18.175: Lecture 10
 Zero-one laws and maximal inequalities

Scott Sheffield

MIT

Outline

Recollections

Kolmogorov zero-one law and three-series theorem

Outline

Recollections

Kolmogorov zero-one law and three-series theorem

Recall Borel-Cantelli lemmas

- First Borel-Cantelli Iemma: If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then $P\left(A_{n}\right.$ i.o. $)=0$.

Recall Borel-Cantelli lemmas

- First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then $P\left(A_{n}\right.$ i.o. $)=0$.
- Second Borel-Cantelli lemma: If A_{n} are independent, then $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$ implies $P\left(A_{n}\right.$ i.o. $)=1$.

Recall strong law of large numbers

- Theorem (strong law): If X_{1}, X_{2}, \ldots are i.i.d. real-valued random variables with expectation m and $A_{n}:=n^{-1} \sum_{i=1}^{n} X_{i}$ are the empirical means then $\lim _{n \rightarrow \infty} A_{n}=m$ almost surely.

Outline

Recollections

Kolmogorov zero-one law and three-series theorem

Outline

Recollections

Kolmogorov zero-one law and three-series theorem

Kolmogorov zero-one law

- Consider sequence of random variables X_{n} on some probability space. Write $\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n}, X_{n_{1}}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}$.

Kolmogorov zero-one law

- Consider sequence of random variables X_{n} on some probability space. Write $\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n}, X_{n_{1}}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}$.
- \mathcal{T} is called the tail σ-algebra. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_{n} are changed.

Kolmogorov zero-one law

- Consider sequence of random variables X_{n} on some probability space. Write $\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n}, X_{n_{1}}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}$.
- \mathcal{T} is called the tail σ-algebra. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_{n} are changed.
- Event that X_{n} converge to a limit is example of a tail event. Other examples?

Kolmogorov zero-one law

- Consider sequence of random variables X_{n} on some probability space. Write $\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n}, X_{n_{1}}, \ldots\right)$ and $\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}$.
- \mathcal{T} is called the tail σ-algebra. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_{n} are changed.
- Event that X_{n} converge to a limit is example of a tail event. Other examples?
- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.

Kolmogorov zero-one law proof idea

- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.

Kolmogorov zero-one law proof idea

- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.
- Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A)=P(A \cap A)=P(A)^{2}$. How do we prove that?

Kolmogorov zero-one law proof idea

- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.
- Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A)=P(A \cap A)=P(A)^{2}$. How do we prove that?
- Recall theorem that if \mathcal{A}_{i} are independent π-systems, then σA_{i} are independent.

Kolmogorov zero-one law proof idea

- Theorem: If X_{1}, X_{2}, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in\{0,1\}$.
- Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., $P(A)=P(A \cap A)=P(A)^{2}$. How do we prove that?
- Recall theorem that if \mathcal{A}_{i} are independent π-systems, then σA_{i} are independent.
- Deduce that $\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\sigma\left(X_{n+1}, X_{n+1}, \ldots\right)$ are independent. Then deduce that $\sigma\left(X_{1}, X_{2}, \ldots\right)$ and \mathcal{T} are independent, using fact that $\cup_{k} \sigma\left(X_{1}, \ldots, X_{k}\right)$ and \mathcal{T} are π-systems.

Kolmogorov maximal inequality

- Thoerem: Suppose X_{i} are independent with mean zero and finite variances, and $S_{n}=\sum_{i=1}^{n} X_{n}$. Then

$$
P\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \leq x^{-2} \operatorname{Var}\left(S_{n}\right)=x^{-2} E\left|S_{n}\right|^{2}
$$

Kolmogorov maximal inequality

- Thoerem: Suppose X_{i} are independent with mean zero and finite variances, and $S_{n}=\sum_{i=1}^{n} X_{n}$. Then

$$
P\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \leq x^{-2} \operatorname{Var}\left(S_{n}\right)=x^{-2} E\left|S_{n}\right|^{2}
$$

- Main idea of proof: Consider first time maximum is exceeded. Bound below the expected square sum on that event.

