18.175: Lecture 1

Probability spaces and σ-algebras

Scott Sheffield

MIT

Outline

Probability spaces and σ-algebras

Distributions on \mathbb{R}

18.175 Lecture 1

Outline

Probability spaces and σ-algebras

Distributions on \mathbb{R}

18.175 Lecture 1

Probability space notation

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.

Probability space notation

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.

Probability space notation

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- Measure is function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.

Probability space notation

- Probability space is triple (Ω, \mathcal{F}, P) where Ω is sample space, \mathcal{F} is set of events (the σ-algebra) and $P: \mathcal{F} \rightarrow[0,1]$ is the probability function.
- σ-algebra is collection of subsets closed under complementation and countable unions. Call (Ω, \mathcal{F}) a measure space.
- Measure is function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathcal{F}$ and countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for disjoint A_{i}.
- Measure μ is probability measure if $\mu(\Omega)=1$.

Basic consequences of definitions

- monotonicity: $A \subset B$ implies $\mu(A) \leq \mu(B)$

Basic consequences of definitions

- monotonicity: $A \subset B$ implies $\mu(A) \leq \mu(B)$
- subadditivity: $A \subset \cup_{m=1}^{\infty} A_{m}$ implies $\mu(A) \leq \sum_{m=1}^{\infty} \mu\left(A_{m}\right)$.

Basic consequences of definitions

- monotonicity: $A \subset B$ implies $\mu(A) \leq \mu(B)$
- subadditivity: $A \subset \cup_{m=1}^{\infty} A_{m}$ implies $\mu(A) \leq \sum_{m=1}^{\infty} \mu\left(A_{m}\right)$.
- continuity from below: measures of sets A_{i} in increasing sequence converge to measure of limit $\cup_{i} A_{i}$

Basic consequences of definitions

- monotonicity: $A \subset B$ implies $\mu(A) \leq \mu(B)$
- subadditivity: $A \subset \cup_{m=1}^{\infty} A_{m}$ implies $\mu(A) \leq \sum_{m=1}^{\infty} \mu\left(A_{m}\right)$.
- continuity from below: measures of sets A_{i} in increasing sequence converge to measure of limit $\cup_{i} A_{i}$
- continuity from above: measures of sets A_{i} in decreasing sequence converge to measure of intersection $\cap_{i} A_{i}$

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.
- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.
- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- By translation invariance, $\tau_{r}(B)$ has same probability as B.

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.
- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- By translation invariance, $\tau_{r}(B)$ has same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.
- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- By translation invariance, $\tau_{r}(B)$ has same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.
- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- By translation invariance, $\tau_{r}(B)$ has same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.
- Let $A \subset[0,1)$ contain one point from each class. For each $x \in[0,1)$, there is one $a \in A$ such that $r=x-a$ is rational.

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.
- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- By translation invariance, $\tau_{r}(B)$ has same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.
- Let $A \subset[0,1)$ contain one point from each class. For each $x \in[0,1)$, there is one $a \in A$ such that $r=x-a$ is rational.
- Then each x in $[0,1)$ lies in $\tau_{r}(A)$ for one rational $r \in[0,1)$.

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.
- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- By translation invariance, $\tau_{r}(B)$ has same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.
- Let $A \subset[0,1)$ contain one point from each class. For each $x \in[0,1)$, there is one $a \in A$ such that $r=x-a$ is rational.
- Then each x in $[0,1)$ lies in $\tau_{r}(A)$ for one rational $r \in[0,1)$.
- Thus $[0,1)=\cup \tau_{r}(A)$ as r ranges over rationals in $[0,1)$.

Why can't σ-algebra be all subsets of Ω ?

- Uniform probability measure on $[0,1)$ should satisfy translation invariance: If B and a horizontal translation of B are both subsets $[0,1)$, their probabilities should be equal.
- Consider wrap-around translations $\tau_{r}(x)=(x+r) \bmod 1$.
- By translation invariance, $\tau_{r}(B)$ has same probability as B.
- Call x, y "equivalent modulo rationals" if $x-y$ is rational (e.g., $x=\pi-3$ and $y=\pi-9 / 4$). An equivalence class is the set of points in $[0,1)$ equivalent to some given point.
- There are uncountably many of these classes.
- Let $A \subset[0,1)$ contain one point from each class. For each $x \in[0,1)$, there is one $a \in A$ such that $r=x-a$ is rational.
- Then each x in $[0,1)$ lies in $\tau_{r}(A)$ for one rational $r \in[0,1)$.
- Thus $[0,1)=\cup \tau_{r}(A)$ as r ranges over rationals in $[0,1)$.
- If $P(A)=0$, then $P(S)=\sum_{r} P\left(\tau_{r}(A)\right)=0$. If $P(A)>0$ then $P(S)=\sum_{r} P\left(\tau_{r}(A)\right)=\infty$. Contradicts $P(S)=1$ axiom.

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Look up Banach-Tarski.)

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Look up Banach-Tarski.)
- 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Restrict attention to some σ-algebra of measurable sets.

Three ways to get around this

- 1. Re-examine axioms of mathematics: the very existence of a set A with one element from each equivalence class is consequence of so-called axiom of choice. Removing that axiom makes paradox goes away, since one can just suppose (pretend?) these kinds of sets don't exist.
- 2. Re-examine axioms of probability: Replace countable additivity with finite additivity? (Look up Banach-Tarski.)
- 3. Keep the axiom of choice and countable additivity but don't define probabilities of all sets: Restrict attention to some σ-algebra of measurable sets.
- Most mainstream probability and analysis takes the third approach. But good to be aware of alternatives (e.g., axiom of determinacy which implies that all sets are Lebesgue measurable).

Borel σ-algebra

- The Borel σ-algebra \mathcal{B} is the smallest σ-algebra containing all open intervals.

Borel σ-algebra

- The Borel σ-algebra \mathcal{B} is the smallest σ-algebra containing all open intervals.
- Say that \mathcal{B} is "generated" by the collection of open intervals.

Borel σ-algebra

- The Borel σ-algebra \mathcal{B} is the smallest σ-algebra containing all open intervals.
- Say that \mathcal{B} is "generated" by the collection of open intervals.
- Why does this notion make sense? If \mathcal{F}_{i} are σ-fields (for i in possibly uncountable index set I) does this imply that $\cap_{i \in I} \mathcal{F}_{i}$ is a σ-field?

Outline

Probability spaces and σ-algebras

Distributions on \mathbb{R}

18.175 Lecture 1

Outline

Probability spaces and σ-algebras

Distributions on \mathbb{R}
18.175 Lecture 1

Can we classify set of all probability measures on \mathbb{R} ?

- Write $F(a)=P((-\infty, a])$.

Can we classify set of all probability measures on \mathbb{R} ?

- Write $F(a)=P((-\infty, a])$.
- Theorem: for each right continuous, non-decreasing function F, tending to 0 at $-\infty$ and to 1 at ∞, there is a unique measure defined on the Borel sets of \mathbb{R} with $P((a, b])=F(b)-F(a)$.

