Do we always have periodicity if X is a random integer?
- Poisson: If X is Poisson with parameter λ then $\phi_{X}(t)=\sum_{k=0}^{\infty} e^{-\lambda \frac{\lambda^{k} e^{i t k}}{k!}}=\exp \left(\lambda\left(e^{i t}-1\right)\right)$.
- Why does doubling λ amount to squaring ϕ_{X} ?
- Normal: If X is standard normal, then $\phi_{X}(t)=e^{-t^{2} / 2}$.
- Is ϕ_{X} always real when the law of X is symmetric about zero?
- Exponential: If X is standard exponential (density e^{-x} on $(0, \infty))$ then $\phi_{X}(t)=1 /(1-i t)$.
- Bilateral exponential: if $f_{X}(t)=e^{-|x|} / 2$ on \mathbb{R} then $\phi_{X}(t)=1 /\left(1+t^{2}\right)$. Use linearity of $f_{X} \rightarrow \phi_{X}$.

