18.175: Lecture 11

Independent sums and large deviations

Scott Sheffield

MIT

Recollections

Large deviations

Recollections

Large deviations

▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.

- ▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0.$
- ▶ Second Borel-Cantelli lemma: If A_n are independent, then $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n \text{ i.o.}) = 1$.

► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- Event that X_n converge to a limit is example of a tail event. Other examples?

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- Event that X_n converge to a limit is example of a tail event. Other examples?
- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$

▶ **Thoerem:** Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^n X_n$. Then

$$P(\max_{1\leq k\leq n}|S_k|\geq x)\leq x^{-2}\mathrm{Var}(S_n)=x^{-2}E|S_n|^2.$$

▶ **Thoerem:** Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^n X_n$. Then

$$P(\max_{1\leq k\leq n}|S_k|\geq x)\leq x^{-2}\mathrm{Var}(S_n)=x^{-2}E|S_n|^2.$$

Main idea of proof: Consider first time maximum is exceeded. Bound below the expected square sum on that event.

► Theorem: Let X₁, X₂,... be independent and fix A > 0. Write Y_i = X_i1_(|X_i|≤A). Then ∑X_i converges a.s. if and only if the following are all true:

► Theorem: Let X₁, X₂,... be independent and fix A > 0. Write Y_i = X_i1_(|X_i|≤A). Then ∑ X_i converges a.s. if and only if the following are all true:

•
$$\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$$

► Theorem: Let X₁, X₂,... be independent and fix A > 0. Write Y_i = X_i1_(|X_i|≤A). Then ∑ X_i converges a.s. if and only if the following are all true:

$$\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$$

•
$$\sum_{n=1}^{\infty} EY_n$$
 converges

► Theorem: Let X₁, X₂,... be independent and fix A > 0. Write Y_i = X_i1_(|X_i|≤A). Then ∑ X_i converges a.s. if and only if the following are all true:

$$\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$$

$$\sum_{n=1}^{\infty} EY_n \text{ converges}$$

$$\sum_{n=1}^{\infty} \operatorname{Var}(Y_n) < \infty$$

- **Theorem:** Let X_1, X_2, \ldots be independent and fix A > 0. Write $Y_i = X_i \mathbb{1}_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
 - ► $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$ ► $\sum_{n=1}^{\infty} EY_n$ converges ► $\sum_{n=1}^{\infty} Var(Y_n) < \infty$
- Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that p = 1 when all hypotheses are satisfied (sufficiency of conditions) and p = 0 if any one of them fails (necessity).

- **Theorem:** Let X_1, X_2, \ldots be independent and fix A > 0. Write $Y_i = X_i \mathbb{1}_{\{|X_i| \le A\}}$. Then $\sum X_i$ converges a.s. if and only if the following are all true:
 - ► $\sum_{n=1}^{\infty} P(|X_n| > A) < \infty$ ► $\sum_{n=1}^{\infty} EY_n$ converges ► $\sum_{n=1}^{\infty} Var(Y_n) < \infty$
- Main ideas behind the proof: Kolmogorov zero-one law implies that $\sum X_i$ converges with probability $p \in \{0, 1\}$. We just have to show that p = 1 when all hypotheses are satisfied (sufficiency of conditions) and p = 0 if any one of them fails (necessity).
- To prove sufficiency, apply Borel-Cantelli to see that probability that $X_n \neq Y_n$ i.o. is zero. Subtract means from Y_n , reduce to case that each Y_n has mean zero. Apply Kolmogorov maximal inequality.

Recollections

Large deviations

Recollections

Large deviations

• Let X be a random variable.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.

- Let X be a random variable.
- ► The moment generating function of X is defined by M(t) = M_X(t) := E[e^{tX}].
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$
- If X takes both positive and negative values with positive probability then M(t) grows at least exponentially fast in |t| as |t| → ∞.

▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$

Recall: moment generating functions for i.i.d. sums

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?

Recall: moment generating functions for i.i.d. sums

- ▶ We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?
- Answer: M_X^n . Follows by repeatedly applying formula above.

Recall: moment generating functions for i.i.d. sums

- We showed that if Z = X + Y and X and Y are independent, then $M_Z(t) = M_X(t)M_Y(t)$
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?
- Answer: M_X^n . Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.

• Consider i.i.d. random variables X_i . Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \ge na) \to 0$ exponentially fast when $a > E[X_i]$.

- Consider i.i.d. random variables X_i . Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \ge na) \to 0$ exponentially fast when $a > E[X_i]$.
- Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to ε away from its expected value (where "very" means with probability less than some exponentially decaying function of n).

- Consider i.i.d. random variables X_i . Want to show that if $\phi(\theta) := M_{X_i}(\theta) = E \exp(\theta X_i)$ is less than infinity for some $\theta > 0$, then $P(S_n \ge na) \to 0$ exponentially fast when $a > E[X_i]$.
- ► Kind of a quantitative form of the weak law of large numbers. The empirical average A_n is very unlikely to ε away from its expected value (where "very" means with probability less than some exponentially decaying function of n).
- Write γ(a) = lim_{n→∞} ¹/_n log P(S_n ≥ na). It gives the "rate" of exponential decay as a function of a.