
CHAPTER 11

Hochschild homology

11.1. Formal Hochschild homology

The Hochschild homology is defined, formally, for any associative algebra. Thus
if A is the algebra then the space of formal k-chains, for k ∈ N0 is the (k + 1)-fold
tensor product

(11.1) A⊗(k+1) = A⊗A⊗ · · · ⊗ A.

The ‘formal’ here refers to the fact that for the ‘large’ topological algebras we shall
consider it is wise to replace this tensor product by an appropriate completion,
usually the ‘projective’ tensor product. At the formal level the differential defining
the cohomolgy is given in terms of the product, ?, by
(11.2)
b(a0 ⊗ a1 ⊗ · · · ⊗ ak) = b′(a0 ⊗ a1 ⊗ · · · ⊗ ak) + (−1)k(a0 ? ak)⊗ a1 ⊗ · · · ⊗ ak−1,

b′(a0 ⊗ a1 ⊗ · · · ⊗ ak) =
k−1∑
j=0

(−1)ja0 ⊗ · · · ⊗ aj−1 ⊗ aj+1 ? aj ⊗ aj+2 ⊗ · · · ⊗ ak.

Lemma 11.1. Both the partial map, b′, and the full map, b, are differentials,
that is

(11.3) (b′)2 = 0 and b2 = 0.

Proof. This is just a direct computation. From (11.2) it follows that

(11.4) (b′)2(a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ am)

=
m−1∑
j=2

j−2∑
p=0

(−1)j(−1)p(· · · ⊗ ap+1 ? ap ⊗ · · · ⊗ aj−1 ⊗ aj+1 ? aj ⊗ aj+2 ⊗ · · · ⊗ am)

−
m−1∑
j=1

(· · · ⊗ aj+1 ? aj ? aj−1 ⊗ · · · )−
m−2∑
j=0

(· · · ⊗ aj+21 ? aj+1 ? aj ?⊗ · · · )

+
m−3∑
j=0

m−1∑
p=j+2

(−1)j(−1)p−1(a0⊗· · ·⊗aj−1⊗aj+1?aj⊗aj+2⊗· · ·⊗ap+1?ap⊗· · · ) = 0.
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Similarly, direct computation shows that

(b− b′)b′(a0 ⊗ · · · ⊗ am) = (−1)m−1(a1 ? a0 ? am ⊗ · · · am−1)

+
m−2∑
i=1

(−1)i+m−1(a0 ? am ⊗ · · · ⊗ ai+1 ? ai ⊗ · · · ) + (a0 ? am ? am−1 ⊗ · · · ),

b′(b− b′)(a0 ⊗ · · · ⊗ am) = (−1)m(a1 ? a0 ? am ⊗ · · · am−1)

+
m−2∑
i=1

(−1)i+m(a0 ? am ⊗ · · · ⊗ ai+1 ? ai ⊗ · · · ) and

(b− b′)2(a0 ⊗ · · · ⊗ am) = −(a0 ? am ? am−1 ⊗ · · · )
so

(11.5) (b− b′)b′ + b′(b− b′) = −(b− b′)2.

�

The difference between these two differentials is fundamental, roughly speaking
b′ is ‘trivial’.

Lemma 11.2. For any algebra with identity the differential b′ is acyclic, since
it satifies

b′s+ sb′ = Id where(11.6)

s(a0 ⊗ · · · ⊗ am) = Id⊗a0 ⊗ · · · ⊗ am.(11.7)

Proof. This follows from the observation that

(11.8) b′(Id⊗a0 ⊗ · · · ⊗ am) = a0 ⊗ · · · ⊗ am +
m∑
i=1

(−1)i(Id⊗ · · · ai ? ai−2 ⊗ · · · ).

�

Definition 11.1. An associative algebra is said to be H-unital if its b′ complex
is acyclic.

Thus the preceeding lemma just says that every unital algebra is H-unital.

11.2. Hochschild homology of polynomial algebras

Consider the algebra C[x] of polynomials in n variables1, x ∈ Rn (or x ∈ Cn it
makes little difference). This is not a finite dimensional algebra but it is filtered by
the finite dimensional subspaces, Pm[x], of polynomials of degree at most m;

C[x] =
∞⋃
m=0

Pm[x], Pm[x] ⊂ Pm+1[x].

Furthermore, the Hochschild differential does not increase the total degree so it is
enough to consider the formal Hochschild homology.

The chain spaces, given by the tensor product, just consist of polynomials in
n(k + 1) variables

(C[x])⊗̂(k+1) = C[x0, x1, . . . , xk], xj ∈ Rn.

1The method used here to compute the homology of a polynomial algebra is due to Sergiu
Moroianu; thanks Sergiu.
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Furthermore composition acts on the tensor product by

p(x0)q(x1) = p⊗ q 7−→ p(x0)q(x0)

which is just restriction to x0 = x1. Thus the Hochschild differential can be written

b : C[x0, . . . , xk] −→ C[x0, . . . , xk−1],

(bq)(x0, x1, . . . , xk−1) =
k−1∑
j=0

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0).

One of the fundamental results on Hochschild homology is

Theorem 11.1. The Hochschild homology of the polynomail algebra in n vari-
ables is

(11.9) HHk(C[x]) = C[x]⊗ Λk(Cn),

with the identification given by the map from the chain spaces

C[x0, . . . , xk] 3 q −→
∑

1≤ji≤n

∂

∂xj11
. . .

∂

∂xjkk
p
∣∣
x=x0=x1=···=xk

dxj11 ∧ · · · ∧ dx
jk
k .

Note that the appearance of the original algebra C[x] on the left in (11.9) is
not surprising, since the differential commutes with multilplication by polynomails
in the first variable, x0

b(r(x0)q(x0, . . . , xk)) = r(x0)(bq(x0, . . . , xk)).

Thus the Hochschild homology is certainly a module over C[x].

Proof. Consider first the cases of small k. If k = 0 then b is identically 0. If
k = 1 then again

(bq)(x0) = q(x0, x0)− q(x0, x0) = 0
vanishes identically. Thus the homology in dimension 0 is indeed C[x].

Suppose that k > 1 and consider the subspace of C[x0, x1, . . . , xk] consisting of
the elements which are independent of x1. Then the first two terms in the definition
of b cancel and

(bq)(x0, x1, . . . , xk−1) =
k−1∑
j=2

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0), ∂x1q ≡ 0.

It follows that bq is also independent of x1. Thus there is a well-defined subcomplex
on polynomails independend of x1 given by

C[x0, x2, . . . , xk] 3 q 7−→ (b̃q)(x0, x2, . . . , xk−1)

=
k−1∑
j=2

(−1)jp(x0, x2, x2, x3 . . . , xk−1) +
k−1∑
j=3

(−1)j

p(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1) + (−1)kq(x0, x2, . . . , xk−1, x0)

The reordering of variables (x0, x2, x3, . . . , xk) −→ (x2, x3, . . . , xk, x0) for each k,

transforms b̃ to the reduced Hochschild differential b′ acting in k variables. Thus b̃
is acyclic.
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Similarly consider the subspace of C[x0, x1, . . . , xk] consisting of the polynomi-
als which vanish at x1 = x0. Then the first term in the definition of b vanishes and
the action of the differential becomes

(11.10) (bq)(x0, x1, . . . , xk−1) = p(x0, x1, x1, x2, . . . , xk−1)+
k−1∑
j=2

(−1)jp(x0, . . . , xj−1, xj , xj , xj+1, . . . , xk−1)

+ (−1)kq(x0, x1, . . . , xk−1, x0), if b(x0, x0, x2, . . . ) ≡ 0.

It follows that bq also vanishes at x1 = x0.
By Taylor’s theorem any polynomial can be written uniquely as a sum

q(x0, x1, x2, . . . , xk) = q′1(x0, x1, x2, . . . , xk) + q′′(x0, x2, . . . , xk)

of a polynomial which vanishes at x1 = x0 and a polynomial which is independent
of x1. From the discussion above, this splits the complex into a sum of two sub-
complexes, the second one of which is acyclic. Thus the Hochschild homology is
the same as the homology of b, which is then given by (11.10), acting on the spaces

(11.11) {q ∈ C[x0, x1, . . . , xk]; q(x0, x1, . . . ) = 0} .
This argument can be extended iteratively. Thus, if k > 2 then b maps the

subspace of (11.11) of functions independent of x2 to functions independent of x2

and on these subspaces acts as b′ in k−2 variables; it is therefore acyclic. Similar it
acts on the complementary spaces given by the functions which vanish on x2 = x1.
Repeating this argument shows that the Hochschild homology is the same as the
homology of b acting on the smaller subspaces

(11.12)
{q ∈ C[x0, x1, . . . , xk]; q(. . . , xj−1, xj , . . . ) = 0, j = 1, . . . , k} ,

(bq)(x0, x1, . . . , xk−1) = (−1)kq(x0, x1, . . . , xk−1, x0).

Note that one cannot proceed further directly, in the sense that one cannot reduce
to the subspace of functions vanishing on xk = x0 as well, since this subspace is
not linearly independent of the previous ones2

xk − x0 =
k−1∑
j=0

(xj1 − xj).

It is precisely this ‘non-transversality’ of the remaining restriction map in (11.12)
which remains to be analysed.

Now, let us we make the following change of variable in each of these reduced
chain spaces setting

y0 = x0, y1 = xj − xj−1, for j = 1, . . . , k.

Then the differential can be written in terms of the pull-back operation

EP : Rnk ↪→ Rn(k+1), EP (y0, y1, . . . , yk−1) = (y0, y1, . . . , yk−1,−
k−1∑
j=1

yj),

bq = (−1)kE∗P q,

2Hence Taylor’s theorem cannot be applied.
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The variable x0 = y0 is a pure parameter, so can be dropped from the notation (and
restored at the end as the factor C[x] in (11.9)). Also, as already noted, the degree
of a polynomial (in all variables) does not increase under any of these pull-back
operations, in fact they all preserve the total degree of homogeneity so it suffices to
consider the differential b acting on the spaces of homogeneous polynomials which
vanish at the origin in each factor

Qmk = {q ∈ Cm[y1, . . . , yk]; q(sy) = smq(y), q(y1, . . . , yj−1, 0, yj+1, . . . , yk) = 0}
b : Qmk −→ Qmk−1, bq = (−1)∗E∗P q.

To analyse this non-transversality further, let Ji ⊂ C[y1, . . . , yk] be the ideal
generated by the n monomials yli, l = 1, . . . , n. Thus, by Taylor’s theorem,

Ji = {q ∈ C[y1, . . . , yk]; q(y1, y2, . . . , yj−1, 0, yj , yk) = 0.

Similary set

JP = {q ∈ C[y1, . . . , yk]; q(y1, . . . ,−
k−1∑
j=1

yj) = 0)

For any two ideals I and J, let I · J be the span of the products. Thus for these
particular ideals an element of the product is a sum of terms each of which has a
factor vanishing on the corresponding linear subspace. For each k there are k + 1
ideals and, by Taylor’s theorem, the intersection of any k of them is equal to the
span of the product of those k ideals. For the k coordinate ideals this is Taylor’s
theorem as used in the reduction above. The general case of any k of the ideals
can be reduced to this case by linear change of coordinates. The question then, is
structure of the intersection of all k+1 ideals. The proof of the theorem is therefore
completed by the following result. �

Lemma 11.3. The intersection Qmk ∩ JP = Qm · JP for every m 6= k and

(11.13) Qkk ∩ JP = Λk(Cn).

Proof. When m < k the ideal Qmk vanishes, so the result is trivial.
Consider the case in (11.13), when m = k. A homogeneous polynomial of

degree k in k variables (each in Rn) which vanishes at the origin in each variable is
necessarily linear in each variable, i.e. is just a k-multilinear function. Given such
a multilinear function q(y1, . . . , yk) the condition that bq = 0 is just that

(11.14) q(y1, . . . , yk−1,−y1 − y2 − · · · − yk−1) ≡ 0.

Using the linearity in the last variable the left side can be expanded as a sum of
k − 1 functions each quadratic in one variables yj and linear in the rest. Thus the
vanishing of the sum implies the vanishing of each, so

q(y1, . . . , yk−1, yj) ≡ 0 ∀ j = 1, . . . , k − 1.

This is the statement that the multlinear function q is antisymmetric between the
jth and kth variables for each j < k. Since these exchange maps generate the
permutation group, q is necessarily totally antisymmetric. This proves the isomor-
phism (11.13) since Λk(Cn) is the space of complex-valued totally antisymmetric
k-linear forms.3

Thus it remains to consider the case m ≥ k+1. Consider a general element q ∈
Qmk ∩JP . To show that it is in Qmk ·JP we manipulate it, working modulo Qmk ∩JP ,

3Really on the dual but that does not matter at this stage.
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and use induction over k. Decompose q as a sum of terms ql, each homogeneous in
the first variable, y1, of degree l. Since q vanishes at y1 = 0 the first term is q1,
linear in y1. The condition bq = 0, i.e. q ∈ JP , is again just (11.14). Expanding in
the last variable shows that the only term in bq which is linear in y1 is

q1(y1, . . . , yk−1,−y2 − · · · − yk−1).

Thus the coefficient of y1,i, the ith component of y1 in q1, is an element of Qm−1
k−1

which is in the ideal JP (Rk−1), i.e. for k − 1 variables. This ideal is generated by
the components of y2 + · · ·+ yk. So we can proceed by induction and suppose that
the result is true for less than k variables for all degrees of homogeneity. Writing
y2 + · · · + yk = (y1 + y2 + · · · + yk) − y1 It follows that, modulo Qmk · JP , q1 can
be replaced by a term of one higher homogeneity in y1. Thus we can assume that
qi = 0 for i < 2. The same argument now applies to q2; expanded as a polynomial
in y1 the coefficients must be elements of Qm−2

k−1 ∩ JP . Thus, unless m− 2 = k − 1,
i.e. m = k + 1, they are, by the inductive hypothesis, in Qm−2

k−1 · JP (Rk−1) and
hence, modulo Qmk · JP , q2 can be absorbed in q3. This argument can be continued
to arrange that qi ≡ 0 for i < m − k + 1. In fact qi ≡ 0 for i > m − k + 1 by the
assumption that q ∈ Qmk .

Thus we are reduced to the assumption that q = qm−k+1 ∈ Qmk ∩JP is homoge-
neous of degree m−k+1 in the first variable. It follows that it is multilinear in the
last k−1 variables. The vanishing of bq shows that it is indeed totally antisymmet-
ric in these last k− 1 variables. Now for each non-zero monomial consider the map
J : {1, 2, . . . , n} −→ N0 such that J(i) is the number of times a variable yl,i occurs
for some 1 ≤ l ≤ k. The decomposition into the sum of terms for each fixed J is
preserved by b. It follows that we can assume that q has only terms corresponding
to a fixed map J. If J(i) > 1 for any i then a factor y1,i must be present in q, since
it is antisymmetric in the other k− 1 variables. In this case it can be written y1,iq

′

where bq′ = 0. Since q′ is necessarily in the product of the indeals J2 · . . . Jk · JP it
follows that q′ ∈ Qm · JP . Thus we may assume that J(i) = 0 or 1 for all i. Since
the extra variables now play no rôle we may assume that n = m is the degree of
homogeneity and each index i occurs exactly once.

For convenience let us rotate the last k−1 variables so the last is moved to the
first position. Polarizing q in the first variable, it can be represented uniquely as
an n-multilinear function on Rn which is symmetric in the first n− k+ 1 variables,
totally antisymmetric in the last k − 1 and has no monomial with repeated index.
Let Mk−1(n) be the set of such multilinear funtions. The vanishing of bq now
corresponds to the vanishing of the symmetrization of q in the first n−k+2 variables.
By the antisymmetry in the second group of variables this gives a complex

Mn(n)
bn // Mn−1(n)

bn−1 // . . . b2 // M1(n)
b1 // M0

b0 // 0.

The remaining step is to show that this is exact.
Observe that dim(Mk(n)) =

(
n
k

)
since there is a basis of Mk(n) with elements

labelled by the subsets I ⊂ {1, . . . , n} with k elements. Indeed let ω be a non-
trivial k-multilinear function of k variables and let ωI be this function on Rk ⊂ Rn
identified as the set of variables indexed by I. Then if a ∈ M0(n − k) is a basis of
this 1-dimensional space and aI is this function on the complementary Rn−k the
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tensor products aIωI give a basis. Thus there is an isomorphism

Mk 3 q =
∑

I⊂{1,...,n},|I|=k

cIaI ⊗ ωI 7−→
∑

I⊂{1,...,n},|I|=k

cI ⊗ ωI ∈ Λk(Rn).

Transfered to the exterior algebra by this isomorphism the differential b is
just contraction with the vector e1 + e2 + · · · + en (in the first slot). A linear
transformation reducing this vector to e1 shows immediately that this (Koszul)
complex is exact, with the null space of bk on Λk(Rn) being spanned by those ωI
with 1 ∈ I and the range of bk+1 spanned by those with 1 /∈ I. The exactness of
this complex completes the proof of the lemma. �

11.3. Hochschild homology of C∞(X)

The first example of Hochschild homology that we shall examine is for the
commutative algebra C∞(X) where X is any C∞ manifold (compact or not). As
noted above we need to replace the tensor product by some completion. In the
present case observe that for any two manifolds X and Y

(11.15) C∞(X)⊗ C∞(Y ) ⊂ C∞(X × Y )

is dense in the C∞ topology. Thus we simply declare the space of k-chains for
Hochschild homology to be C∞(Xk+1), which can be viewed as a natural comple-
tion4 of C∞(X)⊗(k+1). Notice that the product of two functions can be written in
terms of the tensor product as

(11.16) a · b = D∗(a⊗ b), a, b ∈ C∞(X), D : X 3 z 7−→ (z, z) ∈ X2.

The variables in Xk+1 will generally be denoted z0, z1, . . . , zk. Consider the
‘diagonal’ submanifolds

(11.17) Di,j = {(z0, z1, . . . , zk); zi = zj}, i, j = 0, . . . ,m, i 6= j.

We shall use the same notation for the natural embedding of Xk as each of these
submanifolds, at least for j = i+ 1 and i = 0, j = m,

Di,i+1(x0, . . . , zm−1) = (z0, . . . , zi, zi, zi+1, . . . , zm−1) ∈ Di,i+1, i = 0, . . . ,m− 1

Dm,0(z0, . . . , zm−1) = (z0, . . . , zm−1, z0).

Then the action of b′ and b on the tensor products, and hence on all chains, can be
written

b′α =
m−1∑
i=0

(−1)iD∗i,i+1α, bα = b′α+ (−1)mD∗m,0α.(11.18)

4One way to justify this is to use results on smoothing operators. For finite dimensional

linear spaces V and W the tensor product can be realized as

V ⊗W = hom(W ′, V )

the space of linear maps from the dual of W to V. Identifying the topological dual of C∞(X)

with C−∞c (X; Ω), the space of distributions of compact support, with the weak topology, we can
identify the projective tensor product C∞(X)⊗̂C∞(X) as the space of continuous linear maps from

C−∞c (X; Ω) to C∞(X). These are precisely the smoothing operators, corresponding to kernels in
C∞(X ×X).
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Theorem 11.2. The differential b′ is acyclic and the homology5 of the complex

(11.19) . . .
b−→ C∞(Xk+1) b−→ C∞(Xk) b−→ . . .

is naturally isomorphic to C∞(X; Λ∗).

Before proceeding to the proof proper we note two simple lemmas.

Lemma 11.4. 6For any j = 0, . . . ,m − 1, each function α ∈ C∞(Xk+1) which
vanishes on Di,i+1 for each i ≤ j can be written uniquely in the form

α = α′ + α′′, α′, α′′ ∈ C∞(Xk+1)

where α′′ vanishes on Di,i+1 for all i ≤ j + 1 and α′ is independent of zj+1.

Proof. Set α′ = π∗j+1(D∗j,j+1α) where πj : Xk+1 −→ Xk is projection off the
jth factor. Thus, essentially by definition, α′ is independent of zj+1. Moreover,
πj+1Dj,j+1 = Id so D∗j,j+1α

′ = D∗j,j+1α and hence D∗j,j+1α
′′ = 0. The decomposi-

tion is clearly unique, and for i < j,

(11.20) Dj,j+1 ◦ πj+1 ◦Di,i+1 = Di,i+1 ◦ Fi,j
for a smooth map Fi,j , so α′ vanishes on Di,i+1 if α vanishes there. �

Lemma 11.5. For any finite dimensional vector space, V, the k-fold exterior
power of the dual, ΛkV ∗, can be naturally identified with the space of functions

(11.21){
u ∈ C∞(V k);u(sv) = skv, s ≥ 0, u � (V i×{0}×V k−i−1) = 0 for i = 0, . . . , k−1

and u � G = 0, G = {(v1, . . . , vk) ∈ V k; v1 + · · ·+ vk = 0}
}
.

Proof. The homogeneity of the smooth function, u, on V k implies that it is a
homogeneous polynomial of degree k. The fact that it vanishes at 0 in each variable
then implies that it is multlinear, i.e. is linear in each variable. The vanishing on
G implies that for any j and any vi ∈ V, i 6= j,

(11.22)
∑
i6=j

u(v1, . . . , vj−1, vi, vj+1, . . . , vk) = 0.

Since each of these terms is quadratic (and homogeneous) in the corresponding
variable vi, they must each vanish identically. Thus, u vanishes on vi = vj for each
i 6= j; it is therefore totally antisymmetric as a multlinear form, i.e. is an element
of ΛkV ∗. The converse is immediate, so the lemma is proved. �

Proof of Theorem 11.2. The H-unitality7 of C∞(X) follows from the proof
of Lemma 11.61 which carries over verbatim to the larger chain spaces.

By definition the Hochschild homology in degree k is the quotient

(11.23) HHk(C∞(X)) =
{
u ∈ C∞(Xk+1); bu = 0

}/
bC∞(Xk+2).

The first stage in identifying this quotient is to apply Lemma 11.4 repeatedly. Let
us carry through the first step separately, and then do the general case.

5This homology is properly referred to as the continuous Hochschild homology of the topo-
logical algebra C∞(X).

6As pointed out to me by Maciej Zworski, this is a form of Hadamard’s lemma.
7Meaning here the continuous H-unitality, that is the acyclicity of b′ on the chain spaces

C∞(Xk+1).
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For j = 0, consider the decomposition of u ∈ C∞(Xk+1) given by Lemma 11.4,
thus
(11.24)
u = u0 + u(1), u0 ∈ π∗1C∞(Xk), u(1) ∈ J

(k)
1 =

{
u ∈ C∞(Xk+1);u � D0,1 = 0

}
.

Now each of these subspaces of C∞(Xk+1) is mapped into the corresponding sub-
space of C∞(Xk) by b; i.e. they define subcomplexes. Indeed,

u ∈ π∗1C∞(Xk) =⇒ D∗0,1u = D∗1,2u so

u = π∗1v =⇒ bu = π∗1Bv, B
∗v = −

k−1∑
i=1

(−1)iD∗i,i+1u+ (−1)kD∗k−1,0v.

For the other term

(11.25) bu(1) =
k−1∑
i=1

(−1)iD∗i,i+1u(1) + (−1)kD∗k,0u(1) =⇒ bu(1) ∈ J
(k−1)
1 .

Thus, bu = 0 is equivalent to bu0 = 0 and bu(1) = 0. From (11.3), defining an
isomorphism by

(11.26) E(k−1) : C∞(Xk) −→ C∞(Xk), E(k−1)v(z1, . . . , zk) = v(z2, . . . , zk, z1),

it follows that

(11.27) B = −E−1
(k−1)b

′E(k−1)

is conjugate to b′. Thus B is acyclic so in terms of (11.24)

(11.28) bu = 0 =⇒ u− u(1) = bw, w = π∗1v
′.

As already noted this is the first step in an inductive procedure, the induction
being over 1 ≤ j ≤ k in Lemma 11.4. Thus we show inductively that

(11.29) bu = 0 =⇒ u− u(j) = bw,

u(j) ∈ J
(k)
j =

{
u ∈ C∞(Xk+1);u � Di,i+1 = 0, 0 ≤ i ≤ j − 1

}
.

For j = 1 this is (11.28). Proceeding inductively we may suppose that u = u(j) and
take the decomposition of Lemma 11.4, so

(11.30) u(j) = u′ + u(j+1), u(j+1) ∈ J
(k)
j+1, u

′ = π∗j+1v ∈ J
(k)
j .

Then, as before, bu(j) = 0 implies that bu′ = 0. Furthermore, acting on the space
π∗j+1C∞(Xk) ∩ Jk(j), b is conjugate to b′ acting in k + 1 − j variables. Thus, it is
again acyclic, so u(j) and u(j+1) are homologous as Hochschild k-cycles.

The end point of this inductive procedure is that each k-cycle is homologous
to an element of

(11.31) J (k) = J
(k)
k =

{
u ∈ C∞(Xk+1);D∗i,i+1u = 0, i ≤ i ≤ k − 1

}
.

Acting on this space bu = (−1)kD∗k,0u, so we have shown that
(11.32)

HHk(C∞(X)) = M (k)/
(
M (k) ∩ bC∞(Xk+1)

)
, M (k) =

{
u ∈ J (k);D∗k,ou = 0

}
.
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Now consider the subspace

(11.33) M̃ (k) =
{
u ∈ C∞(Xk+1);

u =
∑

finite, 0≤j≤k−1

(f(zj)− f(zj+1))uf,j , uf,j ∈M (k), f ∈ C∞(X).
}
.

If u = (f(zj)− f(zj+1))v, with v ∈M (k) set

(11.34) w(z0, z1, . . . , zj , zj+1, zj+2, . . . , zk+1)

= (−1)j(f(zj)− f(zj+1))v(z0, . . . , zj , zj+2, zj+3, . . . , zk).

Then, using the assumed vanishing of v, bw = u.8 Thus all the elements of M̃ (k)

are exact.
Let us next compute the quotient M (k)/M̃ (k). Linearizing in each factor of X

around the submanifold z0 = z1 = · · · = zk in V k defines a map

(11.35) µ : M (k) 3 u −→ u′ ∈ C∞(X;TX ⊗ · · · ⊗ T ∗X).

The map is defined by taking the term of homogeneity k in a normal expansion
around the submanifold. The range space is therefore precisely the space of sections
of the k-fold tensor product bundle which vanish on the subbundle defined in each
fibre by v1 + · · ·+ vk = 0. Thus, by Lemma 11.5, µ actually defines a sequence

(11.36) 0 −→ M̃ (k) ↪→M (k) µ−→ C∞(X; ΛkX) −→ 0.

Lemma 11.6. For any k, (11.36) is a short exact sequence.

Proof. So far I have a rather nasty proof by induction of this result, there
should be a reasonably elementary argument. Any offers? �

From this the desired identification, induced by µ,

(11.37) HHk(C∞(X)) = C∞(X; ΛkX)

follows, once is is shown that no element u ∈ M (k) with µ(u) 6= 0 can be exact.
This follows by a similar argument. Namely if u ∈M (k) is exact then write u = bv,
v ∈ C∞(Xk) and apply the decomposition of Lemma 11.4 to get v = v0 +v(1). Since
u = 0 on D1,0 it follows that bv0 = 0 and hence u = bv1). Proceeding inductively
we conculde that u = bv with v ∈M (k+1). Now, µ(bv) = 0 by inspection. �

11.4. Commutative formal symbol algebra

As a first step towards the computation of the Hochschild homology of the
algebra A = ΨZ(X)/Ψ−∞(X) we consider the formal algebra of symbols with
commutative product. Thus,

(11.38) A =
{

(aj)∞j=−∞; aj ∈ C∞(S∗X;P (j)), aj = 0 for j >> 0
}
.

Here P (k) is the line bundle over S∗X with sections consisting of the homogeneous
functions of degree k on T ∗X \ 0. The multiplication is as functions on T ∗X \ 0, so

(aj) · (bj) = (cj), cj =
∞∑

k=−∞

aj−kbk

8Notice that v(z0, . . . , zj , zj+2, . . . , zk+1) vanishes on zi+1 = zi for i < j and i > j + 1 and

also on z0 + z1 + · · ·+ zk+1 = 0 (since it is independent of zj+1 and bv = 0.



11.6. SEMI-CLASSICAL LIMIT AND SPECTRAL SEQUENCE 265

using the fact that P (l) ⊗ P (k) ≡ P (l+k). We take the completion of the tensor
product to be

(11.39) B(k) =
{
u ∈ C∞((T ∗X \ 0)k+1);u =

∑
finite

uI ,

uI ∈ C∞(S∗X;P (I0) ⊗ P (I1) ⊗ · · · ⊗ P (Ik)), |I| = k
}
.

That is, an element of B(k) is a finite sum of functions on the (k + 1)-fold product
of T ∗X \ 0 which are homogeneous of degree Ij on the jth factor, with the sum
of the homogeneities being k. Then the Hochschild homology is the cohomology of
the subcomplex of the complex for C∞(T ∗X)

(11.40) · · · b−→ B(k) b−→ B(k−1) b−→ · · ·

Theorem 11.3. The cohomology of the complex (11.40) for the commutative
product on A is

(11.41) HHk(A) ≡
{
α ∈ C∞(T ∗X \ 0; Λk(T ∗X);α is homogeneous of degree k

}
.

11.5. Hochschild chains

The completion of the tensor product that we take to define the Hochschild
homology of the ‘full symbol algebra’ is the same space as in (11.39) but with the
non-commutative product derived from the quantization map for some Riemann
metric on X. Since the product is given as a formal sum of bilinear differential
operators it can be take to act on an pair of factors.

(11.42) . . .
b(?)−→ B(k) b(?)−→ B(k−1) b(?)−→ . . .

The next, and major, task of this chapter is to describe the cohomology of this
complex.

Theorem 11.4. The Hochschild homolgy of the algebra, ΨZ
phg(X)/Ψ−∞phg (X),

of formal symbols of pseudodifferential operators of integral order, identified as the
cohomology of the complex (11.42), is naturally identified with two copies of the
cohomology of S∗X9

(11.43) HHk(A; ◦) ≡ H2n−k(S∗X)⊕H2n−1−k(S∗X).

11.6. Semi-classical limit and spectral sequence

The ‘classical limit’ in physics, especially quantuum mechanics, is the limit in
which physical variables become commutative, i.e. the non-commutative coupling
between position and momentum variables vanishes in the limit. Formally this
typically involves the replacement of Planck’s constant by a parameter h → 0. A
phenomenon is ‘semi-classical’ if it can be understood at least in Taylor series in
this parameter. In this sense the Hochschild homology of the full symbol algebra
is semi-classical and (following [3]) this is how we shall compute it.

The parameter h is introduced directly as an isomorphism of the space A
Lh : A −→ A, Lh(aj)∗j=−∞ = (hjaj)∗j=−∞, h > 0.

9In particular the Hochschild homology vanishes for k > 2 dimX. For a precise form of the
identification in (11.43) see (??).
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Clearly Lh ◦ Lh′ = Lhh′ . For h 6= 1, Lh is not an algebra morphism, so induces a
1-parameter family of products

(11.44) α ?h β = (L−1
h )(Lhα ? Lhβ).

In terms of the differential operators, associated to quantization by a particular
choice of Riemann metric on X this product can be written

(11.45) α ?h β = (cj)∗j=−∞, cj =
∗∑
k=0

∗∑
l=−∗

hkPk(aj−l−k, bl).

It is important to note here that the Pk, as differential operators on functions on
T ∗X, do only depend on k, which is the difference of homogeneity between the
product aj−l+kbl, which has degree j + k and cj , which has degree j.

Since A with product ?h is a 1-parameter family of algebras, i.e. a deformation
of the algebra A with product ? = ?1, the Hochschild homology is ‘constant’ in h.
More precisely the map Lh induces a canonical isomorphism

L∗h : HHk(A; ?h) ≡ HHk(A; ?).

The dependence of the product on h is smooth, so it is reasonable to expect the
cycles to have smooth representatives as h→ 0. To investigate the consider Taylor
series in h and define

Fp,k =
{
α ∈ B(k); ∃ α(h) ∈ C∞([0, 1)h;B(k)) with α(0) = α and

bhα ∈ hpC∞([0, 1)h;Bk−1)
}
,

(11.46)

Gp,k =
{
α ∈ B(k); ∃ β(h) ∈ C∞([0, 1)h;B(k+1)) with

bhβ(h) ∈ hp−1C∞([0, 1)h;B(k) and (t−p+1bhβ)(0) = α
}
.

(11.47)

Here bh is the differential defined by the product ?h.
Notice that the Fp,k decrease with increasing p, since the condition becomes

stronger, while Gp,k increases with p, the condition becoming weaker.10 We define
the ‘spectral sequence’ corresponding to this filtration by

Ep,k = Fp,k/Gp,k.

These can also be defined successively, in the sense that if

F ′p,k =
{
u ∈ Ep−1,k;u = [u′], u′ ∈ Fp,k

}
G′p,k =

{
e ∈ Ep−1,k;u = [u′], ]u′ ∈ Gp,k

}
then Ep,k ≡ F ′p,k/G′p,k.

The basic idea11 of a spectral sequence is that each Ep =
⊕

k Ep,k, has defined
on it a differential such that the next spaces, forming Ep+1, are the cohomology
space for the complex. This is easily seen from the definitions of Fp,k as follows.
If α ∈ Fp,k let β(t) be a 1-parameter family of chains as in the defintion. Then
consider

(11.48) γ(t−pbhβ)(0) ∈ B(k−1).

10If α ∈ Gp,k and β(h) is the 1-parameter family of chains whose existence is required for
the definition then β′(h) = hβ(h) satisfies the same condition with p increased to show that

α ∈ Gp+1,k.
11Of Leray I suppose, but I am not really sure.
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This depends on the choice of β, but only up to a term in Gp,k−1. Indeed,
let β′(t) is another choice of extension of α satisfying the condition that bhβ′ ∈
hpC∞([0, 1);B(k−1) and let γ′ be defined by (11.48) with β replaced by β′. Then
δ(t) = t−1(β(h) − β′(h)) satisfies the requirements in the definition of Gp,k−1, i.e.
the difference γ′ − γ ∈ Gp,k−1. Similarly, if α ∈ Gp,k then γ ∈ Gp,k.12 The map so
defined is a differential

b(p) : Ep,k −→ Ep,k−1, b
2
(p) = 0.

This follows from the fact that if µ = b(p)α then, by definition, µ = (t−pbhβ)(0),
where α = β(0). Taking λ(t) = t−pbhβ(t) as the extension of µ it follows that
bhλ = 0, so b(p)µ = 0.

Now, it follows directly from the definition that F0,k = E0,k = B(k) since
G0,k = {0}. Furthermore, the differential b(0) induced on E0 is just the Hochschild
differential for the limiting product, ?0, which is the commutative product on the
algebra. Thus, Theorem 11.3 just states that

E1,k =
∗⊕

k=−∞

{
u ∈ C∞(T ∗X \ 0; Λk);u is homogeneous of degree k

}
.

To complete the proof of Theorem 11.4 it therefore suffices to show that

E2,k ≡ H2n−k(S∗X)⊕H2n−1−k(S∗X),(11.49)

Ep,k = E2,k, ∀ p ≥ 2, and(11.50)

HHk(ΨZ
phg(X)/Ψ−∞phg (X)) = lim

p→∞
Ep,k.(11.51)

The second and third of these results are usually described, respectively, as the
‘degeneration’ of the spectral sequence (in this case at the ‘E2 term’) and the
‘convergence’ of the spectral sequence to the desired cohomology space.

11.7. The E2 term

As already noted, the E1,k term in the spectral sequence consists of the formal
sums of k-forms, on T ∗X \0, which are homogeneous under the R+ action. The E2

term is the cohomology of the complex formed by these spaces with the differential
b(1), which we proceed to compute. For simplicity of notation, consider the formal
tensor prodoct rather than its completion. As already noted, for any α ∈ B(k) the
function bhα is smooth in h and from the definition of b,

(11.52)
d

dh
bhα(0) =

k−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ P1(ai+1, ai)⊗ ai+2 ⊗ · · · ⊗ ak

+ (−1)kP1(a0, ak)⊗ a1 ⊗ · · · ⊗ ak−1, α = a0 ⊗ · · · ⊗ ak.

The general case is only more difficult to write, not different.13 This certainly
determines b1α if α is a superposition of such terms with b0α = 0. Although (11.52)
is explicit, it is not given directly in terms of the representation of α, assumed to
satisfy b0α = 0 as a form on T ∗X \ 0.

12Indeed, α is then the value at h = 0 of β(t) = t−p+1bhφ(t) which is by hypothesis smooth;
clearly bhβ ≡ 0.

13If you feel it necessary to do so, resort to an argument by continuity towards the end of
this discussion.
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To get such an explicit formula we shall use the symplectic analogue of the
Hodge isomorphism. Recall that in any local coordinates on X, xi, i = 1, . . . , n,
induce local coordinates xi, ξi in the part of T ∗X lying above the coordinate patch.
In these canonical coordinates the symplectic form (which determines the Poisson
bracket) is given by

(11.53) ω =
n∑
k=1

dξk ∧ dxk.

This 2-form is non-degenerate, i.e. the n-fold wedge product ωn 6= 0. In fact this
volume form fixes an orientation on T ∗X. The symplectic form can be viewed as
a non-degenerate antisymmetric bilinear form on Tq(T ∗X) at each point q ∈ T ∗X,
and hence by duality as a bilineear form on T ∗q (T ∗X). We denote this form in the
same way as the Poisson bracket, since with the convention

{a, b}(q) = {da, db}q
they are indeed the same. As a non-degenerate bilinear form on T ∗Y, Y = T ∗X
this also induces a bilinear form on the tensor algebra, by setting

{e1 ⊗ · · · ⊗ ek, f1 ⊗ · · · ⊗ fk, } =
∏
j

{ej , fj}.

These bilinear forms are all antisymmetric and non-degenerate and restrict to be
non-degnerate on the antisymmetric part, ΛkY, of the tensor algebra. Thus each of
the form bundles has a bilinear form defined on it, so there is a natural isomorhism

(11.54) Wω : ΛkqY −→ Λ2n−k
q Y, α ∧Wωβ = {α, β}ωn, α, β ∈ C∞(Y,ΛkY ),

for each k.

Lemma 11.7. In canonical coordinates, as in (11.53), consider the basis of
k-forms given by all increasing subsequences of length k,

I : {1, 2, . . . , k} −→ {1, 2, . . . , 2n},
and setting

(11.55) αI = dzI(1) ∧ dzI(2) ∧ · · · ∧ dzI(k),

(z1, z2, . . . , z2n) = (x1, ξ1, x2, ξ2, . . . , xn, ξn).

In terms of this ordering of the coordinates

(11.56) Wω(αI) = (−1)N(I)αW (I)

where W (I) is obtained from I by considering each pair (2p−1, 2p) for p = 1, . . . , n,
erasing it if it occurs in the image of I, inserting it into I if neither 2p− 1 nor 2p
occurs in the range of I and if exactly one of 2p − 1 and 2p occurs then leaving it
unchanged; N(I) is the number of times 2p appears in the range of I without 2p−1.

Proof. The Poisson bracket pairing gives, on 1-forms,

−{dxj , dξj} = 1 = {dξj , dxj}
with all other pairings zero. Extending this to k-forms gives

{αI , αJ} = 0 unless (I(j), J(j)) = (2p− 1, 2p) or (2p, 2p− 1) ∀ j and

{αI , αJ} = (−1)N , if (I(j), J(j)) = (2p− 1, 2p) for N values of j

and (I(j), J(j)) = (2p− 1, 2p) for N − k values of j.
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From this, and (11.54), (11.56) follows. �

From this proof if also follows that N(W (I)) = N(I), so W 2
ω = Id . We shall

let

(11.57) δω = Wω ◦ d ◦Wω

denote the differential operator obtained from d by conjugation,

δω : C∞(T ∗X \ 0; Λk) −→ C∞(T ∗X \ 0,Λk−1).

By construction δ2
ω = 0. The exterior algebra of a symplectic manifold with this

differential is called the Koszul complex.14 All the αI are closed so

(11.58)

δω(aαI) = Wω

(∑
j

∂a

∂zj
dzj
)
∧ (−1)N(I)αW (I)

=
∑
j

∂a

∂zj
(−1)N(I)Wω(dzj ∧ αW (I)),

Observe that15

Wω

(
dz2p−1 ∧ αW (I)

)
= ι∂/∂z2pαI

Wω

(
dz2p ∧ αW (I)

)
= ι∂/∂z2p−1αI ,

where, ιv denotes contraction with the vector field v. We therefore deduce the
following formula for the action of the Koszul differential

(11.59) δω(aαI) =
2n∑
i=1

(
Hzia

)
ι∂/∂ziαI .

Lemma 11.8. With E1 identified with the formal sums of homogeneous forms
on T ∗X \ 0, the induced differential is

(11.60) b(1) =
1
i
δω.

Proof. We know that the bilinear differential operator 2iP1 is the Poisson
bracket of functions on T ∗X. Thus (11.52) can be written

(11.61) 2ib1α =
k−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ {ai+1, ai} ⊗ ai+2 ⊗ · · · ⊗ ak

+ (−1)k{a0, ak} ⊗ a1 ⊗ · · · ⊗ ak−1, α = a0 ⊗ · · · ⊗ ak.

The form to which this maps under the identification of E2 is just

(11.62) 21b1α =
k−1∑
i=0

(−1)ia0 ∧ dai−1 ∧ · · · ∧ d{ai+1, ai} ∧ dai+2 ∧ ak

+ (−1)k{a0, ak} ∧ da1 ∧ · · · ∧ dak−1

14Up to various sign conventions of course!
15Check this case by case, as the range of I meets the pair {2p − 1, 2p} in {2p − 1, 2p},

{2p− 1}, {2p} or ∅. Both sides of the first equation are zero in the second and fourth case as are

both sides of the second equation in the third and fourth cases. In the remaining four individual
cases it is a matter of checking signs.
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Consider the basis elements αI for k-forms. These arise as the images of the
corresponding functions in local coordinates on Xk+1

α̃I(z0, z1, . . . , zk) =
∑
σ

(−1)sgnσ(z1,σI(1) − z0,σI(1))

× z2,σI(1) − z1,σI(1)) . . . (z1,σI(m) − z0,σI(m−1)).

Since these functions are defined in local coordinates they are not globally
defined on (T ∗X\0)k+1. Nevertheless they can be localized away from z0 = · · · = zm
and then, with a coefficient (aj(z0))∗j=−∞, aj ∈ C∞(T ∗X \ 0) homogeneous of
degree j with support in the coordinate patch, unambiguously define elements of
E1 which we can simply denote as a(z0)α̃I ∈ E1. These elements, superimposed
over a coordinate cover, span E1. Consider b(1)α̃ given by (11.62). In the sum, the
terms with P1 contracting between indices other than 0, 1 or m, 0 must give zero
because the Poisson bracket is constant in the ‘middle’ variable. Futhermore, by
the antisymmetry of α̃, the two remaining terms are equal so

ib(1)

(
aα̃I

)
=
∑
σ∈Pk

(
HzσI(1)a

)
(−1)sgn(σ)dzσI(2) ∧ · · · ∧ dzσI(k)

=
∑
i

(
Hzia

)
ι∂/∂iαI .

Since this is just (11.59) the lemma follows. �

With this lemma we have identified the differential on the E1 term in the spec-
tral sequence with the exterior differential operator. To complete the identification
(11.49) we need to compute the corresponding deRham groups.

Proposition 11.1. The cohomology of the complex

. . .
d−→

∗∑
j=−∞

C∞hom(j)(T
∗X \ 0; Λk) d−→

∗∑
j=−∞

C∞hom(j)(T
∗X \ 0; Λk+1) d−→ . . .

in dimension k is naturally isomorphic to Hk(S∗X)⊕Hk−1(S∗X).

Proof. Choose a metric on X and let R = |ξ| denote the corresponding length
function on T ∗X \ 0. Thus, identifying the quotient S∗X = (T ∗X \ 0)/R+ with
{R = 1} gives an isomorphism T ∗X \ 0 ≡ S∗X × (0,∞). Under this map the
smooth forms on T ∗X \0 which are homogeneous of degree j are identified as sums

C∞hom(j)(T
∗X \ 0,Λk) 3 αj

= Rj
(
α′j + α′′j ∧

dR

R

)
, α′j ∈ C∞(S∗X; Λk), α′′j ∈ C∞(S∗X; Λk−1).

(11.63)

The action of the exterior derivative is then easily computed

dαj = βj , βj = Rj
(
β′j + βj −′′ ∧

dR

R

)
,

β′j = dα′j , β
′′
j = dα′′j + j(−1)k−1α′j .

Thus a k-form (αj)∗j=−∞ is closed precisely if it satisfies

(11.64) jα′j = (−1)kdα′′j , dα
′
j = 0∀ j.

It is exact if there exists a (k − 1)-form (γj)∗j=−∞ such that

(11.65) α′j = dγ′j , α
′′
j = dγ′′j + j(−1)kγ′j .
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Since the differential preserves homogeneity it is only necessary to analyze these
equations for each integral j. For j 6= 0, the second equation in (11.64) follows
from the first and (11.65) then holds with γ′j = 1

j (−1)kα′′j and γ′′j = 0. Thus the
cohomology lies only in the subcomplex of homogeneous forms of degree 0. Then
(11.64) and (11.65) become

dα′0 = 0, dα′′0 = 0 and α′0 = dγ′0, α
′′
0 = dγ′′0

respectively. This gives exactly the direct sum of Hk(S∗X) and Hk−1(S∗X) as the
cohomology in degree k. The resulting isomorphism is independent of the choice of
the radial function R, since another choice replaces R by Ra, where a is a smooth
positive function on S∗X. In the decomposition (11.63), for j = 0, α′′0 is unchanged
whereas α′0 is replaced by α′0 +α′′0 ∧ d log a. Since the extra term is exact whenever
α′′0 is closed it has no effect on the identification of the cohomology. �

Combining Proposition 11.1 and Lemma 11.8 completes the proof of (11.49).
We make the identification a little more precise by locating the terms in E2.

Proposition 11.2. Under the identification of E1 with the sums of homoge-
neous forms on T ∗X \ 0, E2, identified as the cohomology of δω, has a basis of
homogeneous forms with the homogeneity degree j and the form degree k confined
to

(11.66) k − j = dimX, − dimX ≤ j ≤ dimX, dimX ≥ 2.

Proof. Provided dimX ≥ 2, the cohomology of S∗X is isomorphic to two
copies of the cohomology of X, one in the same degree and one shifted by dimX −
1.16 The classes in the first copy can be taken to be the lifts of deRham classes from
X, while the second is spanned by the wedge of these same classes with the Todd
class of S∗X. This latter, n − 1, class restricts to each fibre to be non-vanishing.
Thus in local representations the first forms involve only the base variable and
in the second each terms has the maximum number, n − 1, of fibre forms. The
cohomology of the complex in Proposition 11.1 therefore consists of four copies of
H∗(X) consisting of these forms and the same forms wedged with dR/R.

With this decomoposition of the cohomology consider the effect on it of the map
Wω. In each case the image forms are again homogeneous. A deRham class on X in
degree l therefore has four images in E2. One is a form of degree k1 = 2n− l which
is homogeneous of degree j1 = n− l. The second is a form of degree k2 = 2n− l− 1
which is homogeneous of degree j2 = n − l − 1. The third image is of form degree
k3 = n− l+1 and homogeneous of degree j3 = −l+1 and the final image is of form
degree k4 = n − l and is homogeneous of degree j4 = −l. This gives the relations
(11.66). �

11.8. Degeneration and convergence

Now that the E2 term in the spectral sequence has been explicitly computed,
consider the induced differential, b(2) on it. Any homogeneous form representing a
class in E2 can be represented by a Hochshild chain α of the same homogeneity.
Thus an element of E2 in degree k corresponds to a function on C∞((T ∗X)\)k+1)
which is separately homogeneous in each variable and of total homogeneity k − n.
Furthermore it has an extension β(t) as a function of the parameter h, of the same

16That is, just as though S∗X = Sn−1 ×X, where n = dimX.
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homogeneity, such that btβ(t) = t2γ(t). Then b(2)α = [γ(0)], the class of γ(0) in E2.
Noting that the differential operator, Pj , which is the jth term in the Taylor series
of the product ?h reduces homogeneity by j and that bh depends multilinearly on
?h it follows tha b(r) must decrease homogeneity by r. Thus if the class [γ(0)] must
vanish in E2 by (11.66). We have therefore shown that b(2) ≡ 0, so E3 = E2. The
same argument applies to the higher differentials, defining the Er ≡ E2 for r ≥ 2,
proving the ‘degeneration’ of the spectral sequence, (11.50).

The ‘convergence’ of the spectral sequence, (11.51), follows from the same anal-
ysis of homogneities. Thus, we shall define a map from E2 to the Hochschild ho-
mology and show that it is an isomorphism.

11.9. Explicit cohomology maps

11.10. Hochschild holomology of Ψ−∞(X)

11.11. Hochschild holomology of ΨZ(X)

11.12. Morita equivalence


