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Probability space notation

I Probability space is triple (Ω,F ,P) where Ω is sample
space, F is set of events (the σ-algebra) and P : F → [0, 1] is
the probability function.

I σ-algebra is collection of subsets closed under
complementation and countable unions. Call (Ω,F) a
measure space.

I Measure is function µ : F → R satisfying µ(A) ≥ µ(∅) = 0
for all A ∈ F and countable additivity: µ(∪iAi ) =

∑
i µ(Ai )

for disjoint Ai .

I Measure µ is probability measure if µ(Ω) = 1.
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Basic consequences of definitions

I monotonicity: A ⊂ B implies µ(A) ≤ µ(B)

I subadditivity: A ⊂ ∪∞m=1Am implies µ(A) ≤
∑∞

m=1 µ(Am).

I continuity from below: measures of sets Ai in increasing
sequence converge to measure of limit ∪iAi

I continuity from above: measures of sets Ai in decreasing
sequence converge to measure of intersection ∩iAi
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Why can’t σ-algebra be all subsets of Ω?

I Uniform probability measure on [0, 1) should satisfy
translation invariance: If B and a horizontal translation of B
are both subsets [0, 1), their probabilities should be equal.

I Consider wrap-around translations τr (x) = (x + r) mod 1.

I By translation invariance, τr (B) has same probability as B.

I Call x , y “equivalent modulo rationals” if x − y is rational
(e.g., x = π − 3 and y = π − 9/4). An equivalence class is
the set of points in [0, 1) equivalent to some given point.

I There are uncountably many of these classes.

I Let A ⊂ [0, 1) contain one point from each class. For each
x ∈ [0, 1), there is one a ∈ A such that r = x − a is rational.

I Then each x in [0, 1) lies in τr (A) for one rational r ∈ [0, 1).

I Thus [0, 1) = ∪τr (A) as r ranges over rationals in [0, 1).

I If P(A) = 0, then P(S) =
∑

r P(τr (A)) = 0. If P(A) > 0 then
P(S) =

∑
r P(τr (A)) =∞. Contradicts P(S) = 1 axiom.
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Three ways to get around this

I 1. Re-examine axioms of mathematics: the very existence
of a set A with one element from each equivalence class is
consequence of so-called axiom of choice. Removing that
axiom makes paradox goes away, since one can just suppose
(pretend?) these kinds of sets don’t exist.

I 2. Re-examine axioms of probability: Replace countable
additivity with finite additivity? (Look up Banach-Tarski.)

I 3. Keep the axiom of choice and countable additivity but
don’t define probabilities of all sets: Restrict attention to
some σ-algebra of measurable sets.

I Most mainstream probability and analysis takes the third
approach. But good to be aware of alternatives (e.g., axiom
of determinacy which implies that all sets are Lebesgue
measurable).
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Borel σ-algebra

I The Borel σ-algebra B is the smallest σ-algebra containing
all open intervals.

I Say that B is “generated” by the collection of open intervals.

I Why does this notion make sense? If Fi are σ-fields (for i in
possibly uncountable index set I ) does this imply that ∩i∈IFi

is a σ-field?

18.175 Lecture 1



Borel σ-algebra

I The Borel σ-algebra B is the smallest σ-algebra containing
all open intervals.

I Say that B is “generated” by the collection of open intervals.

I Why does this notion make sense? If Fi are σ-fields (for i in
possibly uncountable index set I ) does this imply that ∩i∈IFi

is a σ-field?

18.175 Lecture 1



Borel σ-algebra

I The Borel σ-algebra B is the smallest σ-algebra containing
all open intervals.

I Say that B is “generated” by the collection of open intervals.

I Why does this notion make sense? If Fi are σ-fields (for i in
possibly uncountable index set I ) does this imply that ∩i∈IFi

is a σ-field?

18.175 Lecture 1



Outline

Probability spaces and σ-algebras

Distributions on R

18.175 Lecture 1



Outline

Probability spaces and σ-algebras

Distributions on R

18.175 Lecture 1



Can we classify set of all probability measures on R?

I Write F (a) = P
(
(−∞, a]

)
.

I Theorem: for each right continuous, non-decreasing function
F , tending to 0 at −∞ and to 1 at ∞, there is a unique
measure defined on the Borel sets of R with
P((a, b]) = F (b)− F (a).
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