ERRATA

for

Algebraic Combinatorics, second ed., Springer, 2018

(26 May 2023)

I am grateful to Benjamin Sambale for most of these corrections.

- page 6 , line 10 . Change $p(p-1)^{\ell}$ to $p(p-1)^{\ell-1}$.
- page 9, Exercise 13. While this exercise is correct, it is not so interesting because no such graphs exist! It is a nice exercise to find a proof. See MathOverflow 431083.
- page 16, line $1-$. Change this line to

$$
=\frac{1}{2^{n}}\left[\sum_{i=0}^{n-1}\binom{n-1}{i} \frac{(n-2 i)^{\ell+1}}{n-i}-(-n)^{\ell}\right] .
$$

The expression after the $=$ sign can be written in the simpler form

$$
\frac{1}{n 2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{\ell+1}
$$

- page 30, line 2 . The right-hand side is missing a factor $1+x$. It should be

$$
(1+x)\left(\left(I_{p-1}-(x+1) \boldsymbol{M}[v]\right)^{-1} T[v]\right)_{u} .
$$

- page 36, Lemma 4.6. It should be noted that we set $U_{-1}=0$ and $D_{n+1}=0$.
- page 49 , line 17 -. It should be assumed that $m \geq 3$ in the statement that G is isomorphic to \mathfrak{S}_{m}.
- page 70, proof of Theorem 6.14. It was not shown before that $M(n)$ is rank-symmetric, though this is immediate from the last line on page 68.
- page 83, Theorem 7.7, line 2. We should take X to have t elements, not n, since n is used for the number of colors. In the proof on page 84 it is correctly assumed that $\# X=t$.
- page 95 , line 5 . Change r to "at most $r-1$ ".
- page 95 , line 8 . Change "at most r " to "at most $r-1$ ".
- page 105 , lines $15-$ to 14 -. The letter n is used in two different ways. We should let $\lambda \vdash m$, for instance.
- page 139, line $1-$. Change the $(1,1)$ entry of $\boldsymbol{L}(G)$ from 4 to 5 .
- page 151, line $8-$. Change e_{2} to v_{2}.
- page 151 , line $6-$. Change e_{j} ot e_{i}.
- page 151, line 5 - (third bullet). This line is superfluous.
- page 173, line 18. Change $V_{q}=1$ to $V_{q}=-1$.
- page 174, line 11-. Change $V_{q}=1$ to $V_{q}=-1$.
- page 187, line 6 -. We neglected to define (though hopefully the definition is obvious) the dimension of Δ to be the maximum dimension of a face of Δ.
- page 194, line 10. Change "the set of" to "the set Y of".
- page 194, line 12. Change " $X=$ " to " $Y=$ ".
- page 194, line $1-$. Change 13 to 12 .
- page 198, Example 12.14(a). The f-vector should be $(4,3)$, not $(3,2)$. Hence line 3 becomes

$$
(x-1)^{2}+4(x-1)+3=x^{2}+2 x,
$$

and the h-vector is $(1,2,0)$.

- page 204, line 7. Earlier there should have been defined the Hilbert function of $K[\Delta]$ by

$$
H(K[\Delta], i)=\operatorname{dim}_{K} K[\Delta]_{i} .
$$

- page 204, lines $9-$ and $7-$. Change $j-1$ to j.
- page 205, line 1. Change k to j (three times).
- page 210, line 18-. Change d to h_{i} (twice). Also, the notation $\beta_{1}, \ldots, \beta_{h_{i}}$ for both the concatenation of the sequences b_{j} and the list of these sequences is confusing. It would be better to either delete the first $\beta_{1}, \beta_{2}, \ldots, \beta_{h_{i}}$ or to introduce new notation for concatenation, such as $\operatorname{concat}\left(\beta_{1}, \ldots, \beta_{h_{i}}\right)$.

