18.175: Lecture 13 More large deviations

Scott Sheffield

MIT

Large deviations

Large deviations

Define Legendre transform (or Legendre dual) of a function
 Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

Define Legendre transform (or Legendre dual) of a function
 Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.

Define Legendre transform (or Legendre dual) of a function
 Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?

Define Legendre transform (or Legendre dual) of a function Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x²? Of the function equal to 0 at 0 and ∞ everywhere else?

Define Legendre transform (or Legendre dual) of a function Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x²? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ* related?

Define Legendre transform (or Legendre dual) of a function Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x²? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ^* related?
- What is the Legendre dual of the Legendre dual of a convex function?

Define Legendre transform (or Legendre dual) of a function Λ : ℝ^d → ℝ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let's describe the Legendre dual geometrically if d = 1: Λ*(x) is where tangent line to Λ of slope x intersects the real axis.
 We can "roll" this tangent line around the convex hull of the graph of Λ, to get all Λ* values.
- Is the Legendre dual always convex?
- What is the Legendre dual of x²? Of the function equal to 0 at 0 and ∞ everywhere else?
- How are derivatives of Λ and Λ^* related?
- What is the Legendre dual of the Legendre dual of a convex function?
- What's the higher dimensional analog of rolling the tangent line?

Large deviations

Large deviations

• Let X be a random variable.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$
- If X takes both positive and negative values with positive probability then M(t) grows at least exponentially fast in |t| as |t| → ∞.

• We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?

- We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?
- Answer: M_X^n .

• Consider i.i.d. random variables X_i . Can we show that $P(S_n \ge na) \rightarrow 0$ exponentially fast when $a > E[X_i]$?

- Consider i.i.d. random variables X_i . Can we show that $P(S_n \ge na) \rightarrow 0$ exponentially fast when $a > E[X_i]$?
- ► Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to ε away from its expected value (where "very" means with probability less than some exponentially decaying function of n).

More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

▶ **INTUITION:** when "near *x*" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- ▶ **INTUITION:** when "near *x*" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.
- **Simple case:** *I* is continuous, Γ is closure of its interior.

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- ▶ **INTUITION:** when "near x" the probability density function for μ_n is tending to zero like $e^{-I(x)n}$, as $n \to \infty$.
- **Simple case:** *I* is continuous, Γ is closure of its interior.
- Question: How would *I* change if we replaced the measures μ_n by weighted measures e^(λn,·)μ_n?

- More general framework: a large deviation principle describes limiting behavior as n → ∞ of family {µ_n} of measures on measure space (X, B) in terms of a rate function I.
- The rate function is a lower-semicontinuous map *I* : X → [0,∞]. (The sets {x : *I*(x) ≤ a} are closed — rate function called "good" if these sets are compact.)
- DEFINITION: {µ_n} satisfy LDP with rate function *I* and speed *n* if for all Γ ∈ B,

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x).$$

- INTUITION: when "near x" the probability density function for µ_n is tending to zero like e^{-I(x)n}, as n→∞.
- **Simple case:** *I* is continuous, Γ is closure of its interior.
- **Question:** How would *I* change if we replaced the measures μ_n by weighted measures $e^{(\lambda n, \cdot)}\mu_n$?
- Replace I(x) by $I(x) (\lambda, x)$? What is $\inf_x I(x) (\lambda, x)$?

Let µ_n be law of empirical mean A_n = ¹/_n ∑ⁿ_{j=1} X_j for i.i.d. vectors X₁, X₂,..., X_n in ℝ^d with same law as X.

- Let µ_n be law of empirical mean A_n = ¹/_n ∑ⁿ_{j=1} X_j for i.i.d. vectors X₁, X₂,..., X_n in ℝ^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

- Let µ_n be law of empirical mean A_n = ¹/_n ∑ⁿ_{j=1} X_j for i.i.d. vectors X₁, X₂,..., X_n in ℝ^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

Define Legendre transform of A by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$ for i.i.d. vectors X_1, X_2, \dots, X_n in \mathbb{R}^d with same law as X.
- Define log moment generating function of X by

$$\Lambda(\lambda) = \Lambda_X(\lambda) = \log M_X(\lambda) = \log \mathbb{E}e^{(\lambda,X)},$$

where (\cdot, \cdot) is inner product on \mathbb{R}^d .

Define Legendre transform of Λ by

$$\Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function Λ*.

• Let
$$\mu_n$$
 be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \},$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\},\$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

This means that for all Γ ∈ B we have this asymptotic lower bound on probabilities μ_n(Γ)

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma),$$

so (up to sub-exponential error) $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

- Let μ_n be law of empirical mean $A_n = \frac{1}{n} \sum_{j=1}^n X_j$.
- CRAMER'S THEOREM: μ_n satisfy LDP with convex rate function

$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) - \Lambda(\lambda)\},\$$

where $\Lambda(\lambda) = \log M(\lambda) = \mathbb{E}e^{(\lambda, X_1)}$.

This means that for all Γ ∈ B we have this asymptotic lower bound on probabilities μ_n(Γ)

$$-\inf_{x\in\Gamma^0}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma),$$

so (up to sub-exponential error) $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

• and this **asymptotic upper bound** on the probabilities $\mu_n(\Gamma)$

$$\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x),$$

which says (up to subexponential error) $\mu_n(\Gamma) \leq e^{-n \inf_{x \in \overline{\Gamma}} I(x)}$. 18.175 Lecture 13

• Recall that
$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} I(x)}.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} I(x)}.
- If Γ were singleton set {x} we could find the λ corresponding to x, so Λ*(x) = (x, λ) − Λ(λ). Note then that

$$\mathbb{E}e^{(n\lambda,A_n)}=\mathbb{E}e^{(\lambda,S_n)}=M_X^n(\lambda)=e^{n\Lambda(\lambda)},$$

and also $\mathbb{E}e^{(n\lambda,A_n)} \ge e^{n(\lambda,x)}\mu_n\{x\}$. Taking logs and dividing by n gives $\Lambda(\lambda) \ge \frac{1}{n}\log\mu_n + (\lambda,x)$, so that $\frac{1}{n}\log\mu_n(\Gamma) \le -\Lambda^*(x)$, as desired.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{(\lambda, x) \Lambda(\lambda)\}.$
- For simplicity, assume that Λ is defined for all x (which implies that X has moments of all orders and Λ and Λ* are strictly convex, and the derivatives of Λ and Λ' are inverses of each other). It is also enough to consider the case X has mean zero, which implies that Λ(0) = 0 is a minimum of Λ, and Λ*(0) = 0 is a minimum of Λ*.
- We aim to show (up to subexponential error) that μ_n(Γ) ≤ e^{-n inf_{x∈Γ} l(x)}.
- If Γ were singleton set {x} we could find the λ corresponding to x, so Λ*(x) = (x, λ) − Λ(λ). Note then that

$$\mathbb{E}e^{(n\lambda,A_n)}=\mathbb{E}e^{(\lambda,S_n)}=M_X^n(\lambda)=e^{n\Lambda(\lambda)},$$

and also $\mathbb{E}e^{(n\lambda,A_n)} \ge e^{n(\lambda,x)}\mu_n\{x\}$. Taking logs and dividing by *n* gives $\Lambda(\lambda) \ge \frac{1}{n}\log\mu_n + (\lambda,x)$, so that $\frac{1}{n}\log\mu_n(\Gamma) \le -\Lambda^*(x)$, as desired.

General Γ: cut into finitely many pieces, bound each piece?

18.175 Lecture 13

• Recall that
$$I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) - \Lambda(\lambda) \}.$$

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

Proving Cramer lower bound

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.

- ► Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- Idea is to weight the law of X by e^(λ,x) for some λ and normalize to get a new measure whose expectation is this point x. In this new measure, A_n is "typically" in Γ for large Γ, so the probability is of order 1.

- Recall that $I(x) = \Lambda^*(x) = \sup_{\lambda \in \mathbb{R}^d} \{ (\lambda, x) \Lambda(\lambda) \}.$
- We aim to show that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- ► It's enough to show that for each given $x \in \Gamma^0$, we have that asymptotically $\mu_n(\Gamma) \ge e^{-n \inf_{x \in \Gamma^0} I(x)}$.
- Idea is to weight the law of X by e^(λ,x) for some λ and normalize to get a new measure whose expectation is this point x. In this new measure, A_n is "typically" in Γ for large Γ, so the probability is of order 1.
- But by how much did we have to modify the measure to make this typical? Not more than by factor e^{-n inf}x∈r⁰ I(x).