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Recall Borel-Cantelli lemmas

I First Borel-Cantelli lemma: If
∑∞

n=1 P(An) <∞ then
P(An i.o.) = 0.

I Second Borel-Cantelli lemma: If An are independent, then∑∞
n=1 P(An) =∞ implies P(An i.o.) = 1.
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Kolmogorov zero-one law

I Consider sequence of random variables Xn on some probability
space. Write F ′n = σ(Xn,Xn1 , . . .) and T = ∩nF ′n.

I T is called the tail σ-algebra. It contains the information you
can observe by looking only at stuff arbitrarily far into the
future. Intuitively, membership in tail event doesn’t change
when finitely many Xn are changed.

I Event that Xn converge to a limit is example of a tail event.
Other examples?

I Theorem: If X1,X2, . . . are independent and A ∈ T then
P(A) ∈ {0, 1}.
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Kolmogorov maximal inequality

I Thoerem: Suppose Xi are independent with mean zero and
finite variances, and Sn =

∑n
i=1 Xn. Then

P( max
1≤k≤n

|Sk | ≥ x) ≤ x−2Var(Sn) = x−2E |Sn|2.

I Main idea of proof: Consider first time maximum is
exceeded. Bound below the expected square sum on that
event.
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Kolmogorov three-series theorem

I Theorem: Let X1,X2, . . . be independent and fix A > 0.
Write Yi = Xi1(|Xi |≤A). Then

∑
Xi converges a.s. if and only

if the following are all true:

I
∑∞

n=1 P(|Xn| > A) <∞
I

∑∞
n=1 EYn converges

I
∑∞

n=1 Var(Yn) <∞
I Main ideas behind the proof: Kolmogorov zero-one law

implies that
∑

Xi converges with probability p ∈ {0, 1}. We
just have to show that p = 1 when all hypotheses are satisfied
(sufficiency of conditions) and p = 0 if any one of them fails
(necessity).

I To prove sufficiency, apply Borel-Cantelli to see that
probability that Xn 6= Yn i.o. is zero. Subtract means from
Yn, reduce to case that each Yn has mean zero. Apply
Kolmogorov maximal inequality.
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Recall: moment generating functions

I Let X be a random variable.

I The moment generating function of X is defined by
M(t) = MX (t) := E [etX ].

I When X is discrete, can write M(t) =
∑

x e
txpX (x). So M(t)

is a weighted average of countably many exponential
functions.

I When X is continuous, can write M(t) =
∫∞
−∞ etx f (x)dx . So

M(t) is a weighted average of a continuum of exponential
functions.

I We always have M(0) = 1.

I If b > 0 and t > 0 then
E [etX ] ≥ E [etmin{X ,b}] ≥ P{X ≥ b}etb.

I If X takes both positive and negative values with positive
probability then M(t) grows at least exponentially fast in |t|
as |t| → ∞.
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Recall: moment generating functions for i.i.d. sums

I We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

I If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

I Answer: Mn
X . Follows by repeatedly applying formula above.

I This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.
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Large deviations

I Consider i.i.d. random variables Xi . Want to show that if
φ(θ) := MXi

(θ) = E exp(θXi ) is less than infinity for some
θ > 0, then P(Sn ≥ na)→ 0 exponentially fast when
a > E [Xi ].

I Kind of a quantitative form of the weak law of large numbers.
The empirical average An is very unlikely to ε away from its
expected value (where “very” means with probability less than
some exponentially decaying function of n).

I Write γ(a) = limn→∞
1
n logP(Sn ≥ na). It gives the “rate” of

exponential decay as a function of a.
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