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Abstract. A refined form of the ‘Folk Theorem’ that a smooth action by a

compact Lie group can be (canonically) resolved, by iterated blow up, to have

unique isotropy type was established in [1] in the context of manifolds with
corners; the canonical construction induces fibrations on the boundary faces of

the resolution resulting in an ‘equivariant resolution structure’. Here, equivari-

ant K-theory and the Cartan model for equivariant cohomology are tracked
under the resolution procedure as is the delocalized equivariant cohomology

of Baum, Brylinski and MacPherson. This leads to resolved models for each
of these cohomology theories, in terms of relative objects over the resolution

structure and hence to reduced models as flat-twisted relative objects over the

resolution of the quotient. An explicit equivariant Chern character is then
constructed, essentially as in the non-equivariant case, over the resolution of

the quotient.
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1. Introduction

In a recent paper [1], the authors established a form of the ‘Folk Theorem’ that
the smooth action of a general compact Lie group, G, on a compact manifold,
X, can be resolved to have components with unique isotropy type. In this paper,
cohomological consequences of this construction are derived. In particular, directly
on the resolution, a ‘delocalized’ equivariant cohomology is defined, and shown to
reduce to the cohomology of Baum, Brylinski and MacPherson [7] in the Abelian
case. The equivariant Chern character is then obtained from the usual Chern
character by twisting with flat coefficients and is shown to induce an isomorphism
between delocalized equivariant cohomology and equivariant K-theory with complex
coefficients.

A smooth action is ‘resolved’ if it has a unique isotropy type, i.e., if all of the
stabilizer groups are conjugate to each other, in which case Borel showed that the
orbit space G\X is a smooth manifold. If a G-action on X is not resolved then the
construction in [1] produces a manifold with corners Y (X), the canonical resolution

of X, with a resolved G-action and an equivariant ‘blow-down map’, Y (X)
β−−→ X.

Each isotropy type of X,

X [K] = {ζ ∈ X : stabilizer of ζ is conjugate to K}

is associated with a boundary hypersurface, M[K], of Y (X). Indeed, X [K] is itself
a manifold with a smooth G-action, and M[K] is the total space of an equivariant

fibration over the canonical resolution of the closure of X [K]. The different isotropy
types of X determine a stratification of X and the inclusion relation between the
strata corresponds to the intersection relation between the corresponding boundary
faces of the canonical resolution of X. The result is that Y (X) has an ‘equivariant
resolution structure’, which encapsulates the relations between the different isotropy
types of X.

As the quotient of the resolved group action is smooth, the canonical resolution
of X induces a resolution, Z(X), of the quotient G\X in a similar form, as a
compact manifold with corners with fibrations of its boundary hypersurfaces over
the quotients of the resolutions of the isotropy types.

The Cartan model for the equivariant cohomology, H∗G(X), can be lifted to the
resolution and then projected to the quotient. In the free case, a theorem of Borel
identifies this localized equivariant cohomology with the cohomology of the quo-
tient. In the case of a group action with unique isotropy type we show that the
equivariant cohomology reduces to the cohomology over the quotient with coeffi-
cients in a flat bundle of algebras, which we call the Borel bundle, modeled on the
invariant polynomials on the Lie algebra of the isotropy group – or equivalently
the G-invariant and symmetric part of the total tensor product of the dual. In the
general case the equivariant cohomology is identified with the relative cohomology,
with respect to the resolution structure, twisted at each level by this flat coefficient
bundle; the naturality of the bundle ensures that there are consistency maps under
the boundary fibrations induced on the twisted forms. Thus the Borel bundle rep-
resents the only equivariant information over the resolution of the quotient needed
to recover the equivariant cohomology. In this construction we adapt Cartan’s form
of the isomorphism in the free case as presented by Guillemin and Sternberg [12]
to the case of a fixed isotropy group.
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Using the approach through G-equivariant bundles as discussed by Atiyah and
Segal [6, 16] we give a similar lift of the equivariant K-theory, K∗G(M), to the
resolution of the action and then project to the resolution of the quotient. This
results in a closely analogous reduced model for equivariant K-theory where the
Borel bundles are replaced by what we term the ‘representation bundles’, which
are flat bundles of rings modelled on the representation ring of the isotropy group
over each resolved isotropy type. Cartan’s form of the Borel-Weil construction gives
a map back to the Borel bundle.

The representation bundles over the resolution structure amount to a resolution
(in the Abelian case where it was initially defined) of the sheaf used in the construc-
tion of the delocalized equivariant cohomology of Baum, Brylinski and MacPherson
([7], see also [9]). The close parallel between the reduced models for equivariant
K-theory and equivariant cohomology allow us to introduce, directly on the resolu-
tion, a delocalized deRham cohomology H∗G,dl(X) generalizing the construction in
[7] to the case a general compact group action. As expected and as in the Abelian
case, the Chern character gives an isomorphism,

(1) ChG : KG(M)⊗Z C −→ Heven
G,dl(X)

from equivariant K-theory with complex coefficients. These results are also related
to the work of Rosu, [15], and earlier work of Illman, [13], in the topological setting
and likely carry over to other cohomology theories.

The authors are grateful to Eckhard Meinrenken for very helpful comments on
the structure of group actions with unique isotropy type and to Haynes Miller for
topological advice.

2. Group actions

We review the basic definitions and constructions we will need below. For details
we refer to [11] and [1].

Let X be a closed manifold and G a compact Lie group. By a smooth action of
G on X we mean a smooth homomorphism from G into the diffeomorphisms of X,

A : G −→ Dfo(X).

If g ∈ G, we usually denote A(g) by

g : X 3 ζ 7−→ gζ ∈ X.

The differential of the action of G on itself by conjugation is the adjoint repre-
sentation of G on its Lie algebra, g,

AdG : G −→ End(g).

An inner product on g is AdG-invariant precisely when the induced metric on G is
invariant under left and right translations; by the usual averaging argument, such
a metric exists if G is compact.

The action of G on X induces a map of Lie algebras, from the Lie algebra
g = TIdG of G into the Lie algebra of vector fields of X,

α : g −→ C∞(X;TX), α(V )(ζ) = ∂te
−tV ζ

∣∣
t=0
∈ TζX

where exponentiation in G is done via an AdG-invariant metric.
Although such a group action is smooth, by definition, it is in general rather

seriously ‘non-uniform’ in the sense that the orbits, necessarily individually smooth,
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change dimension locally. This is encoded in the isotropy (also called stabilizer)
groups. Namely for ζ ∈ X set

(2.1) Gζ = {g ∈ G : gζ = ζ} .

This is a Lie subgroup and long-established local regularity theory shows that if
K ⊂ G is a Lie subgroup then

(2.2) XK = {ζ ∈ X : Gζ = K},

is a smooth submanifold. Since

(2.3) Ggζ = g(Gζ)g
−1,

the conjugate of an isotropy group is an isotropy group and if [K] is the class of
subgroups conjugate to K then

(2.4) X [K] = {ζ ∈ X : Gζ = gKg−1 for some g ∈ G}

is also a smooth submanifold of X, the isotropy type of X.
The natural partial order on conjugacy classes of subgroups of G corresponding

to inclusion

[K1] ≤ [K2] ⇐⇒ there is g ∈ G s.t. K1 ⊆ gK2g
−1,

induces an order on isotropy types of X. It is standard to take the opposite order,
thus

(2.5) X [K2] ≤ X [K1] ⇐⇒ [K1] ≤ [K2],

as larger isotropy groups correspond to smaller submanifolds. The isotropy types,
or isotypes, give a stratification of X. We will denote the set of all conjugacy classes
of isotropy groups of the G-action on X by I.

3. Equivariant cohomology and K-theory

The basic topological invariants of a group action are the equivariant cohomology
and K-theory groups. We briefly review the definitions of these theories and refer
the reader to [12] and [16] for more information.

We start by recalling Cartan’s model for the equivariant cohomology of X. An
equivariant differential form is a polynomial map

ω : g −→ C∞(X,Λ∗X)

which is invariant in that it intertwines the adjoint actions of G on g and the
pull-back action

g· : C∞(X,Λ∗X) 3 ω 7→ (g−1)∗ω ∈ C∞(X,Λ∗X).

This can also be thought of as a G-invariant section of the bundle S(g∗)⊗Λ∗ where
S(g∗), the symmetric part of the tensor powers of the dual g∗, is identified with the
ring of polynomials on g. We denote the set of these smooth equivariant forms by
C∞G (M ;S(g∗)⊗Λ∗); they form an algebra with respect to the usual wedge product.
This algebra is graded by defining

(3.1) degree(ω) = differential form degree(ω) + 2 (polynomial degree(ω))

on homogeneous elements.
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The equivariant differential

deq : C∞G (X;S(g∗)⊗ Λ∗) −→ C∞G (X;S(g∗)⊗ Λ∗),

(deqω)(v) = d(ω(v))− iα(v)(ω(v)), ∀ v ∈ g,

then increases the degree by one and satisfies d2
eq = 0. The resulting cohomology

groups are the equivariant cohomology groups and will be denoted Hq
G(X).

The equivariant cohomology of a point is the space of polynomials on g invariant
with respect to the adjoint action of G, H∗G(pt) = S(g∗)G. Thus, if dim g > 0,
the groups Hq

G(pt) are non-zero in all even degrees. The equivariant cohomology
groups of a space X are always modules over H∗G(pt), and are usually non-zero in
infinitely many degrees.

We use the model for equivariant K-theory as the Grothendieck group based on
equivariant complex vector bundles over the manifold. Thus an (absolute) equi-
variant K-class on X is fixed by a pair of vector bundles E± each of which has an
action of G as bundle isomorphisms covering the action of G on the base:

(3.2) L±E(g) : g∗E± −→ E±.

The equivalence relation fixing a class from such data is stable G-equivariant iso-
morphism so (E±, L±E) and (F±, L±F ) are equivalent if there exists a G-equivariant
vector bundle S and an equivariant bundle isomorphism

(3.3) T : E+ ⊕ F− ⊕ S −→ F+ ⊕ E− ⊕ S.
Direct sum and tensor product are well-defined among these equivalence classes
and the resulting ring is denoted K0

G(X). By standard results, this ring is the same
if the bundles are required to be smooth or only continuous, and we shall work
exclusively with the former.

Odd K-theory is defined as the null space of the pull-back homomorphism cor-
responding to ι : X ↪→ S×X, ζ 7−→ (1, ζ) :

(3.4) K1
G(X) // K0

G(S×X)
ι∗ // K0

G(X)

where G acts trivially on S. As in the standard case, pull-back under the projection
S×X −→ X induces a decomposition

(3.5) K0
G(S×X) = K1

G(X)⊕K0
G(X).

The equivariant K-theory of a point K∗G(pt) = K0
G(pt) is the ring of virtual

representations ofG,R(G). As a group,R(G) is the free Abelian group generated by
the set of simple G-modules, i.e., the irreducible finite dimensional representations
ofG. The equivariant K-theory groups of a spaceX are always algebras over K0

G(pt).
Comparing H∗G(pt) with K∗G(pt), it is clear that the Atiyah-Hirzebruch theorem

cannot extend directly to the equivariant setting. Indeed, from general principles
the Chern character is a natural transformation

(3.6) Ch : K0
G(X) −→ Heven

G (X),

and Atiyah and Segal showed [6], [3, Theorem 9.1] that this induces an isomorphism
after tensorsing K0

G(X) with C and localizing at the identity element of the group,

(K0
G(X)⊗ C)∧

∼=−−−→ Heven
G (X).

The localization map L∧ : K0
G(X) ⊗ C −→ (K0

G(X) ⊗ C)∧ is usually far from an
isomorphism.
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This issue was addressed by Baum, Brylinski and MacPherson, [7], who intro-
duced ‘delocalized’ equivariant cohomology groups, Heven

G,dl(X), in the case of an
Abelian group action, such that the Chern character factors and induces an iso-
morphism from K-theory with complex coefficients

(3.7) Ch : K0
G(X) //

⊗C ''OOOOOOOOOOO
Heven
G,dl(X) L∧ // Heven

G (X)

K0
G(X)⊗ C.

'

88ppppppppppp

One consequence of the lifting of cohomology under resolution procedure discussed
here is that the extension of the groups Heven

G,dl(X) to the non-Abelian case becomes
transparent as does the structure of the localization map L∧.

4. Actions with a unique isotropy type

Since the effect of resolution of the group action is to ‘simplify’ to the case of a
unique istropy type (with the complexity relegated to iteration over the fibrations
of the boundary faces) we first discuss the special case in detail. The effect of the
working with a manifold with corners (and absolute cohomology and K-theory) is
minimal here, and may be mostly be ignored. However recall from [1] that by a
manifold with corners we mean a space that that is locally and smoothly modeled
on [0,∞)n, and has boundary hypersurfaces which are embedded. A smooth group
action on a manifold with corners is, as part of the definition of smoothness, required
to satisfy an extra condition, namely that the orbit of any boundary hypersurface is
an embedded submanifold of X. This is equivalent to asking that, for any boundary
hypersurface M of X and any element g ∈ G,
(4.1) g ·M ∩M = ∅ or g ·M = M.

This condition holds on the canonical resolution of a smooth manifold and in any
case can always be arranged, see [1].

A compact manifold (possibly with corners) X with a smooth action by a com-
pact Lie group G, has a unique isotropy type if all of the isotropy groups of X are
conjugate in G, so there is a subgroup K ⊂ G satisfying

ζ ∈ X =⇒ ∃ g ∈ G s.t. gGζg
−1 = K

or equivalently, X = X [K].
Let N(K) = {g ∈ G : gKg−1 = K denote the normalizer of K in G. Then N(K)

acts on XK with K acting trivially, so the action factors through a free action of
N(K)/K, which is therefore the total space of a principle N(K)/K bundle.

Proposition 4.1 (Borel). If X = X [K] the orbit space G\X is smooth with the
smooth structure induced by the natural G-equivariant diffeomorphism

G×N(K) X
K ∼=−→ X =⇒ G\X ∼= N(K)\XK .

Proof. The map induced by the action of G, G ×XK −→ X is surjective, by the
assumed uniqueness of the isotropy type and is equivariant under the left action
on G. The inverse image of a point is an orbit under the free diagonal action of
N(K), (g, ζ) 7−→ (gn−1, nζ), with quotient G×N(K)X

K , which leads to the desired
isomorphisms. �
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The equivariant cohomology of X on the quotient space Z = G\X, is conve-
niently expressed in terms of a family of flat vector bundles as coefficients. Let gζ
be the Lie algebra of Gζ .

Definition 1. If X is a compact manifold with a smooth G-action such that X =

X [K] and j ∈ N0, let B̃j
πj−−−→ X be the vector bundle over X with fiber at ζ

π−1
j (ζ) = Sj(g∗ζ)

Gζ ,

the invariant polynomials of degree j on the Lie algebra of the isotropy group at

that point. The action of G on B̃j by conjugation covers the action of G on X,
hence there is an induced bundle, shown below to be flat, on the quotient,

Bj −→ Z,

which we call the Borel bundle of degree j.
The Borel bundle is the inductive limit of these finite dimensional Borel bundles

of degree

B∗ = lim−→
k

⊕
j≤k

Bj ,

and is an infinite dimensional, graded flat vector bundle over Z.

This bundle is non-trivial in general, as explained in Remark 1 below.
The equivariant differential on C∞G (X;S(g∗)⊗Λ∗) descends to the de Rham dif-

ferential with coefficients in Bj on each complex C∞(Z;Bj⊗Λ∗). The corresponding
cohomology groups H∗(Z;Bj) can be combined to give the cohomology of Z with
coefficients in B∗ :

Hq(Z;B∗) =
⊕

j+2k=q

Hj(Z;Bk).

We will show that:

Theorem 4.2. If X is a manifold with a smooth G action such that X = X [K],
then the absolute equivariant cohomology is naturally isomorphic to the cohomology
of the quotient with coefficients in B∗

Hq
G(X) = Hq(Z;B∗).

A similar description of equivariant K-theory, and the delocalized equivariant
cohomology, can be given in terms of a flat bundle of rings over Z.

Definition 2. Let X be a compact manifold with a smooth G-action such that

X = X [K]. Let R̃ −→ X be the fiber bundle over X with fiber the representation
ring of the isotropy group of that point, R(Gζ). The action of G on the conjugacy

class of K induces an action of G on R̃ which covers the action of G on X; the
induced flat ring bundle over the quotient, R −→ Z, is termed the representation
bundle.

In case K is a normal subgroup of G, and with slight modification otherwise,
there is a normal subgroup G′ of G with G/G′ a finite group acting on K and such
that

(4.2) R = R(K)×G/G′ (G′\X).

Thus in this case R can be thought of as a fiber bundle over Z with structure group
G/G′ and with a ring structure on the fibers.
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Standard complex K-theory over a manifold can be extended to the case of
coefficients in a ring, resulting in the tensor product with the cohomology, and can
be extended further to the case of a flat bundle of discrete rings over the space.

Definition 3. Let R −→ X be a flat bundle of discrete rings. We define a vector

bundle with coefficients in R, V
p−−→ X, as follows. Each ζ ∈ X has a neighborhood

U over which R is isomorphic to Rζ × U and, over this neighborhood, V is an
element of Rζ ⊗ Vect(U) associating to each generator of Rζ a vector bundle over
U with only finitely many of these bundles non-zero. Transition maps are bundle
isomorphisms combined with the transition maps of R.

Even K-theory with coefficients in R, K0(X; R), is the Grothendieck group based
on vector bundles with coefficients in R, and the corresponding odd K-theory groups
are defined by suspension as in (3.4).

In particular the groups K∗(Z;R) arise from the Borel bundle over the quotient
by a group action with unique isotropy type. In view of (4.2), when K is normal
these groups are

(4.3) K∗(Z;R) = (R(K)⊗K∗(G′\X))G/G
′
.

Theorem 4.3. If X be a compact manifold with a smooth G-action such that
X = X [K], then there is a natural isomorphism

K∗G(X) = K∗(Z;R).

Given this description of equivariant K-theory it is natural to ‘interpolate’ be-
tween equivariant cohomology and equivariant K-theory and consider cohomology
with coefficients in R.

Definition 4. For a compact manifold with G-action with unique isotropy tyep, the
delocalized equivariant cohomology of X is the Z2 graded cohomology

Heven
G,dl(X) = Heven(Z;R), Hodd

G,dl(X) = Hodd(Z;R).

There is a natural localization map from the representation bundle to the Borel
bundle ove Z. Namely, a representation of K can be identified with its character in
C∞(K)K , with value at g ∈ K the trace of the action of g, and this is mapped to
the invariant polynomial on the Lie algebra determined by its Taylor series at the
identity,

(4.4) L : R(K) = C∞(K)K −→ S(k∗)K .

This map induces a map between the bundles R̃ and B̃∗ = ⊕B̃j over X which is
equivariant with respect to the adjoint G-action, hence it induces a map

(4.5) L : R −→ B∗

between the representation and Borel bundles over Z. This map in turn induces a
map between the cohomology of Z with coefficients in R and the cohomology of Z
with coefficients in B∗.
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Theorem 4.4. If X be a compact manifold with a smooth G-action such that
X = X [K] there are natural Chern character maps such that
(4.6)

K0
G(X)⊗ C = K0(Z;R)⊗ C

ChG //

ChG
∼= ))SSSSSSSSSSSSSS

Heven
G (X) = Heven(Z;B∗)

Heven
G,dl(X) = Heven(Z;R)

L

55llllllllllllll

commutes.

The rest of the section is devoted to proving these theorems. For the purpose of
exposition, we work up to the general case and start by treating two extreme cases.

4.1. Trivial actions. If a Lie group acts trivially on a space then the chain space
for equivariant cohomology becomes S(g∗)G ⊗ C∞(X; Λ∗), the differential reduces
to the untwisted deRham differential and the polynomial coefficients commute with
the differential. It follows that the equivariant cohomology groups are given by the
finite, graded, tensor product

(4.7) H∗G(X) = S(g∗)G⊗̂H∗(X).

Thus the equivariant cohomology group of degree q is given by

Hq
G(X) =

⊕
2j+k=q

Sj(g∗)G ⊗Hk(X),

in accordance with Theorem 4.2 as the Borel bundle in this case is the trivial bundle
S(g∗)G ×X −→ X.

There is a similar description of the equivariant K-theory. If E −→ X is an
equivariant vector bundle then each fiber Eζ has an induced G-action, and hence
a decomposition into a combination of irreducible G-representations

(4.8) Eζ ∼=
∑
τ∈Ĝ

Vτ ⊗HomG(Vτ , Eζ)

by the Peter-Weyl theorem. This decomposition extends to a decomposition of E
as an element of R(G)⊗K0

G(X) and this leads to an isomorphism

K0
G(X) ∼= R(G)⊗K0(X),

as expected from Theorem 4.3. Suspension yields a similar description of K1
G(X).

In this case the structure of the Chern character can be seen explicitly. Namely,
from naturality considerations, it reduces to the ordinary Chern character at the
identity and has appropriate G-equivariance, so decomposes as a tensor product

(4.9) ChG = L∧ ⊗ Ch : R(G)⊗K0(X) −→ S(g∗)G ⊗Heven(X)

where the localization map L ∧ is given by (4.4).
This also reveals the problem with the Chern character (3.6). Namely if G

is not connected, then there may well be a representation with all tensor powers
non-trivial – for instance the standard representation of a copy of Z2 – but with
trace which is constant on the component of the identity. The formal difference
between this representation and the trivial one-dimensional representation survives
in the tensor product with C but is annihilated by the localization map. Even for
a connected group, this phenomenon may arise from isotropy groups.
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The definition of the delocalized equivariant cohomology groups is simply

Heven
G,dl(X) = R(G)⊗Heven(X), Hodd

G,dl(X) = R(G)⊗Hodd(X),

and these groups lead to the diagram (4.6).

4.2. Free actions. The opposite extreme of the trivial case, studied extensively by
Cartan, arises when G acts freely. i.e., when gζ = ζ implies g = Id . The assumed
smoothness and compactness shows that the action corresponds to a principal G-
bundle,

(4.10) G X

��
Z = G\X.

In this case Borel showed that not only is the quotient of the action smooth but

(4.11) G acts freely =⇒ H∗G(X) = H∗(Z).

This indeed is one justification for the definition of equivariant cohomology.
The isomorphism in (4.11) was analyzed explicitly by Cartan at the chain level,

in terms of a connection on X as a principal bundle over X (see [12]). Thus, if
θ is a connection on the principal bundle then its curvature, ω, is a 2-form with
values in the tensor product of the Lie algebra with itself. The formally infinite
sum exp(ω/2πi) can therefore be paired with an element of the finite part of the
symmetric tensor product S(g∗); the G-invariant part of the resulting form descends
to the quotient and gives a map at the form level

(4.12) (C∞(X; Λ∗X)⊗ S(g∗))
G 3 u 7−→ (exp(ω/2πi) · u)

G ∈ C∞(G\X; Λ∗)

which induces the isomorphism (4.11).
In this free case the equivariant K-theory is also immediately computable. A

G-equivariant vector bundle over X is equivariantly isomorphic to the pull-back of
a vector bundle over Z and in consequence

(4.13) G acts freely =⇒ K∗G(X) = K∗(Z).

In this setting the equivariant Chern character reduces to the standard Chern
character on the quotient and in particular the equivariant form of the Atiyah-
Hirzebruch isomorphism does hold.

For free group actions, the delocalized equivariant cohomology is just the coho-
mology of the quotient

Heven
G,dl(X) = Heven(Z), Hodd

G,dl(X) = Hodd(Z)

and again the diagram (4.6) is clear, with L∧ given by the identity.

4.3. Unique isotropy group. The free case corresponds to Gζ = {Id}. Perhaps
the next most regular case is where Gζ = K is a fixed group. In view of (2.3),

(4.14) Gζ = K ∀ ζ ∈ X =⇒ K normal in G.

The action of G factors through the free action of Q = G/K. If G = K × Q, we
can treat the two actions separately as above. However, generally there will be a
non-trivial induced action of Q on the Lie algebra of K.

It is convenient to pass to a finite index subgroup of G. Let π : G −→ Q denote
the canonical projection and let G′ be the inverse image of Q0, the connected
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component of the identity in Q. Then G′ is a normal subgroup of G with quotient
G/G′ = Q/Q0, a finite group.

The Lie algebra k of K is a Lie subalgebra of g. Choosing an Ad-invariant metric
on g, the Lie algebra, q, of Q may be identified with k⊥. The Ad-invariance of k
implies the Ad-invariance of q; thus k and q Lie commute. Exponentiating the Lie
algebra q into G′ gives a subgroup Q′0 ⊂ G′ which is a finite cover of Q0 and which
commutes with K.

On the one hand, this shows that the Borel bundle of degree j, given initially by

Bj = Sj(k∗)K ×G X −→ Z

is equal to

(4.15) Sj(k∗)K ×(G/G′) (Q0\X) −→ Z.

On the other hand, it follows that the equivariant differential forms on X are
given by

(S(g∗)⊗ C∞(X; Λ))
G

= (S(k∗)⊗ S(q∗)⊗ C∞(X; Λ))
G

=
(
S(k∗)K ⊗ (S(q∗)⊗ C∞(X; Λ))

Q0

)G/G′
.

The equivariant differential reduces to that of the Q0 action and so, using the result
for principal bundles above, the equivariant cohomology of X is given by

Hq
G(X) =

⊕
2j+k=q

(
Sj(k∗)K ⊗Hk(Q0\X)

)G/G′
.

In view of (4.15), this can be written

Hq
G(X) =

⊕
2j+k=q

Hk(Z;Bj), i.e. H∗G(X) = H∗(Z;B∗),

thus establishing Theorem 4.2 in this case.

Remark 1. The Borel bundle is not trivial in general, precisely because of the
possible non-trivial action of Q/Q0 on the Lie algebra of K. For instance, let M be
the connected double cover of the circle with the associated free Z2 action. This
action can be extended to an action of the twisted product G = S1 o Z2 (where
commuting the non-trivial Z2 element past an element z ∈ S1 ⊆ C replaces z with
z) since the twisting does not affect the Z2 product. Now M has a unique isotropy
group, K = S1, which is normal in G. The quotient group Q = G/K is Z2 and
it acts non-trivially on R1, the Lie algebra of K. The Borel bundle will thus be a
non-trivial line bundle on Z2\M = S1.

There is a similar reduction for equivariant K-theory in this case of a single
isotropy group. Indeed, since Q′0 commutes with K, if Q is connected then there
are two independent actions, a free action by Q and a trivial action by K, so from
the previous two sections,

K∗G(X) = R(K)⊗K∗(Z).

If the quotient is not connected, then K still acts on the fibres of any G-equivariant
vector bundle over X, which can then be decomposed into subbundles tensored
with representations of K, so an equivariant K-class is represented by a pair of
equivariant bundles, or a bundle with coefficients in the representation ring R(K).
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Again the quotient group Q acts, by conjugation, on R(K) with Q0 acting trivially
and we may identify

(4.16) K∗G(X) = (R(K)⊗K∗(Q0\X))
Q/Q0 or K∗G = K∗(Z;R)

where in the second, more geometric, form we use the representation bundle, given
in this case by

R = R(K)×G/G′ (Q0\X) −→ Z.

Note that this establishes (4.2) and (4.3), hence Theorem 4.3, since Q0\X = G′\X
and G/G′ = Q/Q0.

In the same way, the delocalized equivariant cohomology of X is given by

Heven
G,dl(X) = (R(K)⊗Heven(Q0\X))

Q/Q0 ,

Hodd
G,dl(X) =

(
R(K)⊗Hodd(Q0\X)

)Q/Q0

.

The Chern character map K0
G(X) −→ Heven

G,dl(X) is thus induced by the Chern

character map K0(Q0\X) −→ Heven(Q0\X) and is an isomorphism after tensoring
K0
G(X) with C. This establishes Theorem 4.4 when X = XK .

4.4. Unique isotropy type. Finally, consider the general case of a unique isotropy
type, X = X [K]. Denote N(K)/K by W (K), and recall from Proposition 4.1 that
X is G-equivariantly diffeomorphic to G×N(K) X

K and that the G-orbit space of

X is equal to the W (K)-orbit space of XK ,

Z = G\X = W (K)\XK .

Notice that, if K̃ is another choice of isotropy group, so that K̃ = gKg−1 for

some g ∈ G, then gN(K)g−1 = N(K̃) and the diffeomorphism

g· : XK −→ XK̃

intertwines the N(K) and N(K̃) actions and hence descends to a diffeomorphism

W (K)\XK −→W (K̃)\XK̃ .

Directly from the definitions, this shows that the Borel bundle of the G-action on
X is the same as the Borel bundle of the N(K)-action on XK , and similarly for
the representation bundle.

The G-equivariant cohomology of X is equal to the N(K)-equivariant cohomol-
ogy of XK (as observed originally by Borel). Indeed, the space G × XK has two
commuting free actions, the left G-action and the diagonal N(K)-action, hence

H∗G(X) = H∗G(G×N(K) X
K) = HG×N(K)(G×XK) = H∗N(K)(X

K).

By the previous section, this is equal to

H∗N(K)(X
K) = H∗(W (K)\XK ;B∗) = H∗(Z;B∗),

thus establishing Theorem 4.2.
Since K-theory behaves similarly for free group actions, the G-equivariant K-

theory of X also reduces to the N(K)-equivariant K-theory of XK ,

(4.17) K0
G(X) = K0

N(K)(X
K) = K0(Z;R).

Finally, since delocalized equivariant cohomology is defined directly on the orbit
space, it is immediate that H∗G,dl(X) = H∗N(K),dl(X

K), which reduces Theorems
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4.3 and 4.4 to the situation discussed in the previous section and establishes them
when X = X [K].

5. Equivariant fibrations

In describing the equivariant cohomology theories for a general group action in
terms of the resolved space, we will often have two compact manifolds, Y1 and Y2,
each with a smooth G-action with unique isotropy type, and with a smooth map

(5.1) f : Y1 −→ Y2

which is both G-equivariant and a fibration. A G-equivariant map always descends
to map between the orbit spaces and this induces maps between the Borel and
representation bundles.

Proposition 5.1. If f : Y1 −→ Y2 is a G-equivariant fibration between compact
manifolds with G-actions having unique isotropy type then the induced map between
the quotients γf : Z1 = G\Y1 −→ Z2 = G\Y2 is a smooth fibration which is
covered by induced pull-back/restriction maps between sections of the Borel and
representation bundles

γ#
f : C∞(Z2, B

∗
2) −→ C∞(Z1, B

∗
1), γ#

f : C∞(Z2,R2) −→ C∞(Z1,R1)

which in turn induce maps between the corresponding chain spaces for equivariant
and delocalized equivariant cohomology and for bundles with representation bundle
coefficients.

Proof. The smoothness of γf : Z1 −→ Z2, follows from the fact that G-invariant
smooth functions on the base pull back to smooth G-invariant functions, this also
shows that (γf )∗ is injective and hence that γf is a fibration.

For ζ ∈ Z1, Gζ ⊆ Gf(ζ), and hence there are restriction maps

(5.2) R(Gf(ζ)) −→ R(Gζ) and S(g∗f(ζ))
Gf(ζ) −→ S(g∗ζ)

Gζ .

Since the Borel bundles of degree j are obtained from the equivariant bundles

B̃ji = {(ζ, ω) ∈ Zi × S(g∗ζ)
Gζ} −→ Yi

and (5.2) induces an equivariant bundle map

f∗(B̃k2 ) −→
⊕
j≤k

B̃j1,

there are maps

γ#
f : C∞(Z2, B

k
2 ) −→ C∞

(
Z1,
⊕
j≤k

Bj1

)
, γ#

f : C∞(Z2, B
∗
2) −→ C∞(Z1, B

∗
1).

Similarly, the representation bundles are obtained from the equivariant bundles

R̃i = {(ζ, ρ) ∈ Zi ×R(Gζ)} −→ Yi

and (5.2) induces an equivariant bundle map

f∗(R̃2) −→ R̃1,

so γ#
f : C∞(Z2,R2) −→ C∞(Z1,R1), as claimed.
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Together with pull-back of forms these generate pull-back maps for the ‘reduced’
deRham spaces defining the equivariant cohomology and the equivariant delocalized
cohomology

(5.3)
γ#
f : C∞(Z2;B∗2 ⊗ Λ∗) −→ C∞(Z1;B∗1 ⊗ Λ∗)

γ#
f : C∞(Z2;R2 ⊗ Λ∗) −→ C∞(Z1;R1 ⊗ Λ∗)

which commute with the differential and so in turn induce pull-back maps on the
corresponding cohomologies.

The situation is similar for the reduced model for equivariant K-theory. Namely,
since Gζ ⊆ Gf(ζ), there is a natural ‘Peter-Weyl’ pull-back map where each element
of R2 is decomposed into a finite sum of elements of R1. This induces a pull-back
construction, so that if

(5.4)
V a bundle with coefficients in R2 =⇒

γ#
f V is a bundle with coeffiencients in R1.

�

These pull-back maps also allow the introduction of relative cohomology and K-
theory groups. The situation that arises inductively below corresponds to Y1 being
a boundary face of a manifold (with corners) Y ; for simplicity here suppose that Y
is a manifold with boundary. Then the relative theory in cohomology for the pair
of quotient spaces, is fixed by the chain spaces

(5.5)
{

(u, v) ∈ C∞(G\Y ;B∗ ⊗ Λ∗)× C∞(Z2;B∗2 ⊗ Λ∗); i∗Z1
u = γ#

f v
}

with the diagonal differential; here i∗Z1
is the map induced by restriction to the

boundary.
Similar considerations apply to delocalized cohomology and K-theory.

6. Resolution of a group action and reduction

A connected manifold, X, with smooth G-action has a single isotropy group
which is maximal with respect to the partial order (2.5). Corresponding to this is
the open and dense the principal isotropy type, Xprinc. The space X can be viewed
as a compactification of Xprinc and in this section we recall from [1] that there is
another compactification of Xprinc to a manifold with corners (even if X originally
had not boundary), Y (X), with a smooth G-action, a unique isotropy type, and an
equivariant map

Y (X) −→ X,

that restricts to a diffeomorphism Y (X)◦ −→ Xprinc. The space Y (X) is canonically
associated to X with its G-action and is called here the canonical resolution of X.

In a manifold with corners there is a distinguished class of submanifolds, the ‘p-
submanifolds’ where ‘p-’ stands for ‘product-’, which have tubular neighborhoods in
the manifold. Radial blow-up of a closed p-submanifold, in the sense of replacing
the submanifold with the boundary of a tubular neighborhood, leads to a well
defined manifold with corners.

In [1] it is shown that a minimal isotropy type of X with respect to the partial
order (2.5) is a closed G-invariant p-submanifold, and that blowing it up produces
a manifold with a smooth G-action in which this minimal isotropy type does not
occur. The space Y (X) is obtained by iteratively blowing-up minimal isotropy
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types, and is independent of the order in which these blow-ups are carried out. We
refer to [1] for the details of the construction and just review the structure of Y (X)
that we use below.

Definition 5. A manifold with corners Y has a resolution structure if every boundary
hypersurface M is the total space of a fibration

M
φ−−→ YM

and these fibrations are compatible in that:

i) If M1 and M2 are intersecting boundary hypersurfaces then dimY1 6=
dimY2.

ii) IfM1 andM2 are intersecting boundary hypersurfaces and dimY1 < dimY2,
there is a given fibration φ12 : φ2(M1 ∩M2) −→ Y1 such that the diagram

M1 ∩M2
φ2 //

φ1 $$HHH
HHH

HHH
H φ2(M1 ∩M2)

φ12
yysssssssssss

Y1

commutes.

If all of the spaces involved have G-actions and the fibrations are equivariant
then this is an equivariant resolution structure. If moreover Y and the YM ’s each
have a unique isotropy type, we refer to the equivariant resolution structure as a
full resolution.

The canonical resolution of X is a full resolution in this sense. The conjugacy
classes of isotropy groups of X, {[Ki] ∈ I}, are in one-to-one correspondence with
the boundary hypersurfaces of Y (X). The face corresponding to each [K], M[K], is
the total space of a fibration arising from the corresponding blow-down map

(6.1) M[K]

φ[K]−−−−→ Y[K]

and the base is itself the canonical resolution of the closure of X [K],

Y[K] = Y
(
X [K]

)
.

Notice that the (topological) closure of an isotropy type has the ‘algebraic’ descrip-
tion,

X [K] = {ζ ∈ X : [K] ≤ [Gζ ]}.
Once the group action has been resolved we can make use of Proposition 4.1.

The orbit space of the canonical resolution of X,

Z(X) = G\Y (X),

is thus a smooth manifold with corners, the reduction of X and is canonically
associated to the G-action on X. For each isotropy type [K] of X, the associated
boundary hypersurface of Y (X) (which may not be connected), with its fibration
(6.1), descends to a boundary fibration of the corresponding boundary hypersurface
of Z(X),

(6.2) ψ[K] : N[K] = G\M[K] −→ G\Y[K] = Z[K]

and since the compatibility conditions necessarily descend as well, these fibrations
form a resolution structure on Z(X).
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7. Reduced models for cohomology

Let X be a compact manifold with a smooth action by a compact Lie group, G,
and let Y (X) and Z(X) be its resolution and reduction. As Y (X) has a unique
isotropy type, there are Borel and representation bundles

B∗ −→ Z(X), R −→ Z(X)

as in Definitions 1 and 2. Similarly, for each isotropy type [K] ∈ I of X, the

manifold Y[K] = Y (X [K]) has a unique isotropy type and there are corresponding
Borel and representation bundles

B∗[K] −→ Z[K], R[K] −→ Z[K].

Moreover, as explained in §5, there are natural pull-back/restriction maps under
the fibrations (6.2),

ψ#
[K] : C∞(Z[K], B

∗
[K]) −→ C

∞(N[K], B
∗), ψ#

[K] : C∞(Z[K],R[K]) −→ C∞(N[K],R).

This data allows a twisted, relativem deRham complexes on Z(X) to be introduced.

Definition 6. For all [K] ∈ I, let i[K] : N[K] −→ Z(X) denote the inclusion of the
boundary face of Z(X) corresponding to [K], then each q ∈ N0 set

(7.1) CqΦ(Z(X);B∗ ⊗ Λ∗)

=
{

(u, {v[K]}) ∈
(
⊕

2j+k=q
C∞(Z(X);Bj ⊗ Λk)

)
⊕
( ⊕

[K]∈I

C∞(Z[K];B
∗
[K] ⊗ Λ∗)

)
: i∗[K]u = ψ#

[K]v[K] for all [K] ∈ I
}
.

The diagonal deRham differential, d(u, {v[K]}) = (du, {dv[K]}), acts on the sequence
C∗Φ(Z(X);B∗ ⊗ Λ∗), increases the grading by one, and squares to zero. Thus there
is an associated Z-graded cohomology, the reduced equivariant cohomology.

Theorem 7.1. The equivariant cohomology of a compact manifold X (meaning the
absolute cohomology in case of a manifold with corners) with a smooth action by a
compact Lie group G is equal to the cohomology of the complex CqΦ(Z(X);B∗⊗Λ∗),

Hq
G(X) ∼= Hq(C∗Φ(Z(X);B∗ ⊗ Λ∗), d).

This result is proved in §7.1; note that in the case of a manifold with corners the
additional condition that the aciton be intersection-free on boundary hypersurfaces
is imposed.

We also define reduced K-theory groups on Z(X).

Definition 7. A resolution vector bundle with coefficients in R over Z(X) is a
collection 〈E〉 of vector bundles, E over Z(X) with coefficients in R, and one for
each non-maximal isotropy type [K] ∈ I, E[K] over Z[K], with coefficients in R[K]

with the property

E
∣∣
N[K]

= φ#
[K]E[K].

The reduced K-theory group K0
Φ(Z(X),R) is the Grothendieck group of pairs of

resolution vector bundles with coefficients in R. Equivalence is stable isomorphism
over each space consistent under these pull-back maps. The group K1

Φ(Z(X),R) is
defined by suspension as in (3.4).
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Theorem 7.2. Let X be a closed manifold with a smooth G-action, then

(7.2) K∗G(X) ∼= K∗Φ(Z(X);R).

This result is proved in §7.2.
We defer the definition of the delocalized equivariant cohomology groups H∗G,dl(X)

for a general G-action until section 8 where it is shown that the Chern character
map between KG(X) and H∗G(X) factors through H∗G,dl(X).

7.1. Reduced equivariant cohomology. To prove Theorem 7.1, we first show
that equivariant cohomology lifts to Y (X) and then that it descends to Z(X).

For the former, let Y be any manifold with corners with an equivariant resolution
structure, let M1(Y ) denote the set of boundary hypersurfaces of Y, and define

C∗G,Φ(Y ; Λ∗)

=
{

(u, {vM}) ∈ C∞G (Y ;S(g∗)⊗ Λ∗)⊕
⊕

M∈M1(Y )

C∞G (YM ;S(g∗)⊗ Λ∗)

: i∗Mu = φ∗MvM for all M ∈M1(Y )
}
.

These spaces form a complex with respect to the diagonal equivariant differen-
tial, the resulting cohomology is the equivariant resolution cohomology of Y and is
denoted H∗G,Φ(Y ).

Let W be a G-invariant p-submanifold of Y transversal to the fibers of all of the
boundary fibrations of Y then the manifold [Y ;W ], obtained from Y by blowing-
up W, is a manifold with corners with an induced equivariant resolution structure.
Indeed, the new boundary face, which we denote ff[Y ;W ] or ff, can be identified
with the inward-pointing spherical normal bundle of W in Y and so is the total
space of a fibration over W. If M is a boundary hypersurface of Y then [M ;M ∩W ]
is the associated boundary hypersurface of [Y ;W ] and the fibration on M induces
a fibration on [M ;M ∩W ]. Finally the compatibility conditions on the boundary
fibrations of Y induce the compatibility conditions on the boundary fibrations of
[Y ;W ]. We refer to [1] for the details.

Proposition 7.3. Let Y be a manifold with corners with an equivariant resolution
structure and let W be a G-invariant p-submanifold transverse to the fibers of all
of the boundary fibrations of Y, then the equivariant resolution cohomology groups
of Y and of [Y ;W ] are canonically isomorphic,

H∗G,Φ(Y ) ∼= H∗G,Φ([Y ;W ]).

Proof. Let β : [Y ;W ] −→ Y denote the blow-down map, which collapses the new
boundary face back to W. The boundary fibration on ff[Y ;W ] is the restriction

of β, ff[Y : W ]
β−−→ W, and the boundary fibration [M ;M ∩W ] −→ YM is the

composition [M ;M ∩W ]
β−−→M

φM−−−−→ YM . So the pull-back by β induces a map

C∗G,Φ(Y ; Λ∗) 3 (u, {vM}) 7→ (β∗u, vff , {vM}) ∈ C∗G,Φ([Y ;W ]; Λ∗)

where vff is the restriction of u to ff[Y ;W ]. This map commutes with the diagonal
equivariant differential.

The principal claim is that the complex C∗G,Φ([Y ;W ]; Λ∗) retracts onto the lift

of the complex C∗G,Φ(Y ; Λ∗), so they have the same cohomology.
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Indeed, the blow-down map has the property that its restriction off the front
face is a diffeomorphism,

β′ : [Y ;W ] \ ff[Y ;W ] −→ Y \W
Hence given (u, vff , {vM}) ∈ C∗G,Φ([Y ;W ]; Λ∗), u can be restricted to [Y ;W ] \
ff[Y ;W ] and then pulled back along (β′)−1 to give a form u′ on Y \W. The fact
that i∗ffu = β∗vff shows that u′ extends continuously to Y with i∗Wu

′ = vff ; however
this form is generally not smooth at W, and hence does not define an element of
C∗G,Φ(Y ; Λ∗). The remedy is to choose a collar neighborhood of ff[Y ;W ] in [Y ;W ]

of the form [0, 1)r × ff[Y ;W ] and first deform u to make it independent of r in a
neighborhood of ff[Y ;W ]. The form u′ will then extend smoothly to Y, and hence
define an element of C∗G,Φ(Y ; Λ∗). This proves that the complex on [Y ;W ] retracts
onto the lift of the complex on Y, as required. �

This proposition can be applied repeatedly through the resolution of a manifold
X to Y (X) starting with the Cartan model for the equivariant cohomology of X. At
each step of the construction, it is shown in [1] that the conditions of Proposition 7.3
are satisfied, that one has a manifold with corners with an equivariant resolution
structure, and that any minimal isotropy type is a closed G-invariant p-submanifold
transverse to the fibers of all of the boundary fibrations.

Corollary 7.4. The equivariant cohomology of a compact manifold X with a
smooth G-structure is naturally isomorphic to the equivariant resolution cohomology
of its canonical resolution,

Hq
G(X) ∼= Hq

G,Φ(Y (X)).

The projections π : Y (X) −→ G\Y (X) = Z(X) and π[K] : Y[K] −→ Z[K] induce
a pull-back map

π# : C∗Φ(Z(X);B∗ ⊗ Λ∗) −→ C∗G,Φ(Y (X); Λ∗)

and we can generalize (4.11) to this context. As it is not important for this purpose
that Y (X) comes from resolving X, we will not assume that in the following.

Proposition 7.5. Let Y be a manifold with corners with a smooth G action for
which the orbit of any boundary hypersurface is embedded. If Y is a full resolution in
the sense of Definition 5 and Z = G\Y is its orbit space with the induced resolution
structure, then pull-back via the projection π : Y −→ Z induces an isomorphism in
cohomology,

π# : H∗Φ(Z;B∗) −→ H∗G,Φ(Y ).

Proof. To prove that π# induces an isomorphism in cohomology we pass to a rela-
tive form of both the complex defining the equivariant resolution cohomology of Y
and the complex defining the resolution cohomology of Z. Thus let BY ⊆ M1(Y )
be a G-invariant collection of boundary hypersurfaces with the property that it
contains any boundary face which corresponds to an isotropy type containing the
isotropy group of an element of BY . Let BZ denote the corresponding collection of
boundary hypersurfaces of Z. Then consider the subcomplex

C∗G,Φ(Y ; Λ∗;BY ) = {(u, {vM}) ∈ C∗G,Φ(Y ; Λ∗) : M ∈ BY =⇒ vM = 0}

and similarly C∗Φ(Z;B∗⊗Λ∗;BZ). Again the pull-back map π# acts from the reduced
complex to the resolved complex.



DELOCALIZED EQUIVARIANT COHOMOLOGY AND RESOLUTION 19

In the case that BY = M1(Y ) we already know from Theorem 4.2 that π#

induces an isomorphism in cohomology since the proof extends with no essential
changes to the relative equivariant cohomology of a manifold with corners with a
unique isotropy type.

Now, consider two such subsets BZ ⊂ B′Z which differ by just one element N ∈
M1(Z), and let M = π−1(N) ⊆ BY and B′Y = BY \M. We get two short exact
sequence of complexes with maps induced by π# :

(7.3) CΦ(Z;B∗ ⊗ Λ∗;B′Z) //

π#

��

CΦ(Z;B∗ ⊗ Λ∗;BZ) //

π#

��

CΦ(N ;B∗ ⊗ Λ∗;BZ)

π#

��
C∞G,Φ(Y ; Λ∗;B′Y ) // C∞G,Φ(Y ; Λ∗;BY ) // C∞G,Φ(M; Λ∗;BY ).

Here of courseM is really the orbit of one hypersurface M ∈M1(Y ) under the G-
action. Because of the assumptions on the action, this orbit is a disjoint collection
of boundary hypersurfaces of Y.

Now, proceeding by induction over the dimension of Y we may assume that
π# induces an isomorphism on cohomology when acting on N. Also inductively,
starting fromM1(Y ), we may assume that it induces an isomorphism for the coho-
mology relative to B′Y . Thus the Fives Lemma applies to the long exact sequence
in cohomology to show that it also induces an isomorphism on cohomology relative
to B and hence in general. �

Corollary 7.4 and Proposition 7.5 together imply Theorem 7.1.

7.2. Reduced equivariant K-theory. The equivariant K-theory of a closed man-
ifold X with a smooth G-action also lifts to Y (X) and descends to Z(X).

Definition 8. Let Y be a manifold with corners and an equivariant resolution struc-
ture. An equivariant resolution vector bundle over Y is a collection 〈E〉 of equivari-
ant vector bundles, E over Y, and an EM over each M ∈M1(Y ), with the property
that

(7.4) E
∣∣
M

= φ∗MEM

as equivariant bundles.
The equivariant resolution K-theory group K0

G,Φ(Y ) is the Grothendieck group
of pairs of equivariant resolution vector bundles over Y. Equivalence is equivariant
stable isomorphism over each space consistent under these pull-back maps. The
group K1

G,Φ(Y ) is defined by suspension as in (3.4).

Proposition 7.6. Let Y be a manifold with corners with an equivariant resolution
structure and let W be a G-invariant p-submanifold transverse to the fibers of all
of the boundary fibrations of Y, then the equivariant resolution K-theory groups of
Y and of [Y ;W ] are canonically isomorphic,

K∗G,Φ(Y ) ∼= K∗G,Φ([Y ;W ]).

Proof. For continuous data this is immediate since the lift of a G-equivariant bun-
dle from Y to [Y ;W ] gives a bundle satisfying the compatibility conditions (7.4).
Conversely such data defines a continuous bundle over Y by collapsing W ; thus
there is an isomorphism at the level of the bundle data.
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For smooth data this is not quite the case, a smooth bundle certainly lifts to give
smooth compatible data on the resolution but the converse does not hold. Nev-
ertheless, normal retraction easily shows that any smooth compatible data on the
resolution can be deformed by G-equivariant homotopy, and hence G-equivariant
isomorphism, to be the lift of a smooth G-bundle over Y. The same argument ap-
plies to equivalence so the smooth equivariant resolution K-theory groups for Y
and [Y ;W ] are again canonically isomorphic. �

Corollary 7.7. The equivariant K-theory groups of a compact manifold X with a
smooth G-action are canonically isomorphic to the equivariant resolution K-theory
groups of its resolution,

(7.5) K∗G(X) ∼= K∗G,Φ(Y (X)).

As for equivariant cohomology, the projection map π : Y (X) −→ Z(X) induces
a pull-back map

π# : K∗Φ(Z(X);R) −→ K∗G,Φ(Y (X))

which is in fact an isomorphism.

Proposition 7.8. Let Y be a manifold with corners with a smooth G action for
which the orbit of any boundary hypersurface is embedded. If Y is a full resolution in
the sense of Definition 5 and Z = G\Y is its orbit space with the induced resolution
structure, then pull-back via the projection π : Y −→ Z induces an isomorphism in
cohomology,

π# : K∗Φ(Z;R) −→ K∗G,Φ(Y ).

Proof. The proof is essentially the same as that of Proposition 7.5 and we adopt
the same notations, e.g., BY and BZ .

The relative group KG,Φ(Y ;BY ) is made up of equivalence classes (〈E〉, 〈F 〉, σ),
where 〈E〉 and 〈F 〉 are equivariant resolution vector bundles and σ is a collection
of equivariant isomorphisms

σM : EM
∼=−−−→ FM , for every M ∈ BY .

Similarly, the relative group KΦ(Z;R;BZ) consists of equivalence classes of triples
(〈E〉, 〈F 〉, σ), where 〈E〉 and 〈F 〉 are resolution vector bundles with coefficients in
R, and σ is a collection of isomorphisms

σN : EN
∼=−−−→ FN as bundles with RN coefficients for every N ∈ BZ .

The relative odd K-theory groups are defined similarly.
For BY =M1(Y ), a simple modification of the proof of Theorem 4.3 shows that

π# : K∗Φ(Z;R;BZ) −→ K∗G,Φ(Y ;BY )

is an isomorphism. For the general case, one can appeal to the Fives Lemma in
the associated long exact sequences and induction, just as in the proof of Proposi-
tion 7.5. �
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8. Equivariant Chern character

Comparing the reduced equivariant cohomology groups and the reduced equi-
variant K-theory groups, it is natural to define a complex on Z(X) making use of
the representation bundles,

(8.1) Ceven
Φ (Z(X);R⊗ Λ∗)

=
{

(u, {v[K]}) ∈ C∞(Z(X);R⊗ Λeven)⊕
⊕

[K]∈I

C∞(Z[K];R[K] ⊗ Λeven)

: i∗[K]u = ψ#
[K]v[K] for all [K] ∈ I

}
,

and similarly Codd
Φ (Z(X);R ⊗ Λ∗). The differential is again the diagonal deRham

differential.

Definition 9. The delocalized equivariant cohomology of a closed manifold X with
a smooth G-action is the Z2-graded cohomology of the complex of R-valued forms
on Z(X) compatible with the resolution structure,

H∗G,dl(X) = H∗(C∗Φ(Z(X);R⊗ Λ∗), d).

It is not immediately apparent that H∗G,dl(X) fixes a contravariant functor for
smooth G-actions, since in general a smooth G-equivariant map between manifolds
does not lift to a smooth map between the resolutions of the quotients as defined
above. Nevertheless this follows immediately from the following theorem since we
can identify these rings with G-equivariant K-theory with complex coefficients.

Theorem 8.1. The Chern character, defined locally by a choice of compatible con-
nections, defines a map

(8.2) ChG : K∗Φ(Z(X);R) −→ H∗Φ(Z(X);R)

for any smooth action of a compact Lie group on a manifold and this map induces
a (Baum-Brylinski-MacPherson) isomorphism

(8.3) ChG : K∗Φ(Z(X);R)⊗ C −→ H∗Φ(Z(X);R).

Proof. A compatible connection on an resolution vector bundle with coefficients in
R over Z(X) can be introduced by starting from the ‘bottom’ of the resolution
structure and successively extending. Since the coefficient bundles are flat rings,
or by lifting to the finite cover by G/G′ at each level, the Chern character is then
given by the standard formula

(8.4) v[K] = exp(∇2/2πi) ∈ C∞(Z[K];R⊗ Λeven).

These forms are clearly compatible so define the class ChG ∈ Heven
Φ (Z(X);R).

The standard arguments in Chern-Weil theory show that the resulting class is
independent of choice of connection. Thus the even Chern character (8.2) is defined
as in the setting of smooth manifolds, and similarly the odd Chern character.

In the case of a manifold with unique isotropy type, (4.3) allows this map to
be derived from the standard, untwisted, Chern character. Namely the quotient is
then a single manifold with corners and the Chern character as defined above is
simply the quotient under the finite group action by G/G′ of the standard Chern
character

(8.5) K∗(N(K)′\XK) −→ H∗(N(K)′\XK).
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It therefore follows that it induces an isomorphism as in (8.3) in that case. More-
over, this is equally true for absolute and relative K-theory and cohomology.

The proof that (8.3) holds in general follows the same pattern as the proofs
above of the identity of G-equivariant K-theory and cohomology with the reduced
models. Namely, for K-theory and cohomology the partially relative rings can be
defined with respect to any collection of boundary B ⊂M1(G\X) which contains all
hypersurfaces smaller than any element. In the corresponding long exact sequences
in K-theory and delocalized cohomology, which in the second case either can be
deduced by analogy from the case of coefficient rings or else itself can be proved
inductively, the Chern character then induces a natural transformation by the Fives
Lemma. �

Note that the localization maps (4.5) are consistent with the pull-back/restriction
maps defined in §5, hence there is a natural localization map

L∧ : H∗G,dl(X) −→ H∗G(X)

induced by localizing the complex (8.1) to the complex (7.1), which relates the
equivariant Chern character maps on H∗G,dl(X) and H∗G(X),

(8.6) K0
G(X)⊗ C = K0

Φ(Z(X);R)⊗ C
ChG //

ChG
∼= ))RRRRRRRRRRRRRR

Heven
G (X) = Heven

Φ (Z;B∗)

Heven
G,dl(X) = Heven

Φ (Z;R)

L
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9. Delocalized equivariant cohomology

The the determining feature of delocalized equivariant cohomology as compared
to Borel’s equivariant cohomology is that the Chern character gives an isomorphism
as in Theorem 8.1. In this section some of the properties that delocalized equivariant
cohomology shares with the more familiar equivariant cohomology are pointed out.

9.1. Sheaf theoretic description. As mentioned in the introduction, delocalized
equivariant cohomology was introduced by Baum, Brylinski, and MacPherson in the
context of Abelian group actions on closed manifolds. Their approach is to define
a certain sheaf over G\X. The canonical resolution in effect resolves this sheaf to a
bundle. Indeed, there is not only a continuous quotient map pG : Z(X) −→ G\X
but also by iteration continuous maps from all the resolutions of the isotropy types,
pG : Z[K] −→ G\X which compute with the boundary fibrations. Thus an open
subsets of G\X lifts to a system of open subsets of Z(X) and all the Z[K](X)
which are iteratively related by the boundary fibrations. It follows that the Borel
bundle defines a Z-graded sheaf B∗ over G\X, where sections of B∗ over an open
set U ∈ Op(G\X) are precisely sections of the Borel bundle of the preimage. With
the appropriate grading, the Čech cohomology with coefficients in this sheaf can
be identified, by standard arguments, with the cohomology of the reduced Cartan
complex, H∗Φ(Z(X);B∗) and hence with H∗G(X).

Proceeding in the same way with the representation bundle R −→ Z(X), one
obtains a sheaf R over G\X, with its Čech cohomology identified with the resolution
cohomology of Z(X) with coefficients in R, H∗Φ(Z(X);R) and hence with H∗G,dl(X).
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9.2. Atiyah-Bott, Berline-Vergne localization. Among the most useful prop-
erties of equivariant cohomology are the localization formulæ of Berline-Vergne [8]
and Atiyah-Bott [4] for Abelian group actions. Resolution of a group action reduces
these formulæ essentially to Stokes’ theorem, and works for non-Abelian actions as
well. The extension to non-Abelian group actions was already pointed out by
Pedroza-Tu [14] where, following [4], it is deduced from an ‘abstract’ localization
result of Segal as follows.

Theorem 9.1 (Segal [16]). Let γ be a conjugacy class in G, Xγ = ∪g∈γXg,
iγ : Xγ ↪→ X the inclusion, and 〈γ〉 the ideal of R(G) consisting of characters
that vanish at γ. Then the pull-back map i∗γ : K∗G(X) −→ K∗G(Xγ) becomes an
isomorphism after localization at 〈γ〉,

(9.1) i∗γ : K∗G(X)〈γ〉
∼=−−→ K∗G(Xγ)〈γ〉.

This theorem easily implies the analogous statements for equivariant cohomology
and delocalized equivariant cohomology. It also implies [4, pg. 8] that the push-
forward map (iγ)∗ in either cohomology is an isomorphism after localization. The
action of i∗γ(iγ)∗ is multiplication by the corresponding equivariant Euler class, so
this class is a unit after localization. The localization formulæ for integrals follows
by considering push-forward along the projections π : X −→ pt, πγ : Xγ −→ pt .

Corollary 9.2 (Berline-Vergne, Atiyah-Bott, Pedroza-Tu). ([8, 4, 5, 14]) Let hG
denote either equivariant cohomology or delocalized equivariant cohomology and
χh
G(ν) the corresponding Euler class of the normal bundle of Xγ in X. If X and

the normal bundle of Xγ are h-oriented then, for any ω ∈ h∗G(X), the equality

π∗(ω) = πγ∗

(
i∗γω

χh
G(ν)

)
holds after localization.

Finally we explain how to obtain the integral formula for H∗G(X) by means of
resolution and Stokes’ theorem in the simplest case, since the general case is covered
by Corollary 9.2. Assume that dimG > 0 and that the G-action on X is free on
X \XG. The canonical resolution of X, Y (X), is a manifold with boundary and

H∗G(X) = H∗(C∗Φ,G(Y (X)), deq).

Denote the boundary fibration of Y (X) by φ : ∂Y (X) −→ YG and the projection
Y (X) −→ Z(X) by π.

Let (u, v) ∈ C∗Φ,G(Y (X)) be deq-closed. By Cartan’s isomorphism,

u = π∗s+ deqω

(in this case we can assume s
∣∣
∂Z(X)

= 0) and by Stokes’ theorem

(9.2)

∫
Y (X)

u =

∫
∂Y (X)

ω =

∫
YG

∫
∂Y (X)/YG

ω in H∗G(pt) = S(g∗)G.

Next note that

deqω
∣∣
∂Y (X)

= (u− π∗s)
∣∣
∂Y (X)

= φ∗v.
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Hence (ω
∣∣
∂Y (X)

, v) defines an element of the complex

CqG(∂Y (X), φ) = {(ω, π) ∈ C∞G (YG,Λ
∗)[q+1] ⊕ C∞G (∂Y (X),Λ∗)[q]},

D =

(
deq 0
φ∗ −deq

)
,

that computes the equivariant relative cohomology of the normal bundle of XG in
X, NXX

G, see [2]. Because χG(NXX
G) is invertible we can compute the inner

integral in (9.2), ∫
∂Y (X)/YG

ω = v ∧ χG(NXX
G)−1

and hence ∫
Y (X)

u =

∫
YG

v ∧ χG(NXX
G)−1

as elements of H∗G(pt) localized to include χG(NXX
G)−1.

9.3. Chang-Skjelbred Theorem. A compact manifold X with a torus T action
is equivariantly formal if its equivariant cohomology satisfies

H∗T (X) = H(X)⊗ S(t∗).

Theorem 9.3 (Knutson-Rosu [15]). Let X be an equivariantly formal T -manifold
and X1 the set of points in X with stabilizer of codimension at most one, and let
i : XT −→ X and j : XT −→ X1 be the inclusion maps. The induced map

i∗ : K∗T (X) −→ K∗T (XT )

is injective and has the same image as the map j∗ : K∗T (X1) −→ K∗T (XT ).

The Chang-Skjelbred Theorem [10] is Theorem 9.3 for Borel’s equivariant coho-
mology. The corresponding theorem for delocalized equivariant cohomology is an
immediate corollary of Theorem 9.3.

Appendix. The circle action on the sphere

According to Guillemin and Sternberg [12, §11.7], whenever a torus acts on a sur-
face with non-empty fixed point set, the surface is diffeomorphic to the sphere and
action is effectively the rotation of the sphere around the z-axis. Their subsequent
computation of the equivariant cohomology makes use of equivariant formality and
we now show that it is straightforward to carry out this computation, even for
non-commutative groups, by resolving the sphere.

Thus consider a compact group G (not necessarily Abelian) acting smoothly on
X = S2. Suppose that G has a codimension one normal subgroup K that acts
trivially on X, and that the quotient S1 = G/K acts on X by rotating around the
z-axis (in the usual embedding of X into R3).

Thus the G-action has two isotropy types: the ‘north and south poles’, {N,S}
constitute an isotropy type corresponding to G, and their complement constitutes
an isotropy type corresponding to K. This action is resolved by lifting to

Y (X) = [X; {N,S}].
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The boundary of Y (X) is the disjoint union of two circles and the boundary fibration
is the map from each circle to the corresponding pole. In this case

C∞G,Φ(Y (X); Λ∗) =

{(ω, fN , fS) ∈ C∞G (Y ;S(g∗)⊗ Λ∗)⊕
⊕
N,S

S(g∗)G; i∗Nω = fN , i
∗
Sω = fS}

where we are identifying fN with fN ⊗ 1 ∈ C∞G (S1;S(g∗)⊗ Λ∗) and similarly with
fS .

We can identify the orbit space Z(X) = G\Y (X) with the unit interval, and in
this case the Borel bundle is the trivial S(k∗)K bundle. Thus the reduced Cartan
complex is

C∞Φ ([0, 1];B∗ ⊗ Λ∗) =
{

(ω, fN , fS) ∈
(
S(k∗)K ⊗ C∞([0, 1]; Λ∗)

)
⊕
⊕
N,S

S(g∗)G;

i∗0ω = r(fN ), i∗1ω = r(fS)
}

where r : S(g∗)G −→ S(k∗)K is the natural restriction map, and the differential is
the exterior derivative on the first factor. Since the interval is contractible, we find

H∗G(S2) = H∗(C∞G,Φ(Y (X);S(g∗)⊗ Λ∗), deq) = H∗(C∞Φ ([0, 1];B∗ ⊗ Λ∗), d)

= {(fN , fS) ∈ S(g∗)G ⊕ S(g∗)G; r(fN ) = r(fS)}

and so Hq
G(S2) is trivial if q is odd and is non-trivial for all even q ≥ 0.

The representation bundle is also trivial in this case, so the same reasoning shows
that

K0
G(S2) = {(τN , τS) ∈ R(G)⊕R(G) : ρ(τN ) = ρ(τS)}, K1

G(S2) = 0

where ρ : R(G) −→ R(K) is the restriction map. Indeed, classes in KΦ([0, 1];R)
consist of vector bundles over the interval and its end points with, respectively,
coefficients in R(K) and R(G) and the compatibility condition is induced by the
restriction map.

Finally note that the complex (8.1) in this case is given by

C∞Φ ([0, 1];R⊗ Λ∗) =

{(ω, τN , τS) ∈ (R(K)⊗ C∞([0, 1]; Λ∗))⊕
⊕
N,S

R(G); i∗0ω = ρ(τN ), i∗1ω = ρ(τS)}

with differential given by the exterior derivative on the first factor. Thus the delo-
calized equivariant cohomology is

Heven
G,dl(X) = {(τN , τS) ∈ R(G)⊕R(G); ρ(τN ) = ρ(τS)}, Hodd

G,dl(X) = 0.

The Chern character from equivariant K-theory to delocalized equivariant coho-
mology is the identity, while the Chern character into (localized) equivariant coho-
mology is localization at the identity in G.
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isation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9,

539–541.
[9] J.-L. Brylinski, Cyclic homology and equivariant theories, Ann. Inst. Fourier (Grenoble) 37

(1987), no. 4, 15–28.

[10] T. Chang and T. Skjelbred, The topological Schur Lemma and related results, Ann. of Math.
100 (1974), 307–321.

[11] J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000.

[12] V. W. Guillemin and S. Sternberg, Supersymmetry and equivariant de Rham theory, Math-
ematics Past and Present, Springer-Verlag, Berlin, 1999, With an appendix containing two

reprints by Henri Cartan.

[13] S. Illman, Equivariant algebraic topology, Annales de l’institut Fourier 23 (1973), no. 2,
87–91.

[14] Andrés Pedroza and Loring W. Tu, On the localization formula in equivariant cohomology,
Topology Appl. 154 (2007), no. 7, 1493–1501.

[15] I. Rosu, Equivariant K-theory and equivariant cohomology, Math. Z. 243 (2003), no. 3,

423–448, With an appendix by Allen Knutson and Rosu.

[16] G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. (1968), no. 34, 129–151.

Department of Mathematics, Massachusetts Institute of Technology

current address: Institut de Mathématiques de Jussieu
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