A Combinatorial Packing Problem’

L. D. Baumert, et al.

Introduction. We are concerned with the efficient packing of squares of
side two into the p X p torus. More generally, we are interested in the analogous
n dimensional problem: that of packing n dimensional two-cubes efficiently
into a pXpX---Xp torus. Of course, when p is even, the problem is trivial.
(For then, the simplest possible alignment of the cubes completely fills the
torus.} Thus, we restrict p to be an odd integer. Further, it should be pointed
out that our primary interest is in determining the maximum number [=« (C})]
of cubes which can be packed into the torus and that we are only secondarily
concerned with the actual structural details of any particular maximal packing.
Figure ia shows that (p =9, n = 2) at least 18 such cubes can be placed in the
9 X 9 torus. Sin¢e an odd number of squares (in particular, at least one square)
of each row and column must be vacant in any such packing, it follows that
Figure la exhibits a maximal packing of the 9 X 9 torus. That is, a(C3) = 18.

The notation a(G') is taken from Berge {1] where it is called the coefficient
of internal stability of the undirected graph G. That is, (G} denotes the
maximum number of vertices of G, no two of which are adjacent. Another
function of interest is '

cap (G} = sup 1 log a(G")
n n
where G" denotes a particular n-fold graph theoretic product of G with itself,
Cap (G) is called the capacity of the graph G and, as its name suggests, is of
interest in information theory (see Shannon [2]). The graph C, is the single
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cycle graph on p vertices, and the known values of a{C?) provide bounds for
cap (C,). However, cap (C,) remains unknown for every odd value of p = 5.
The work reported below on a(C?) was done over a period of time by
several people. These include: L. D. Baumert, R. J. McEliece, Eugene
Redemich, Howard C. Rumsey, Jr., Richard Stanley and Herbert Taylor. In



addition it has become clear that some of this work was done independently,
indeed previously, by R. Stanton Hales [3].

Some bounds for a(C:) and an expansion process. Whenever there is any
reason to stress the parameters involved, we shall call the packing cubes, 2"-
cubes, and refer to the torus as a p"-torus. Furthermore, we will use the word
cell to refer to any n dimensional unit cube.

Let a p™-torus containing a packing of size N, be given, i.e., a packing which
consists of N, 2"-cubes. Consider what happens when, with corresponding
adjustments in the rest of the torus, an arbitrary preselected cell ¢ is allowed to
expand until it becomes a 3"-cube. That is, when each of the hyperplanes
through ¢ perpendicular to a coordinate direction is replaced by three copies of
itself. (Figures lc, 1d give examples of this expansion process applied to the
52-torus.) With the convention that every cell created by this process is empty
or filled according to whether the cell it is duplicating is empty or filled, this
produces a packing of the (p+2)"-torus by 2*-cubes. Of course, the particular
packing obtained depends strongly on the preselected cell c. However, averag-
ing over all the p® possible expansions (a different expansion for each of the
p" different cells ¢ of the original torus) provides a lower bound on the size of
the maximal expansion packing of a (p + 2)"-torus derivable from a given pack-
ing of a p™-torus, Thus

THEOREM 1. If there exists a packing of a p™-torus of size Ny, then there
exists a packing af a (p+ 2)"-torus of size Npo. with

Npsz Z Ny ((p+2)ip)".

Proor. As noted above, the expansion process takes packings into pack-
ings, so only volume arguments need be considered. Expand the p*-torus in all
p® possible ways getting p* (p + 2)*-tori. Since the expansion process is com-
pletely symmetric, each cell of the originat p*-torus will be duplicated the same
number of times in this collection of tori. So each cell appears (p+ 2)" times,
and each time it appears it is filled or vacant according to whether it was filled
or vacant in the original packing of the p*-torus. Thus our collection of (p + 2)"-
tori contains N,{p+2)" 2"-cubes. So, at least one of them is packed with as
many as N, ((p + 2)/p)" such cubes, which completes the proof,

Notice that if {as in Figure 1d) the expansion cell ¢ is empty, it, of course,
expands and becomes an empty 3"-cube, into which one further 2"-cube can be
placed. Since there are p" —2°N, such vacant cells in any packing of the p"-
torus, our estimate can be increased slightly. That is

COROLLARY 1.

Npsz2 2 1+ N, ((p+2)"-27)/p").

Of course, both estimates, if not already integral, may be repltaced by the
smallest integer which is larger than them.



COROLLARY 2.
a(C;‘) Z 1+ alCr ) - ({p* 2" (p—2)").

2

Using the numbers 0, 1...., p—1, let us number the p*-torus in each of its
coordinate directions. Thus, each cell of the torus can be designated by an »-
tuple with entries from {0, I, ...,p— 1}. A 2*-cube, then, may be considered to
be a set of cells whose coordinates are given by x +y, where x is a fixed p-ary
n-tuple, y ranges over all 0, 1 n-tuples and the addition is component addition
modulo p. Thus x may be considered to be a sort of generalized “upper lefi-
hand corner’ for its particular 2™-cube. It is often convenient to specify pack-
ings by designating the cells x which are to be upper left-hand corners in this
sense.

Suppose the vectors x,, ..., x, specify a packing of the p™-torus and the
vectors y;, ..., ¥, specify a packing of the p*-torus. Then the st vectors x,y,,
X3 ¥2s « - o X ¥ X2¥1s - - -» Xg¥r [Where the vector x;y; is that (m + n)-tuple whose
first m components are the components of x; and whose last n components are
the components of y,] specify a packing of the p™*"-torus. This is called a
product packing of the p™* "-torus. Thus

LemMa 1. If a packing of the p™-torus of size N7 and a packing of the
p"-torus of size N7 exist, then there exists a packing of the p™*t"-torus of size
Ngwith

v

NN

Np mn -
r r
COROLLARY 3.
a(C:) = a(C;“) . a(C;‘_"'}
Jorl=m=n—1.

So, by means of Corollaries 2, 3, we have lower bounds on the values taken
by a(C3). A study of the known values of «(C7) shows that neither of these
lower bounds dominates the other. As far as upper bounds are concerned,
consider the following simple volume argument. The percentage of cells vacant
in a maximal packing of the p®*!-torus is not less than the percentage of vacant
cells in a maximal packing of the p”-torus. This is because the packing of the
p**ltorus may be considered to be merely the juxtaposition of p packings of
the p*-torus. Allowing for the facts that the 2°*'-cube contains twice as many
cells as the 2*-cube and that packing sizes are integers, yields

LEMma 2.
a(Cr) = [pf2- a(C;‘_‘)J
where, as usual, the square brackets dencte the greatest integer funciion,

COROLLARY 4.
{X(C;) = (pn __pn— l){znl



Proor. Since «(C,)=(p—1)/2 obviously, the corollary follows by
neglecting the possible savings offered by the iterated use of the greatest
integer function.

Some maximal packings. Figure le tabulates many of the known values of
o{Cr). these resulis are established in this section. Where Figure le contains
two entries, these are lower and upper bounds.

THEOREM 2. For all integers n > 0. a(CH =0 and a(C})=1. For all
odd integers p > 0, a(C,} = (p—1){2 and a(C;) = [(p?— p)/4]. Here again the
squuare brackets denote the greatest integer funciion.

Proor. The first three assertions are trivial, The first two are only men-
tioned because they partially illuminate a conjecture made later. Since a{C,) =
(p— 1}{2, Lemma 2 shows that the theorem will be proved provided packings of
the proper size can be displayed for the p2-torus. Consider the packings speci-
fied by the following upper left-hand corners.

Take (¢, 2¢t+4s), t=0,1, ...,p—Ls=0.1,..,a—1whenp=4g+1.
Take (2s. 2r+s). s=0, 1. ....2a+1.t=0.1, ..., a— 1 together with (25 +
1,2¢+s+2a+1D,5=0,1,...,2a,t=0,1,..., awhenp=4da+3. To verify

that these are really packings it is necessary to check in each case that every
two vectors of the set differ by as much as 2 modulo p in at least one com-
ponent; a tedious but straightforward computation which we omit.

THEOREM 3. a(C))= (pr—p* 2" when p=k2"+1. a(C;’)=
(pr¥t=3p"+27)2%(p—2) when p=k2"+3. In both cases these are the
upper bounds provided by Lemma 2.

Proor. When p = 1 module 2%, it is obvious from Corollary 4 that the
upper bound is (p* —p*~1)2" = kp™~ ', When p = 3 modulo 2%, it is necessary
to investigate the bound of Lemma 2 more closely. Let B,, denote the upper
bound on packings of the p™-torus. Then B, = {p— 1)/2 and iterating Lemma 2
we see that to determine B,,(m = n), it is sufficient to show that

pm _pm-—‘l — 2pm-2 _4pm—3 _— _21'"—1 = 0 (mod 2)?!)_
This follows by summing the left side and remembering that p is odd. i.e.,

m_ piJF_ZHJJ - A - 2Npm+2m - m
p ( =2 ) »—2 =0 (mod2™).

So B,=(p"*t—3p"+2"){2"(p—2) when p = 3 modulo 2" as claimed, and the
theorem will be proved provided we exhibit packings of the proper size.
Let p = k2" 1 first. For k = 1, consider the packing given by

(X Xye 0 -~xn—l-xn) Wherex,, =2x +4x,+ - s 2l Xay

with x,, x,. . . .. x, -, arbitrary. If x and y represent two 2"-cubes of this packing,
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we want to show that they differ by 2 in at least one component. Suppose

x_y=(x1—-yl!- -~9xn_yn)= (le- --!Zn}

has Z,, ..., Z,_, equal t0o O, 1 or —I modulo p. Let P be the set of indices for
which Z,=+1 and let M be the set for which Z; =—1. Then, if 2Z,+
+2*1Z, _, = 0,+1 module p, we have a congruence of the form

3 2= ¥ 2 (modulop)

finP finM

where, if necessary, P or M has been extended to include the index 0. But,
unless both sums are empty, they represent different integers in the range
[0, 2* —1] = [0, p — 2] and s0 cannot be congruent modulo p.

Similarly, for £ > 1 a maximal packing is given by

(xy+2j, X2, .- s Xn—1, Xn) wWherex, =2x,+4dx,+---+2""1x,_;

withx,, x,...,x,_yarbitraryand 0 = j = k—1.
When p = k2" + 3, applying Corollary 2 to these results yields

pn_zn) =pn+:_3pn+2n
(p—2) 2%p—12)

So packings of this size exist, and our proof is complete.

Note that Corollary 2 only tells the average size of the expanded packing.
In the proof above this was shown to be equal to the upper bound B,. Thus,
every maximal packing of the p*-torus, when p = | (mod 2"), yields, uvpon
expansion about any cell ¢, 2 maximal packing for the (p + 2)*-torus.

THEOREM 4. a(C3) = 10, a(C}) = 25, o(C3) =33

Proor. Theorem 2 and Corollary 3 show that 10 = a(CJ), whereas
Lemma 2 shows that a(C3) = 12. Exhaustive search shows that a(Ca) # 11,
12. This was established by P. Slepian and independently confirmed by some
others. By Corollary 3, it follows that

25=alCh-a(CH = a(CH =3 a(CF) =25

this last by Lemma 2. So a(C}) = 25.

Similarly Corollary 3 and Lemma 2 show that 30 = a(Cf) = 35. A com-
puter search, which is discussed in more detail later, showed that a(C:) #* 34,
35 and produced several packings of size 33. One such is indicated in Figure
1b, where the number k in the ith row and jth column indicates that a 23-cube
has upper left-hand corner (i, J, k).

alCh) = 1+k(p—2)“‘1( = B,.

THEOREM 5. Let p=4k+1 and let st= k be a factorization of k into posi-
tive integers 5, t with s S t. There is a one-to-one correspondence between
these factorizations and the essentially distinct maximal packings of the p*-
LOrus.
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ProoF. Since a(C?) = (p® — p)I4 here, it follows that each row and column
of a maximal packing of the p*-torus contains exactly one empty square. Thus
every column contains exactly (p—1)/2 2-cubes. In the jth column i; of the
2-cubes join with 2-cubes of the (j—1)st column to form 2%-cubes and
(p—1)/2—i; join with 2-cubes of the (j+ 1)st column. Continving this all
the way around the torus shows (since p is odd) that /= (p—1)/2—1i, i.e..
i;=(p—1)/4 = k. So precisely k 2-cubes of each column extend to the right
and the remaining k extend to the left.

Let us look at a particular column of this packing. The 2-cubes which are
immediately above and immediately below the empty square of this column
must extend in opposite directions; for otherwise, some row of the packing
would contain two empty squares, a contradiction. So, without loss of gener-
ality, we may assume that the 2-cube immediately above the vacant square
extends to the right and that the 2-cube immediately below the vacant square
extends to the left. Thus, the structure of the packing in any column is deter-
mined by a sequence of s and r’s of length (p — 1)/2 which specifies the direc-
tion each 2-cube extends. Suppose this sequence, for column j, consists of m,
I's, followed by m, r’s, . . ., followed by m, r’s (g is necessarily even), then (see
Figure 2a) the sequence for the next column to the right (column j+ 1) is forced
to be m, r's, followed by m, I's, . . ., followed by m, I's. If the empty space in
column j immediately precedes the s, I's of that column, then the empty space
in column j+ 1 will be forced to immediately precede the m, ['s of that column.
Thus, of the g blocks of squares only the m; block changes rows as we move
from column j to column j+ | and that block moves up exactly one row. Simi-
larly, moving from column j+ 1 to j+ 2 shifts the m, block of squares up one
row, etc. Thus going from column j to column j+ g raises every block exactly
one row. So, in completing the circuit from column j all the way around the
torus to column j— 1 (= column j+ p — 1), the m, block is moved up precisely N
rows, where N is the least integer greater than or equat to (p — 1)/g. Similarly,
the complete tour from column j+4 1 around to column j Iifts the 1, block
exactly N rows. In general then, 2 complete tour of the torus raises every
block of squares precisely N rows. But this can only be the case if g divides
p— 1. On the other hand the m, block must be raised at least 2m, rows by the
time it moves from column j around to column j— 1, otherwise there is a con-
flict in column j—1. Se (p—1)/g = 2m,, whereas 2(m,+m,+- -+ m,) =
p — 1, by definition, hence

2(m1+ * '+vmg) = 2m1g.

Since there is no loss of generality in assuming that m, = max m;, it follows
that m; = m, = - - = m, = (p— 1)/2g, with g even. Clearly these conditions
are sufficient for they guarantee that all the blocks will mesh properly after
completing a tour of the torus.

Thus, for every even divisor g of (p — 1)/2, there is a maximal packing of the
p?-torus with uniform block size m, = (p—1){2g = 5.t = g/2. That is, a packing
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which corresponds with the factorization st = k. On the other hand, we have
seen that in such a packing a particular block of squares only moves up a row
once every g columns. This implies that if a packing corresponding to st = k is
rotated 90° it yields a packing which corresponds to s'¢ = k where 5" = and
' = s. Thus. all essentially different packings are considered under the require-
ment s = ¢. So. our proof is complete.

_ Other packings. Consider the packing of 4 X 2 rectangles in the 132-torus
given by Figure If. Let the numbered cells designate the upper left-hand
corners appearing in the z =0 plane of a 2%cube packing of the 133-torus.
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Further let (x, v, z} with x the row index and y the column index be used to
describe the packing. Then the numbered cells of Figure 1f together with the
cells dertved from them by repeatedly adding (2, 0. 1) modulo 13 provide a
packing of the 13%-torus of size 19 X 13 = 247. More generally

THEOREM 6. Let p=8m+ 5, then there exists a packing of the p3-torus of
size (p* —pE—4p)8.

Proor. [1is only necessary to describe a 4 X 2 packing of the p2-torus of
size (p?— p —4){8; for such a packing when repeatedly offset by (2, 0, 1) packs
the p?-torus as claimed. For p = 5 only two 4 X 2 rectangles are required and
that is easily achieved. Let p = 8m+ 5 with m = 1 and let the 4 X 2 rectangles
have upper left-hand corners

(4 +s.25) J=0... .. ms=0,.. . 4dm+1,
(4i+s+4m+4,25—1) j=0,...m—1;5=0,....4m~+2.

These provide the proper packing. To visualize this. note that Figure 1f con-
sists of 2 bands of 4 X 2 rectangles, one band being 8 rows wide and the other
4 rows wide. Further. the two bands are offset from each other by one column.
The general construction has this same structure with bands of width 4(m+ 1)
and 4m respectively.

THEOREM 7. a(C?) = 7%
Proor. One packing of size 73 is given by
(X Xy, Xy 200+ 2554 225, 20, + 4, + 6x5)
with x,. x,. x; arbitrary.
LEMMA 3. o{C7 ) = 252

(The main point of this lemma is that a(CE) does not achieve the upper
bound (=253) predicted by Lemma 2. At one time it was considered possible,
in view of Theorem 3. that a(C:) achieved the bound of Lemma 2 foralip =
2'+1)

Proor. Any packing of the 13%*-torus may be considered to be the juxta-
position of 13 packings of the 132-torus. Since at most 39 22-cubes fit in the 132
torus. this implies that 253 can only be achieved by using twelve packings of
size 39 topether with one of size 38. Let Py, .. .. P,, designate these packings
where Py, s the one of size 38. Any 2%-cube appears in two consecutive pack-
ings P;, say P; and P, and is said to stick up from P; and stick down from
P;.\. Since p is odd. the number of cubes which stick up (or down) from any
particular packing P; is uniquely determined by the sequence of packing sizes,
Here. these numbers are alternately 19 and 20 with, of course, exactly 19 cubes
of P, going in each direction.

Consider the maximal packing of the 13*-torus exhibited in Figure 2b. Note
that this packing is the union of three diagonals of cubes, the “‘a,” **b,” and “¢”
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diagonals, each of which contains 13 cubes. It is a consequence of Theorem 5
that every maximal packing of the 132-torus can be so decomposed into diagon-
als of 13 cubes each. Furthermore, it follows that two such maximal packings
have the same slope to their diagonals if and only if one is a translate of the
other. If two such packings of differing slopes are compared. we note that they
have precisely 9 cubes in common, each diagonal of the one packing meeting
each diagonal of the other packing precisely once. Since our packings P, .. .,
P, have at least 19 cubes in common with their immediate neighbors, it follows
that Py, ..., Py, are all (up to translation) the same packing. In fact, by Theorem
5, there is no loss of generality in assuming that they all are, up to translation,
the packing of Figure 2b.

Since P, and P, share 20 cubes, at least one of the diagonals of P, has cubes
going in both directions. This further necessitates that particular diagonal
appearing in alf the packings P,. . . ., P,,. Furthermore, this requires certain 2°-
cubes appearing in that diagonal to be shared simultaneously by P,,, P,; and by
P2, P,, a contradiction. This contradiction establishes the fact that a(Cfg) #*
253, and our proof is complete.

Whenever p = 5 modulo 8, exactly this same process can be used to show
that a(C}) never achieves the upper bound of Lemma 2. In fact this result can
be generalized further to

«Cy) S [P p— D27~ |
wheneverp = 2"~ + I modulo 2%, n = 3,

A conjecture. Asaresultoftrying to fit a formula to the known data (Figure
1e) using various ad hoc methods, the following rather nice conjecture evolved:

_ n__ gn
a(Cr) = ["2,1 1] : (p—p—_-?) Fal(Cr )
where o is the residue of p — 1 modulo 2.

Note that this formula implies that the first 2"~ ! entries in each column of
Figure le are initial conditions which determine the behavior of the function in
that column. Thus all the entries above the staircase line of Figure le are
initial conditions. In these terms then perhaps the nice packings of Theorem 3
are merely reflections of the fact that oe( Y and a(C;) are trivial.

This formula predicts o(C?,) and a(Cfs) as 247 and 384 respectively.

Computation. The bounds of Corollary 3 and Lemma 2 place o(C?) be-
tween 30 and 35. A computer was used to establish that a{Cl) =33, The first
step was to show that no packing of size 35 could exist. Of course, any packing
of the 7°-torus may be considered as the juxtaposition of 7 packings for the 72-
torus. Since a{C}) = 10, these 7 packings Py, ..., Ps must all be of maximal
size in order for their union to constitute a packing of size 35. So a straight-
forward approach to the problem is merely to list all the maximal packings of
the 7%-torus and try to find 7 of them that fit together properly.
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Finding all the maximal packings of the 72-torus is not too difficult a project.
A few minuotes’ hand computation shows that, up to the automorphisms of the
72-torus, there are only three such packings. Furthermore, the automorphisms
of the torus take packings into packings. Thus any automorphism of the 72-
torus applied to all the packings P,, . . .. P¢ leads to a problem equivalent to the
original one. So P, may be assumed to be one of these 3 packings, without loss
of generality. However, P,, ..., Ps cannot then be so restricted. Indeed they
must be allowed to range over all the maximal packings; there are 980 of these.
Again, these are not difficult to generate (inside a computer) for the original 3
packings correspond to 20 which are inequivalent under translations. Thus, it
is a simple matter of entering the 20 packings and letting the computer produce
the full 980 from these.

Since the sequence of packings sizes corresponding to Py, . ... Pgis 10,. ..,
10 1t follows that P; and P, , share exactty five 2%-cubes. A preliminary calcula-
tion was performed which showed that relatively” few of the 980 packings
agreed with any particular one in as many as five cubes. So a fairly simple
computer search program was written which first selected five cubes from P,
and then in turn inserted as P, each of the 980 packings having those five cubes.
Of course, for any particular P,, knowing the five cubes shared with Py deter-
mines the five cubes shared by P,, P,, etc. Once P; has been selected the struc-
ture of P, is completely determined, since five of its cubes are determined by
P, and the remainder are determined from P,. However, the configuration
forced on P, at this point never was a 10 packing of P; (the cubes coming from
P, always intersected those coming from Pg). In this manner it was shown that
a(C?) = 35.

If a(C3) were 34 then, without loss of generality, the packing size sequence
could be restricted to one of

(10, 10, 10, 10, 10, 10, 8), (10, 10, 10, 10, 10,9, 9,
(10, 10, 10, 10,9, 10, 9),(10, 10, 10, 9, 10, 10, 9).

Corresponding to each of these sequences is the sequence showing the number
of 2®-cubes shared by Py, P,, .; these are:

(6.4,6.4.6,4,4),(5.5.5.5,5,4,5),(6,4,6.4,5,5,4),(5,5,5,4.6.4, 5).

Here, again, there is no loss of generality in restricting P, to be one of our
original three packings. Having picked five or six cubes, as the case may be,
from P,, the computer program proceeded as before, with the added difficulty
that the packings of size 9 were not at hand. Where necessary the relevant
packings of this size were generated by extending the known partial packing in
all possible ways to the proper size. This process allowed the computer to
notice the size of the packings it was constructing. In the process of deciding
that 34 cubes could not be packed into the 7°-torus, it produced many packings
of size 33. One such is indicated in Figure 1b.



