18.175: Lecture 10 Zero-one laws and maximal inequalities

Scott Sheffield

MIT

Kolmogorov zero-one law and three-series theorem

Kolmogorov zero-one law and three-series theorem

▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0$.

- ▶ First Borel-Cantelli lemma: If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(A_n \text{ i.o.}) = 0.$
- ▶ Second Borel-Cantelli lemma: If A_n are independent, then $\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n \text{ i.o.}) = 1$.

▶ **Theorem (strong law):** If $X_1, X_2, ...$ are i.i.d. real-valued random variables with expectation m and $A_n := n^{-1} \sum_{i=1}^n X_i$ are the *empirical means* then $\lim_{n\to\infty} A_n = m$ almost surely.

Kolmogorov zero-one law and three-series theorem

Kolmogorov zero-one law and three-series theorem

► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- Event that X_n converge to a limit is example of a tail event. Other examples?

- ► Consider sequence of random variables X_n on some probability space. Write $\mathcal{F}'_n = \sigma(X_n, X_{n_1}, ...)$ and $\mathcal{T} = \bigcap_n \mathcal{F}'_n$.
- \mathcal{T} is called the **tail** σ -**algebra**. It contains the information you can observe by looking only at stuff arbitrarily far into the future. Intuitively, membership in tail event doesn't change when finitely many X_n are changed.
- Event that X_n converge to a limit is example of a tail event. Other examples?
- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$

• **Theorem:** If X_1, X_2, \ldots are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$

Kolmogorov zero-one law proof idea

- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$
- ► Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., P(A) = P(A ∩ A) = P(A)². How do we prove that?

Kolmogorov zero-one law proof idea

- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$
- ► Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., P(A) = P(A ∩ A) = P(A)². How do we prove that?
- Recall theorem that if A_i are independent π-systems, then *σ*A_i are independent.

- ▶ **Theorem:** If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $P(A) \in \{0, 1\}.$
- ► Main idea of proof: Statement is equivalent to saying that A is independent of itself, i.e., P(A) = P(A ∩ A) = P(A)². How do we prove that?
- Recall theorem that if A_i are independent π-systems, then *σ*A_i are independent.
- Deduce that σ(X₁, X₂,..., X_n) and σ(X_{n+1}, X_{n+1},...) are independent. Then deduce that σ(X₁, X₂,...) and T are independent, using fact that ∪_kσ(X₁,..., X_k) and T are π-systems.

▶ **Thoerem:** Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^n X_n$. Then

$$P(\max_{1\leq k\leq n}|S_k|\geq x)\leq x^{-2}\mathrm{Var}(S_n)=x^{-2}E|S_n|^2.$$

▶ **Thoerem:** Suppose X_i are independent with mean zero and finite variances, and $S_n = \sum_{i=1}^n X_n$. Then

$$P(\max_{1\leq k\leq n}|S_k|\geq x)\leq x^{-2}\mathrm{Var}(S_n)=x^{-2}E|S_n|^2.$$

Main idea of proof: Consider first time maximum is exceeded. Bound below the expected square sum on that event.