18.175: Lecture 10

Zero-one laws and maximal inequalities

Scott Sheffield

MIT
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Recollections

Kolmogorov zero-one law and three-series theorem
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Recall Borel-Cantelli lemmas

» First Borel-Cantelli lemma: If > °, P(A,) < oo then
P(A, i.0.)=0.
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Recall Borel-Cantelli lemmas

» First Borel-Cantelli lemma: If > °, P(A,) < oo then
P(A, i.0.)=0.

» Second Borel-Cantelli lemma: If A, are independent, then
Y021 P(An) = oo implies P(Ap i.0.) = 1.
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Recall strong law of large numbers

» Theorem (strong law): If X1, X5, ... are i.i.d. real-valued
random variables with expectation m and A, :=n"1>°7  X;
are the empirical means then lim,_., A, = m almost surely.
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Kolmogorov zero-one law

» Consider sequence of random variables X, on some probability
space. Write F}, = o(Xp, Xn,,...) and T = N, F,.
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Kolmogorov zero-one law

» Consider sequence of random variables X, on some probability
space. Write F}, = o(Xp, Xny,...) and T = NpF),.

» T is called the tail o-algebra. It contains the information you
can observe by looking only at stuff arbitrarily far into the
future. Intuitively, membership in tail event doesn't change
when finitely many X,, are changed.
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» Consider sequence of random variables X, on some probability
space. Write F}, = o(Xp, Xny,...) and T = NpF),.

» T is called the tail o-algebra. It contains the information you
can observe by looking only at stuff arbitrarily far into the
future. Intuitively, membership in tail event doesn't change
when finitely many X,, are changed.

» Event that X, converge to a limit is example of a tail event.
Other examples?
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Kolmogorov zero-one law

» Consider sequence of random variables X, on some probability
space. Write F}, = o(Xp, Xny,...) and T = NpF),.

» T is called the tail o-algebra. It contains the information you
can observe by looking only at stuff arbitrarily far into the
future. Intuitively, membership in tail event doesn't change
when finitely many X,, are changed.

» Event that X, converge to a limit is example of a tail event.
Other examples?

» Theorem: If X1, X5, ... are independent and A € T then
P(A) € {0,1}.
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Kolmogorov zero-one law proof idea

» Theorem: If X;, X5, ... are independent and A € T then
P(A) € {0,1}.
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Kolmogorov zero-one law proof idea

» Theorem: If Xi, X5, ... are independent and A € T then
P(A) € {0,1}.
» Main idea of proof: Statement is equivalent to saying that A

is independent of itself, i.e., P(A) = P(AN A) = P(A)?. How
do we prove that?
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Kolmogorov zero-one law proof idea

» Theorem: If X;, X5, ... are independent and A € T then
P(A) € {0,1}.

» Main idea of proof: Statement is equivalent to saying that A
is independent of itself, i.e., P(A) = P(AN A) = P(A)?. How
do we prove that?

» Recall theorem that if A; are independent m-systems, then
oA; are independent.

» Deduce that o(Xy, X2, ..., X,) and o(Xp41, Xnt1,-..) are
independent. Then deduce that o(Xy, X2,...) and T are

independent, using fact that Ugo (X1, ..., Xk) and T are
m-systems.

18 175 L ecture 10



Kolmogorov maximal inequality

» Thoerem: Suppose X; are independent with mean zero and
finite variances, and S, = 27:1 X,. Then

S ) < 52 _ 2 2
P(lrgka%(n|5k|_x)_x Var(S,) = x “E|S|
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Kolmogorov maximal inequality

» Thoerem: Suppose X; are independent with mean zero and
finite variances, and S, = 27:1 X,. Then

S ) < 52 _ 2 2
P(lrgka%(n|5k|_x)_x Var(S,) = x “E|S|

» Main idea of proof: Consider first time maximum is
exceeded. Bound below the expected square sum on that
event.
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