
18.S34 (FALL, 2010)

LINEAR ALGEBRA PROBLEMS

Useful ideas for evaluating determinants

1. Row reduction, expanding by minors, or combinations thereof; some-
times these are useful in combination with an induction argument.

2. Listing enough eigenvectors to account for all of the eigenvalues.

3. If M is a square matrix of rank 1, then det(I + M) = 1 + tr(M).
Generalization to higher rank is left as an exercise.

4. If you see two identical rows or columns, the determinant is zero. If
everything in the matrix is a polynomial in some indeterminates, you
may be able to use this to find some factors of the determinant.

5. If you can get the matrix into some sort of block form, that might help.

Fact: the Perron-Frobenius theorem A square matrix with positive en-
tries has a unique eigenvector with positive entries. Moreover, the eigenvalue
for that eigenvector has strictly bigger absolute value than any other eigen-
value. (If your matrix has some zero entries, you may be able to apply the
theorem to a power of the matrix.)

Example 1 Compute the determinant of

A =





1 1 1
x0 x1 x2

x2
0 x2

1 x2
2



 .

Example 2 Compute the determinant of

A =





a0 a1 a2

a2 a0 a1

a1 a2 a0



 .
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1. Let Dn denote the value of the (n − 1) × (n − 1) determinant
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Is the set {Dn/n!}n≥2 bounded?

2. Let p be a prime number. Prove that the determinant of the matrix




x y z
xp yp zp

xp2

yp2

zp2



 .

is congruent modulo p to a product of polynomials of the form ax +
by + cz, where a, b, c are integers.

3. Let Mn be the (2n + 1) × (2n + 1) for which

(Mn)ij =







0, i = j
1, i − j ≡ 1, . . . , n (mod 2n + 1)

−1, i − j ≡ n + 1, . . . , 2n (mod 2n + 1).

Find the rank of Mn.

4. Let A be the n × n matrix with Ajk = cos(2π(j + k)/n). Find the
determinant of I + A.

5. Let aij (i, j = 1, 2, 3) be real numbers such that aij > 0 for i = j, and
aij < 0 for i 6= j. Prove that there exist positive real numbers c1, c2, c3

such that the quantities ai1c1 + ai2c2 + ai3c3 for i = 1, 2, 3 are either all
positive, all negative, or all zero.

6. Let x, y, z be positive real numbers, not all equal, and define

a = x2 − yz, b = y2 − zx, c = z2 − xy.

Express x, y, z in terms of a, b, c. (Hint: can you find a linear algebra
interpretation of a, b, c, by making a certain matrix involving x, y, z?)
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7. If A and B are square matrices of the same size such that ABAB = 0,
does it follow that BABA = 0?

8. Let x1, x2, . . . , xn be differentiable (real-valued) functions of a single
variable t which satisfy

dx1

dt
= a11x1 + a12x2 + · · ·+ a1nxn

dx2

dt
= a21x1 + a22x2 + · · ·+ a2nxn

...
dxn

dt
= an1x1 + an2x2 + · · ·+ annxn

for some constants aij > 0. Suppose that for all i, xi(t) → 0 as t → ∞.
Are the functions x1, x2, . . . , xn necessarily linearly dependent?

9. Let G be a finite set of real n×n matrices {Mi}, 1 ≤ i ≤ r, which form
a group under matrix multiplication. Suppose that

∑r

i=1
tr(Mi) = 0,

where tr(A) denotes the trace of the matrix A. Prove that
∑r

i=1
Mi is

the n × n zero matrix.

10. A mansion has n rooms. Each room has a lamp and a switch connected
to its lamp. However, switches may also be connected to lamps in other
rooms, subject to the following condition: if the switch in room a is
connected to the lamp in room b, then the switch in room b is also
connected to the lamp in room a. Each switch, when flipped, changes
the state (from on to off or vice versa) of each lamp connected to it.
Suppose at some points the lamps are all off. Prove that no matter
how the switches are wired, it is possible to flip some of the switches to
turn all of the lamps on. (Hint: interpret as a linear algebra problem
over the field of two elements.)

11. Suppose that A, B, C, D are n×n matrices (with entries in some field),
such that ABT and CDT are symmetric, and ADT −BCT = I. Prove
that AT D − CT B = I. (Hint: find a more “matricial” interpretation
of the condition ADT − BCT = I.)

12. Let A be a 2n × 2n skew-symmetric matrix (i.e., a matrix in which
Aij = −Aji) with integer entries. Prove that the determinant of A is a
perfect square. (Hint: prove a polynomial identity.)
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13. Let n and k be positive integers. Say that a permutation σ of {1, 2, . . . , n}
is k-limited if |σ(i)−i| ≤ k for all i. Prove that the number of k-limited
permutations of {1, 2, . . . , n} is odd if and only if n ≡ 0 or 1 (mod
2k + 1).

Hint. Consider the n × n matrix Mn,k defined by

(Mn,k)ij =

{

1, |i − j| ≤ k
0, otherwise.

14. Let A be an n×n real symmetric matrix and B an n×n positive definite
matrix. (A square matrix over R is positive definite if it is symmetric
and all its eigenvalues are positive.) Show that all eigenvalues of AB
are real. Hint. Use the following two facts from linear algebra: (a)
all eigenvalues of a real symmetric matrix are real, and (b) a positive
definite matrix has a positive definite square root.

15. Let p be a prime, and let A = (aij)
p−1

i,j=0
be the p × p matrix defined by

aij =

(

i + j

i

)

, 0 ≤ i, j ≤ p − 1.

Show that A3 ≡ I (mod p), where I denotes the identity matrix. In
other words, every entry of A3 − I, evaluated over Z, is divisible by p.

16. Let A be an n×n real matrix with every row and column sum equal to
0. Let A[i, j] denote A with row i and column j removed. Show that
det A[i, j] is independent of i and j. Can you express this determinant
in terms of the eigenvalues of A?

17. Find the unique sequence a0, a1, . . . of real numbers such that for all
n ≥ 0 we have

det

















a0 a1 · · · an

a1 a2 · · · an+1

· · ·
· · ·
· · ·
an an+1 · · · a2n

















= det

















a1 a2 · · · an

a2 a3 · · · an+1

· · ·
· · ·
· · ·
an an+1 · · · a2n−1

















= 1.

(When n = 0 the second matrix is empty and by convention has deter-
minant one.)
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18. (a) Let A = A(n) be the n × n real matrix given by

Aij =







1, j = i + 1 (1 ≤ i ≤ n − 1)
1, j = i − 1 (2 ≤ i ≤ n)
0, otherwise.

Let Vn(x) = det(xI −A), so V0(x) = 1, V1(x) = x, V2(x) = x2 −1,
V3(x) = x3 − 2x. Show that Vn+1(x) = xVn(x) − Vn−1(x), n ≥ 1.

(b) Show that

Vn(2 cos θ) =
sin((n + 1)θ)

sin(θ)
.

Deduce that the eigenvalues of A(n) are 2 cos(jπ/(n + 1)), 1 ≤
j ≤ n.

19. Given v = (v1, . . . , vn) where each vi = 0 or 1, let f(v) be the number
of even numbers among the n numbers

v1 +v2 +v3, v2 +v3 +v4, . . . , vn−2 +vn−1 +vn, vn−1 +vn +v1, vn +v1 +v2.

For which positive integers n is the following true: for all 0 ≤ k ≤ n,
exactly

(

n

k

)

vectors of the 2n vectors v ∈ {0, 1}n satisfy f(v) = k?

20. Let M(n) denote the space of all real n × n matrices. Thus M(n) is
a real vector space of dimension n2. Let f(n) denote the maximum
dimension of a subspace V of M(n) such that every nonzero element
of V is invertible.

(a) (easy) Show that f(n) ≤ n.

(b) (fairly easy) Show that if n is odd, then f(n) = 1.

(c) (extremely difficult) For what n does f(n) = n?

(d) (even more difficult) Find a formula for f(n) for all n.
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Solution to Example 1 Of course you can do this by hand, but here is
a more instructive method that generalizes easily. As a function of the xi,
det(A) is a polynomial of degree 3. Moreover, it vanishes whenever xi = xj

because then the matrix A has two equal columns. So as a polynomial det(A)
is divisible by (x1 − x0)(x2 − x0)(x2 − x1), which also has degree 3, so the
two must agree up to a scalar factor. Moreover, they both have the same
coefficient of x1x

2
2 since you get that from the main diagonal in A and from

all the first terms when expanding the product. Hence

det(A) = (x1 − x0)(x2 − x0)(x2 − x1).

Solution to Example 2 Put ζ = exp(2πi/3). Now note that the column
vectors

[

1 1 1
]

,
[

1 ζ ζ2
]

,
[

1 ζ2 ζ
]

are eigenvectors with respective eigenvalues

a0 + a1 + a2, a0 + ζa1 + ζ2a2, a0 + ζa2 + ζ2a1.

We claim that the determinant is the product of these three eigenvalues:
this is certainly true if the eigenvalues are distinct. But that is true if we
take a0, a1, a2 to be elements of the field of rational functions in those three
indeterminates, so we get the equality

A = (a0 + a1 + a2)(a0 + ζa1 + ζ2a2)(a0 + ζa2 + ζ2a1)

as a polynomial identity, and so it holds whatever the ai are. Alternatively,
you can use Example 1 to show that the three eigenvectors we wrote down are
linearly independent, so the determinant is the product of their eigenvalues
whether or not those eigenvalues are distinct.
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