
18.156 – Spring 2008 – Graduate Analysis

Elliptic regularity and Scattering

Richard Melrose

Department of Mathematics, Massachusetts Institute of Technol-
ogy

E-mail address: rbm@math.mit.edu



0.6Q; Revised: 6-8-2007; Run: February 7, 2008



Contents

Preface 5

Chapter 1. Distributions 7
1. Fourier transform 7
2. Schwartz space. 7
3. Tempered distributions. 8
4. Fourier transform 9
5. Sobolev spaces 9
6. Weighted Sobolev spaces. 10
7. Multiplicativity 12
8. Some bounded operators 15

Chapter 2. Elliptic Regularity 17
1. Constant coefficient operators 17
2. Constant coefficient elliptic operators 18
3. Interior elliptic estimates 24
Addenda to Chapter 2 31

Chapter 3. Coordinate invariance and manifolds 33
1. Local diffeomorphisms 33
2. Manifolds 37
3. Vector bundles 41
Addenda to Chapter 3 41

Chapter 4. Invertibility of elliptic operators 43
1. Global elliptic estimates 43
2. Compact inclusion of Sobolev spaces 45
3. Elliptic operators are Fredholm 46
4. Generalized inverses 49
5. Self-adjoint elliptic operators 52
6. Index theorem 56
Addenda to Chapter 4 56

Chapter 5. Suspended families and the resolvent 57
1. Product with a line 57
2. Translation-invariant Operators 62
3. Invertibility 67
4. Resolvent operator 72
Addenda to Chapter 5 72

Chapter 6. Manifolds with boundary 75

3



4 CONTENTS

1. Compactifications of R. 75
2. Basic properties 78
3. Boundary Sobolev spaces 78
4. Dirac operators 79
5. Homogeneous translation-invariant operators 79
6. Scattering structure 81
7. Manifolds with corners 85
8. Blow up 85

Chapter 7. Electromagnetism 87
1. Maxwell’s equations 87
2. Hodge Theory 89
3. Coulomb potential 92
4. Dirac strings 92
Addenda to Chapter 7 92

Chapter 8. Monopoles 93
1. Gauge theory 93
2. Bogomolny equations 93



Preface

Initially at least, these are the lecture notes from last year – Spring 2007 –
that I am using in Spring 2008. The first part of the course this year will be quite
similar, but in the second half I will concentrate on spectral and scattering theory.
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CHAPTER 1

Distributions

Summary of parts of 18.155 and a little beyond. With some corrections by
Jacob Bernstein incorporated.

1. Fourier transform

The basic properties of the Fourier transform, tempered distributions and
Sobolev spaces form the subject of the first half of this course. I will recall and
slightly expand on such a standard treatment.

2. Schwartz space.

The space S(Rn) of all complex-volumed functions with rapidly decreasing
derivatives of all orders is a complete metric space with metric

(1.1)

d(u, v) =
∞∑
k=0

2−k
‖u− v‖(k)

1 + ‖u− v‖(k)
where

‖u‖(k) =
∑

|α|+|β|≤k

sup
z∈Rn

|zαDβ
z u(z)|.

Here and below I will use the notation for derivatives

Dα
z = Dα1

z1 . . . , D
αn
zn
, Dzj =

1
i
1
∂

∂zj
.

These norms can be replaced by other equivalent ones, for instance by reorder-
ing the factors

‖u‖′(k) =
∑

|α|+|β|≤k

sup
z∈Rn

|Dβ
z (zβu)|.

In fact it is only the cumulative effect of the norms that matters, so one can use

(1.2) ‖u‖′′(k) = sup
z∈Rn

|〈z〉2k(∆ + 1)ku|

in (1.1) and the same topology results. Here

〈z〉2 = 1 + |z|2, ∆ =
n∑
j=1

D2
j

(so the Laplacian is formally positive, the geometers’ convention). It is not quite
so trivial to see that inserting (1.2) in (1.1) gives an equivalent metric.
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8 1. DISTRIBUTIONS

3. Tempered distributions.

The space of (metrically) continuous linear maps

(1.3) f : S(Rn) −→ C

is the space of tempered distribution, denoted S ′(Rn) since it is the dual of S(Rn).
The continuity in (1.3) is equivalent to the estimates

(1.4) ∃ k, Ck > 0 s.t. |f(ϕ)| ≤ Ck‖ϕ‖(k) ∀ ϕ ∈ S(Rn).

There are several topologies which can be considered on S ′(Rn). Unless oth-
erwise noted we consider the uniform topology on S ′(Rn); a subset U ⊂ S ′(Rn) is
open in the uniform topology if for every u ∈ U and every k sufficiently large there
exists δk > 0 (both k and δk depending on u) such that

v ∈ S ′(Rn), |(u− u)(ϕ) ≤ δk‖ϕ‖(k) ⇒ v ∈ U.
For linear maps it is straightforward to work out continuity conditions. Namely

P : S(Rn) −→ S(Rm)

Q : S(Rn) −→ S ′(Rm)

R : S ′(Rn) −→ S(Rm)

S : S ′(Rn) −→ S ′(Rm)

are, respectively, continuous for the metric and uniform topologies if

∀ k ∃ k′, C s.t. ‖Pϕ‖(k) ≤ C‖ϕ‖(k′) ∀ ϕ ∈ S(Rn)

∃ k, k′, C s.t. |Qϕ(ψ)| ≤ C‖ϕ‖(k)‖ψ‖(k′)
∀ k, k′ ∃ C s.t. |u(ϕ)| ≤ ‖ϕ‖(k′) ∀ ϕ ∈ S(Rn)⇒ ‖Ru‖(k) ≤ C
∀ k′ ∃ k, C, C ′ s.t. ‖u(ϕ)‖(k) ≤ ‖ϕ‖(k)∀ ϕ ∈ S(Rn)⇒ |Su(ψ)| ≤ C ′‖ψ‖(k′) ∀ ψ ∈ S(Rn).

The particular case of R, for m = 0, where at least formally S(R0) = C, corresponds
to the reflexivity of S(Rn), that

R : S ′(Rn) −→ C is cts. iff ∃ ϕ ∈ S(Rn) s.t.

Ru = u(ϕ) i.e. (S ′(Rn))′ = S(Rn).

In fact another extension of the middle two of these results corresponds to the
Schwartz kernel theorem:

Q :S(Rn) −→ S ′(Rm) is linear and continuous

iff ∃ Q ∈ S ′(Rm × Rn) s.t. (Q(ϕ))(ψ) = Q(ψ � ϕ) ∀ ϕ ∈ S(Rm) ψ ∈ S(Rn).

R :S ′(Rn) −→ S(Rn) is linear and continuous

iff ∃ R ∈ S(Rm × Rn) s.t. (Ru)(z) = u(R(z, ·)).

Schwartz test functions are dense in tempered distributions

S(Rn) ↪→ S ′(Rn)

where the standard inclusion is via Lebesgue measure

(1.5) S(Rn) 3 ϕ 7→ uϕ ∈ S ′(Rn), uϕ(ψ) =
∫

Rn

ϕ(z)ψ(z)dz.
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The basic operators of differentiation and multiplication are transferred to S ′(Rn)
by duality so that they remain consistent with the (1.5):

Dzu(ϕ) = u(−Dzϕ)

fu(ϕ) = u(fϕ) ∀ f ∈ S(Rn)).

In fact multiplication extends to the space of function of polynomial growth:

∀ α ∈ Nn0 ∃ k s.t. |Dα
z f(z)| ≤ C〈z〉k.

Thus such a function is a multiplier on S(Rn) and hence by duality on S ′(Rn) as
well.

4. Fourier transform

Many of the results just listed are best proved using the Fourier transform

F : S(Rn) −→ S(Rn)

Fϕ(ζ) = ϕ̂(ζ) =
∫
e−izζϕ(z)dz.

This map is an isomorphism that extends to an isomorphism of S ′(Rn)

F : S(Rn) −→ S(Rn)

Fϕ(Dzj
u) = ζjFu, F(zju) = −Dζj

Fu

and also extends to an isomorphism of L2(Rn) from the dense subset

(1.6) S(Rn) ↪→ L2(R2)dense, ‖Fϕ‖2L2 = (2π)n‖ϕ‖2L2 .

5. Sobolev spaces

Plancherel’s theorem, (??), is the basis of the definition of the (standard, later
there will be others) Sobolev spaces.

Hs(Rn) = {u ∈ S ′(Rn); (1 + |ζ|2)s/2û ∈ L2(Rn)}

‖u‖2s =
∫

Rn

(1 + |ζ|2)s|û(ζ)|dζ,

where we use the fact that L2(Rn) ↪→ S ′(Rn) is a well-defined injection (regarded
as an inclusion) by continuous extension from (1.5). Now,

(1.7) Dα : Hs(Rn) −→ Hs−|α|(Rn) ∀ s, α.
The Sobolev spaces are Hilbert spaces, so their duals are (conjugate) isomorphic
to themselves. However, in view of our inclusion L2(Rn) ↪→ S ′(Rn), we habitually
identify

(Hs(Rn))′ = H−s(Rn),
with the ‘extension of the L2 paring’

(u, v) = “
∫
u(z)v(z)dz′′ = (2π)−n

∫
Rn

〈ζ〉sû · 〈ζ〉−sûdζ.

Note that then (5) is a linear, not a conjugate-linear, isomorphism since (5) is a
real pairing.

The Sobolev spaces decrease with increasing s,

Hs(Rn) ⊂ Hs′(Rn) ∀ s ≥ s′.
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One essential property is the relationship between the ‘L2 derivatives’ involved in
the definition of Sobolev spaces and standard derivatives. Namely, the Sobolev
embedding theorem:

s >
n

2
=⇒Hs(Rn) ⊂ C0

∞(Rn)

= {u; Rn −→ C its continuous and bounded}.

s >
n

2
+ k, k ∈ N =⇒Hs(Rn) ⊂ Ck∞(Rn)

def= {u; Rn −→ C s.t. Dαu ∈ C0
∞(Rn) ∀ |α| ≤ k}.

For positive integral s the Sobolev norms are easily written in terms of the functions,
without Fourier transform:

u ∈ Hk(Rn)⇔ Dαu ∈ L2(Rn) ∀ |α| ≤ k

‖u‖2k =
∑
|α|≤k

∫
Rn

|Dαu|2dz.

For negative integral orders there is a similar characterization by duality, namely

H−k(Rn) = {u ∈ S ′(Rn) s.t. , ∃ uα ∈ L2(Rn), |α| ≥ k

u =
∑
|α|≤k

Dαuα}.

In fact there are similar “Hölder” characterizations in general. For 0 < s < 1,
u ∈ Hs(Rn) =⇒ u ∈ L2(Rn) and

(1.8)
∫

R2n

|u(z)− u(z′)|2

|z − z′|n+2s
dzdz′ <∞.

Then for k < s < k + 1, k ∈ N u ∈ Hs(R2) is equivalent to Dα ∈ Hs−k(Rn) for all
|α| ∈ k, with corresponding (Hilbert) norm. Similar realizations of the norms exist
for s < 0.

One simple consequence of this is that

C∞∞(Rn) =
⋂
k

Ck∞(Rn) = {u; Rn −→ C s.t. |Dαu| is bounded ∀ α}

is a multiplier on all Sobolev spaces

C∞∞(Rn) ·Hs(Rn) = Hs(Rn) ∀ s ∈ R.

6. Weighted Sobolev spaces.

It follows from the Sobolev embedding theorem that

(1.9)
⋂
s

Hs(Rn) ⊂ C∞∞(Rn);

in fact the intersection here is quite a lot smaller, but nowhere near as small as
S(Rn). To discuss decay at infinity, as will definitely want to do, we may use
weighted Sobolev spaces.
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The ordinary Sobolev spaces do not effectively define decay (or growth) at
infinity. We will therefore also set

Hm,l(Rn) = {u ∈ S ′(Rn); 〈z〉`u ∈ Hm(Rn)}, m, ` ∈ R,

= 〈z〉−`Hm(Rn) ,

where the second notation is supported to indicate that u ∈ Hm,l(Rn) may be
written as a product 〈z〉−`v with v ∈ Hm(Rn). Thus

Hm,`(Rn) ⊂ Hm′,`′(Rn) if m ≥ m′ and ` ≥ `′,

so the spaces are decreasing in each index. As consequences of the Schwartz struc-
ture theorem

(1.10)

S ′(Rn) =
⋃
m,`

Hm,`(Rn)

S(Rn) =
⋂
m,`

Hm,`(Rn).

This is also true ‘topologically’ meaning that the first is an ‘inductive limit’ and
the second a ‘projective limit’.

Similarly, using some commutation arguments

Dzj
: Hm,`(Rn) −→ Hm−1,`(Rn), ∀ m, elll

×zj : Hm,`(Rn) −→ Hm,`−1(Rn).

Moreover there is symmetry under the Fourier transform

F : Hm,`(Rn) −→ H`,m(Rn) is an isomorphism ∀ m, `.

As with the usual Sobolev spaces, S(Rn) is dense in all the Hm,`(Rn) spaces
and the continuous extension of the L2 paring gives an identification

Hm,`(Rn) ∼= (H−m,−`(Rn))′ fron

Hm,`(Rn)×H−m,−`(Rn) 3 u, v 7→

(u, v) = “
∫
u(z)v(z)dz′′.

Let Rs be the operator defined by Fourier multiplication by 〈ζ〉s :

(1.11) Rs : S(Rn) −→ S(Rn), R̂sf(ζ) = 〈ζ〉sf̂(ζ).

Lemma 1. If ψ ∈ S(Rn) then

(1.12) Ms = [ψ,Rs∗] : Ht(Rn) −→ Ht−s+1(Rn)

is bounded for each t.

Proof. Since the Sobolev spaces are defined in terms of the Fourier transform,
first conjugate and observe that (1.12) is equivalent to the boundeness of the integral
operator with kernel

(1.13) Ks,t(ζ, ζ ′) = (1+|ζ|2)
t−s+1

2 ψ̂(ζ−ζ ′)
(
(1 + |ζ ′|2)

s
2 − (1 + |ζ|2)

s
2
)

(1+|ζ ′|2)−
t
2

on L2(Rn). If we insert the characteristic function for the region near the diagonal

(1.14) |ζ − ζ ′| ≤ 1
4

(|ζ|+ |ζ ′|) =⇒ |ζ| ≤ 2|ζ ′|, |ζ ′| ≤ 2|ζ|
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then |ζ| and |ζ ′| are of comparable size. Using Taylor’s formula

(1.15)

(1+ |ζ ′|2)
s
2 − (1+ |ζ|2)

s
2 = s(ζ−ζ ′) ·

∫ 1

0

(tζ+(1− tζ ′)
(
1 + |tζ + (1− t)ζ ′|2

) s
2−1

dt

=⇒
∣∣(1 + |ζ ′|2)

s
2 − (1 + |ζ|2)

s
2
∣∣ ≤ Cs|ζ − ζ ′|(1 + |ζ|)s−1.

It follows that in the region (1.14) the kernel in (1.13) is bounded by

(1.16) C|ζ − ζ ′||ψ̂(ζ − ζ ′)|.
In the complement to (1.14) the kernel is rapidly decreasing in ζ and ζ ′ in view
of the rapid decrease of ψ̂. Both terms give bounded operators on L2, in the first
case using the same estimates that show convolution by an element of S to be
bounded. �

Lemma 2. If u ∈ Hs(Rn) and ψ ∈ C∞c (Rn) then

(1.17) ‖ψu‖s ≤ ‖ψ‖L∞‖u‖s + C‖u‖s−1

where the constant depends on s and ψ but not u.

Proof. This is really a standard estimate for Sobolev spaces. Recall that the
Sobolev norm is related to the L2 norm by

(1.18) ‖u‖s = ‖〈D〉su‖L2 .

Here 〈D〉s is the convolution operator with kernel defined by its Fourier transform

(1.19) 〈D〉su = Rs ∗ u, R̂s(ζ) = (1 + |ζ|2)
s
2 .

To get (1.17) use Lemma 1.
From (1.12), (writing 0 for the L2 norm)

(1.20) ‖ψu‖s = ‖Rs ∗ (ψu)‖0 ≤ ‖ψ(Rs ∗ u)‖0 + ‖Msu‖0
≤ ‖ψ‖L∞‖Rsu‖0 + C‖u‖s−1 ≤ ‖ψ‖L∞‖u‖s + C‖u‖s−1.

This completes the proof of (1.17) and so of Lemma 2. �

7. Multiplicativity

Of primary importance later in our treatment of non-linear problems is some
version of the multliplicative property

(1.21) As(Rn) =

{
Hs(Rn) ∩ L∞(Rn) s ≤ n

2

Hs(Rn) s > n
2

is a C∞ algebra.

Here, a C∞ algebra is an algebra with an additional closure property. Namely if
F : RN −→ C is a C∞ function vanishing at the origin and u1, . . . , uN ∈ As are
real-valued then

F (u1, . . . , un) ∈ As.
I will only consider the case of real interest here, where s is an integer and

s > n
2 . The obvious place to start is

Lemma 3. If s > n
2 then

(1.22) u, v ∈ Hs(Rn) =⇒ uv ∈ Hs(Rn).
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Proof. We will prove this directly in terms of convolution. Thus, in terms of
weighted Sobolev spaces u ∈ Hs(Rn) = Hs,0(Rn) is equivalent to û ∈ H0,s(Rn). So
(1.22) is equivalent to

(1.23) u, v ∈ H0,s(Rn) =⇒ u ∗ v ∈ H0,s(Rn).

Using the density of S(Rn) it suffices to prove the estimate

(1.24) ‖u ∗ v‖H0,s ≤ Cs‖u‖H0,s‖v‖H0,s for s >
n

2
.

Now, we can write u(ζ) = 〈ζ〉−su′ etc and convert (1.24) to an estimate on the L2

norm of

(1.25) 〈ζ〉−s
∫
〈ξ〉−su′(ξ)〈ζ − ξ〉−sv′(ζ − ξ)dξ

in terms of the L2 norms of u′ and v′ ∈ S(Rn).
Writing out the L2 norm as in the proof of Lemma 1 above, we need to estimate

the absolute value of

(1.26)
∫ ∫ ∫

dζdξdη〈ζ〉2s〈ξ〉−su1(ξ)〈ζ−ξ〉−sv1(ζ−ξ)〈η〉−su2(η)〈ζ−η〉−sv2(ζ−η)

in terms of the L2 norms of the ui and vi. To do so divide the integral into the four
regions,

(1.27)

|ζ − ξ| ≤ 1
4

(|ζ|+ |ξ|), |ζ − η| ≤ 1
4

(|ζ|+ |η|)

|ζ − ξ| ≤ 1
4

(|ζ|+ |ξ|), |ζ − η| ≥ 1
4

(|ζ|+ |η|)

|ζ − ξ| ≥ 1
4

(|ζ|+ |ξ|), |ζ − η| ≤ 1
4

(|ζ|+ |η|)

|ζ − ξ| ≥ 1
4

(|ζ|+ |ξ|), |ζ − η| ≥ 1
4

(|ζ|+ |η|).

Using (1.14) the integrand in (1.26) may be correspondingly bounded by

(1.28)

C〈ζ − η〉−s|u1(ξ)||v1(ζ − ξ)| · 〈ζ − ξ〉−s|u2(η)||v2(ζ − η)|
C〈η〉−s|u1(ξ)||v1(ζ − ξ)| · 〈ζ − ξ〉−s|u2(η)||v2(ζ − η)|
C〈ζ − η〉−s|u1(ξ)||v1(ζ − ξ)| · 〈ξ〉−s|u2(η)||v2(ζ − η)|
C〈η〉−s|u1(ξ)|v1(ζ − ξ)| · 〈ξ〉−s|u2(η)||v2(ζ − η)|.

Now applying Cauchy-Schwarz inequality, with the factors as indicated, and chang-
ing variables appropriately gives the desired estimate. �

Next, we extend this argument to (many) more factors to get the following
result which is close to the Gagliardo-Nirenberg estimates (since I am concentrating
here on L2 methods I will not actually discuss the latter).

Lemma 4. If s > n
2 , N ≥ 1 and αi ∈ Nk0 for i = 1, . . . , N are such that

N∑
i=1

|αi| = T ≤ s

then

(1.29) ui ∈ Hs(Rn) =⇒ U =
N∏
i=1

Dαiui ∈ Hs−T (Rn), ‖U‖Hs−T ≤ CN
N∏
i=1

‖ui‖Hs .
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Proof. We proceed as in the proof of Lemma 3 using the Fourier transform
to replace the product by the convolution. Thus it suffices to show that

(1.30) u1 ∗ u2 ∗ u3 ∗ · · · ∗ uN ∈ H0,s−T if ui ∈ H0,s−αi .

Writing out the convolution symmetrically in all variables,

(1.31) u1 ∗ u2 ∗ u3 ∗ · · · ∗ uN (ζ) =
∫
ζ=

P
i
ξi

u1(ξ1) · · ·uN (ξN )

it follows that we need to estimate the L2 norm in ζ of

(1.32) 〈ζ〉s−T
∫
ζ=

P
i
ξi

〈ξ1〉−s+a1v1(ξ1) · · · 〈ξN 〉−s+aN vN (ξN )

for N factors vi which are in L2 with the ai = |α|i non-negative integers summing
to T ≤ s. Again writing the square as the product with the complex conjuage it is
enough to estimate integrals of the type

(1.33)
∫
{(ξ,η)∈R2N ;

P
i
ξi=

P
i
ηi}
〈
∑
i

ξ〉2s−2T 〈ξ1〉−s+a1

v1(ξ1) · · · 〈ξN 〉−s+aN vN (ξN )〈η1〉−s+a1 v̄1(η1) · · · 〈ηN 〉−s+aN v̄N (ηN ).

This is really an integral over R2N−1 with respect to Lebesgue measure. Applying
Cauchy-Schwarz inequality the absolute value is estimated by

(1.34)
∫
{(ξ,η)∈R2N ;

P
i
ξi=

P
i
ηi}

N∏
i=1

|vi(ξi)|2〈
∑
l

ηl〉2s−2T
N∏
i=1

〈ηi〉−2s+2ai

The domain of integration, given by
∑
i

ηi =
∑
i

ξi, is covered by the finite number

of subsets Γj on which in addition |ηj | ≥ |ηi|, for all i. On this set we may take the
variables of integration to be ηi for i 6= j and the ξl. Then |ηi| ≥ |

∑
l

ηl|/N so the

second part of the integrand in (1.34) is estimated by
(1.35)
〈ηj〉−2s+2aj 〈

∑
l

ηl〉2s−2T
∏
i 6=j

〈ηi〉−2s+2ai ≤ CN 〈ηj〉−2T+2aj

∏
i 6=j

〈ηi〉−2s+2ai ≤ C ′N
∏
i 6=j

〈ηi〉−2s

Thus the integral in (1.34) is finite and the desired estimate follows. �

Proposition 1. If F ∈ C∞(Rn × R) and u ∈ Hs(Rn) for s > n
2 an integer

then

(1.36) F (z, u(z)) ∈ Hs
loc(Rn).

Proof. Since the result is local on Rn we may multiply by a compactly sup-
ported function of z. In fact since u ∈ Hs(Rn) is bounded we also multiply by a
compactly supported function in R without changing the result. Thus it suffices to
show that

(1.37) F ∈ C∞c (Rn × R) =⇒ F (z, u(z)) ∈ Hs(Rn).
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Now, Lemma 4 can be applied to show that F (z, u(z)) ∈ Hs(Rn). Certainly
F (z, u(z)) ∈ L2(Rn) since it is continuous and has compact support. Moreover,
differentiating s times and applying the chain rule gives

(1.38) DαF (z, u(z)) =
∑

Fα1,...,αN
(z, u(z))Dα1u · · ·DαNu

where the sum is over all (finitely many) decomposition with
N∑
i=1

αi ≤ α and the

F·(z, u) are smooth with compact support, being various derivitives of F (z, u). Thus
it follows from Lemma 4 that all terms on the right are in L2(Rn) for |α| ≤ s. �

Note that slightly more sophisticated versions of these arguments give the full
result (1.21) but Proposition 1 suffices for our purposes below.

8. Some bounded operators

Lemma 5. If J ∈ Ck(Ω2) is properly supported then the operator with kernel J
(also denoted J) is a map

(1.39) J : Hs
loc(Ω) −→ Hk

loc(Ω) ∀ s ≥ −k.





CHAPTER 2

Elliptic Regularity

0.6Q; Revised: 6-8-2007; Run: February 7, 2008

Includes some corrections noted by Tim Nguyen and corrections by, and some
suggestions from, Jacob Bernstein.

1. Constant coefficient operators

A linear, constant coefficient differential operator can be thought of as a map

(2.1) P (D) : S(Rn) −→ S(Rn) of the form P (D)u(z) =
∑
|α|≤m

cαD
αu(z),

Dα = Dα1
1 . . . Dαn

n , Dj =
1
i

∂

∂zj
,

but it also acts on various other spaces. So, really it is just a polynomial P (ζ) in n
variables. This ‘characteristic polynomial’ has the property that

(2.2) F(P (D)u)(ζ) = P (ζ)Fu(ζ),

which you may think of as a little square

(2.3) S(Rn)
P (D) //

OO

F
��

S(Rn)
OO

F
��

S(Rn)
P×

// S(Rn)

and this is why the Fourier tranform is especially useful. However, this still does
not solve the important questions directly.

Question 1. P (D) is always injective as a map (2.1) but is usually not sur-
jective. When is it surjective? If Ω ⊂ Rn is a non-empty open set then

(2.4) P (D) : C∞(Ω) −→ C∞(Ω)

is never injective (unless P (ζ) is constnat), for which polynomials is it surjective?

The first three points are relatively easy. As a map (2.1) P (D) is injective since
if P (D)u = 0 then by (2.2), P (ζ)Fu(ζ) = 0 on Rn. However, a zero set, in Rn, of a
non-trivial polynomial alwasys has empty interior, i.e. the set where it is non-zero
is dense, so Fu(ζ) = 0 on Rn (by continuity) and hence u = 0 by the invertibility
of the Fourier transform. So (2.1) is injective (of course excepting the case that P
is the zero polynomial). When is it surjective? That is, when can every f ∈ S(Rn)
be written as P (D)u with u ∈ S(Rn)? Taking the Fourier transform again, this is
the same as asking when every g ∈ S(Rn) can be written in the form P (ζ)v(ζ) with

17



18 2. ELLIPTIC REGULARITY

v ∈ S(Rn). If P (ζ) has a zero in Rn then this is not possible, since P (ζ)v(ζ) always
vanishes at such a point. It is a little trickier to see the converse, that P (ζ) 6= 0
on Rn implies that P (D) in (2.1) is surjective. Why is this not obvious? Because
we need to show that v(ζ) = g(ζ)/P (ζ) ∈ S(Rn) whenever g ∈ S(Rn). Certainly,
v ∈ C∞(Rn) but we need to show that the derivatives decay rapidly at infinity.
To do this we need to get an estimate on the rate of decay of a non-vanishing
polynomial

Lemma 6. If P is a polynomial such that P (ζ) 6= 0 for all ζ ∈ Rn then there
exists C > 0 and a ∈ R such that

(2.5) |P (ζ)| ≥ C(1 + |ζ|)a.

Proof. This is a form of the Tarski-Seidenberg Lemma. Stated loosely, a
semi-algebraic function has power-law bounds. Thus

(2.6) F (R) = inf{|P (ζ)|; |ζ| ≤ R}
is semi-algebraic and non-vanishing so must satisfy F (R) ≥ c(1 + R)a for some
c > 0 and a (possibly negative). This gives the desired bound.

Is there an elementary proof? �

Thirdly the non-injectivity in (2.4) is obvious for the opposite reason. Namely
for any non-constant polynomial there exists ζ ∈ Cn such that P (ζ) = 0. Since

(2.7) P (D)eiζ·z = P (ζ)eiζ·z

such a zero gives rise to a non-trivial element of the null space of (2.4). You can
find an extensive discussion of the density of these sort of ‘exponential’ solutions
(with polynomial factors) in all solutions in Hörmander’s book [?].

What about the surjectivity of (2.4)? It is not always surjective unless Ω
is convex but there are decent answers, to find them you should look under P -
convexity in [?]. If P (ζ) is elliptic then (2.4) is surjective for every open Ω; maybe
I will prove this later although it is not a result of great utility.

2. Constant coefficient elliptic operators

To discuss elliptic regularity, let me recall that any constant coefficient differ-
ential operator of order m defines a continuous linear map

(2.8) P (D) : Hs+m(Rn) 7−→ Hs(Rn).

Provided P is not the zero polynomial this map is always injective. This follows as
in the discussion above for S(Rn). Namely, if u ∈ Hs+m(Rn) then, by definition,
û ∈ L2

loc(Rn) and if Pu = 0 then P (ζ)û(ζ) = 0 off a set of measure zero. Since
P (ζ) 6= 0 on an open dense set it follows that û = 0 off a set of measure zero and
so u = 0 as a distribution.

As a map (2.8), P (D) is is seldom surjective. It is said to be elliptic (either as
a polynomial or as a differential operator) if it is of order m and there is a constant
c > 0 such that

(2.9) |P (ζ)| ≥ c(1 + |ζ|)m in {ζ ∈ Rn; |ζ| > 1/c}.

Proposition 2. As a map (2.8), for a given s, P (D) is surjective if and only
if P is elliptic and P (ζ) 6= 0 on Rn and then it is a topological isomorphism for
every s.
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Proof. Since the Sobolev spaces are defined as the Fourier transforms of the
weighted L2 spaces, that is

(2.10) f ∈ Ht(Rn)⇐⇒ (1 + |ζ|2)t/2f̂ ∈ L2(Rn)

the sufficiency of these conditions is fairly clear. Namely the combination of ellip-
ticity, as in (2.9), and the condition that P (ζ) 6= 0 for ζ ∈ Rn means that

(2.11) |P (ζ)| ≥ c(1 + |ζ|2)m/2, c > 0, ζ ∈ Rn.

From this it follows that P (ζ) is bounded above and below by multiples of (1 +
|ζ|2)m/2 and so maps the weighted L2 spaces into each other
(2.12)
× P (ζ) : H0,s+m(Rn) −→ H0,s(Rn), H0,s = {u ∈ L2

loc(Rn); 〈ζ〉su(ζ) ∈ L2(Rn)},
giving an isomorphism (2.8) after Fourier transform.

The necessity follows either by direct construction or else by use of the closed
graph theorem. If P (D) is surjective then multiplication by P (ζ) must be an
isomorphism between the corresponding weighted space H0,s(Rn) and H0,s+m(Rn).
By the density of functions supported off the zero set of P the norm of the inverse
can be seen to be the inverse of

(2.13) inf
ζ∈Rn

|P (ζ)|〈ζ〉−m

which proves ellipticity. �

Ellipticity is reasonably common in appliactions, but the condition that the
characteristic polynomial not vanish at all is frequently not satisfied. In fact one
of the questions I want to get to in this course – even though we are interested in
variable coefficient operators – is improving (2.8) (by changing the Sobolev spaces)
to get an isomorphism at least for homogeneous elliptic operators (which do not
satisfy the second condition in Proposition 2 because they vanish at the origin).
One reason for this is that we want it for monopoles.

Note that ellipticity itself is a condition on the principal part of the polynomial.

Lemma 7. A polynomial P (ζ) =
∑
α|≤m

cαζ
α of degree m is elliptic if and only

if its leading part

(2.14) Pm(ζ) =
∑
|α|=m

cαζ
α 6= 0 on Rn \ {0}.

Proof. Since the principal part is homogeneous of degree m the requirement
(2.14) is equivalent to

(2.15) |Pm(ζ)| ≥ c|ζ|m, c = inf
|ζ|=1

|P (ζ)| > 0.

Thus, (2.9) follows from this, since

(2.16) |P (ζ)| ≥ |Pm(ζ)| − |P ′(ζ)| ≥ c|ζ|m − C|ζ|m−1 − C ≥ c

2
|ζ|m if |ζ| > C ′,

P ′ = P −Mm being of degree at most m− 1. Conversely, ellipticity in the sense of
(2.9) implies that

(2.17) |Pm(ζ)| ≥ |P (ζ)| − |P ′(ζ)| ≥ c|ζ|m − C|ζ|m−1 − C > 0 in |ζ| > C ′

and so Pm(ζ) 6= 0 for ζ ∈ Rn \ {0} by homogeneity. �
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Let me next recall elliptic regularity for constant coefficient operators. Since
this is a local issue, I first want to recall the local versions of the Sobolev spaces
discussed in Chapter 1

Definition 1. If Ω ⊂ Rn is an open set then

(2.18) Hs
loc(Ω) =

{
u ∈ C−∞(Ω);φu ∈ Hs(Rn) ∀ φ ∈ C∞c (Ω)

}
.

Again you need to know what C−∞(Ω) is (it is the dual of C∞c (Ω)) and that
multiplication by φ ∈ C∞c (Ω) defines a linear continuous map from C−∞(Rn) to
C−∞c (Rn) and gives a bounded operator on Hm(Rn) for all m.

Proposition 3. If P (D) is elliptic, u ∈ C−∞(Ω) is a distribution on an open
set and P (D)u ∈ Hs

loc(Ω) then u ∈ Hs+m
loc (Ω). Furthermore if φ, ψ ∈ C∞c (Ω) with

φ = 1 in a neighbourhood of supp(ψ) then

(2.19) ‖ψu‖s+m ≤ C‖ψP (D)u‖s + C ′‖φu‖s+m−1

for any M ∈ R, with C ′ depending only on ψ, φ, M and P (D) and C depending
only on P (D) (so neither depends on u).

Although I will no prove it here, and it is not of any use below, it is worth noting that
(2.19) characterizes the ellipticity of a differential operator with smooth coefficients.

Proof. Let me discuss this in two slightly different ways. The first, older,
approach is via direct regularity estimates. The second is through the use of a
parametrix; they are not really very different!

First the regularity estimates. An easy case of Proposition 3 arises if u ∈
C−∞c (Ω) has compact support to start with. Then P (D)u also has compact support
so in this case

(2.20) u ∈ C−∞c (Rn) and P (D)u ∈ Hs(Rn).

Then of course the Fourier transform works like a charm. Namely P (D)u ∈ Hs(Rn)
means that
(2.21)
〈ζ〉sP (ζ)û(ζ) ∈ L2(Rn) =⇒ 〈ζ〉s+mF (ζ)û(ζ) ∈ L2(Rn), F (ζ) = 〈ζ〉−mP (ζ).

Ellipticity of P (ζ) implies that F (ζ) is bounded above and below on |ζ| > 1/c
and hence can be inverted there by a bounded function. It follows that, given any
M ∈ R the norm of u in Hs+m(Rn) is bounded

(2.22) ‖u‖s+m ≤ C‖u‖s + C ′M‖u‖M , u ∈ C−∞(Ω),

where the second term is used to bound the L2 norm of the Fourier transform in
|ζ| ≤ 1/c.

To do the general case of an open set we need to use cutoffs more seriously. We
want to show that ψu ∈ Hs+m(Rn) where ψ ∈ C∞c (Ω) is some fixed but arbitrary
element. We can always choose some function φ ∈ C∞c (Ω) which is equal to one
in a neighbourhood of the support of ψ. Then φu ∈ C−∞c (Rn) so, by the Schwartz
structure theorem, φu ∈ Hm+t−1(Rn) for some (unknown) t ∈ R. We will show
that ψu ∈ Hm+T (Rn) where T is the smaller of s and t. To see this, compute

(2.23) P (D)(ψu) = ψP (D)u+
∑

|β|≤m−1,|γ|≥1

cβ,γD
γψDβφu.

With the final φu replaced by u this is just the effect of expanding out the derivatives
on the product. Namely, the ψP (D)u term is when no derivative hits ψ and the
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other terms come from at least one derivative hitting ψ. Since φ = 1 on the support
of ψ we may then insert φ without changing the result. Thus the first term on
the right in (2.23) is in Hs(Rn) and all terms in the sum are in Ht(Rn) (since
at most m − 1 derivatives are involved and φu ∈ Hm+t−1(Rn) be definition of t).
Applying the simple case discussed above it follows that ψu ∈ Hm+r(Rn) with r
the minimum of s and t. This would result in the estimate

(2.24) ‖ψu‖s+m ≤ C‖ψP (D)u‖s + C ′‖φu‖s+m−1

provided we knew that φu ∈ Hs+m−1 (since then t = s). Thus, initially we only
have this estimate with s replaced by T where T = min(s, t). However, the only
obstruction to getting the correct estimate is knowing that ψu ∈ Hs+m−1(Rn).

To see this we can use a bootstrap argument. Observe that ψ can be taken to
be any smooth function with support in the interior of the set where φ = 1. We
can therefore insert a chain of functions, of any finite (integer) length k ≥ s − t,
between then, with each supported in the region where the previous one is equal to
1 :

(2.25) supp(ψ) ⊂ {φk = 1}◦ ⊂ supp(φk) ⊂ · · · ⊂ supp(φ1) ⊂ {φ = 1}◦ ⊂ supp(φ)

where ψ and φ were our initial choices above. Then we can apply the argument
above with ψ = φ1, then ψ = φ2 with φ replaced by φ1 and so on. The initial
regularity of φu ∈ Ht+m−1(Rn) for some t therefore allows us to deduce that

(2.26) φju ∈ Hm+Tj (Rn), Tj = min(s, t+ j − 1).

If k is large enough then min(s, t+ k) = s so we conclude that ψu ∈ Hs+m(Rn) for
any such ψ and that (2.24) holds. �

Although this is a perfectly adequate proof, I will now discuss the second
method to get elliptic regularity; the main difference is that we think more in
terms of operators and avoid the explicit iteration technique, by doing it all at once
– but at the expense of a little more thought. Namely, going back to the easy case
of a tempered distibution on Rn give the map a name:-

(2.27) Q(D) : f ∈ S ′(Rn) 7−→ F−1
(
q̂(ζ)f̂(ζ)

)
∈ S ′(Rn), q̂(ζ) =

1− χ(ζ)
P (ζ)

.

Here χ ∈ C∞c (Rn) is chosen to be equal to one on the set |ζ| ≤ 1
c + 1 corresponding

to the ellipticity estimate (2.9). Thus q̂(ζ) ∈ C∞(Rn) is bounded and in fact

(2.28) |Dα
ζ q̂(ζ)| ≤ Cα(1 + |ζ|)−m−|α| ∀ α.

This has a straightforward proof by induction. Namely, these estimates are trivial
on any compact set, where the function is smooth, so we need only consider the
region where χ(ζ) = 0. The inductive statement is that for some polynomials Hα,

(2.29) Dα
ζ

1
P (ζ)

=
Hα(ζ)

(P (ζ))|α|+1
, deg(Hα) ≤ (m− 1)|α|.

From this (2.28) follows. Prove (2.29) itself by differentiating one more time and
reorganizing the result.

So, in view of the estimate with α = 0 in (2.28),

(2.30) Q(D) : Hs(Rn) −→ Hs+m(Rn)
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is continuous for each s and it is also an essential inverse of P (D) in the sense that
as operators on S ′(Rn)

(2.31) Q(D)P (D) = P (D)Q(D) = Id−E, E : Hs(Rn) −→ H∞(Rn) ∀ s ∈ R.

Namely, E is Fourier multiplication by a smooth function of compact support
(namely 1 − q̂(ζ)P (ζ). So, in the global case of Rn, we get elliptic regularity by
applying Q(D) to both sides of the equation P (D)u = f to find

(2.32) f ∈ Hs(Rn) =⇒ u = Eu+Qf ∈ Hs+m(Rn).

This also gives the esimate (2.22) where the second term comes from the continuity
of E.

The idea then, is to do the same thing for P (D) acting on functions on the
open set Ω; this argument will subsequently be generalized to variable coefficient
operators. The problem is that Q(D) does not act on functions (or chapterdistri-
butions) defined just on Ω, they need to be defined on the whole of Rn and to be
tempered before the the Fourier transform can be applied and then multiplied by
q̂(ζ) to define Q(D)f.

Now, Q(D) is a convolution operator. Namely, rewriting (2.27)

(2.33) Q(D)f = Qf = q ∗ f, q ∈ S ′(Rn), q̂ =
1− χ(ζ)
P (ζ)

.

This in fact is exactly what (2.27) means, since F(q ∗ f) = q̂f̂ . We can write out
convolution by a smooth function (which q is not, but let’s not quibble) as an
integral

(2.34) q ∗ f(ζ) =
∫

Rn

q(z − z′)f(z′)dz′.

Restating the problem, (2.34) is an integral (really a distributional pairing) over
the whole of Rn not the subset Ω. In essence the cutoff argument above inserts a
cutoff φ in front of f (really of course in front of u but not to worry). So, let’s think
about inserting a cutoff into (2.34), replacing it by

(2.35) Qψf(ζ) =
∫

Rn

q(z − z′)χ(z, z′)f(z′)dz′.

Here we will take χ ∈ C∞(Ω2). To get the integrand to have compact support in Ω
for each z ∈ Ω we want to arrange that the projection onto the second variable, z′

(2.36) πL : Ω× Ω ⊃ supp(χ) −→ Ω

should be proper, meaning that the inverse image of a compact subset K ⊂ Ω,
namely (Ω×K) ∩ supp(χ), should be compact in Ω.

Let me strengthen the condition on the support of χ by making it more two-
sided and demand that χ ∈ C∞(Ω2) have proper support in the following sense:

(2.37) If K ⊂ Ω then πR ((Ω×K) ∩ supp(χ)) ∪ πL ((L× Ω) ∩ supp(χ)) b Ω.

Here πL, πR : Ω2 −→ Ω are the two projections, onto left and right factors. This
condition means that if we multiply the integrand in (2.35) on the left by φ(z),
φ ∈ C∞c (Ω) then the integrand has compact support in z′ as well – and so should
exist at least as a distributional pairing. The second property we want of χ is that
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it should not change the properties of q as a convolution operator too much. This
reduces to

(2.38) χ = 1 in a neighbourhood of Diag = {(z, z); z ∈ Ω} ⊂ Ω2

although we could get away with the weaker condition that

(2.39) χ ≡ 1 in Taylor series at Diag .

Before discussing why these conditions help us, let me just check that it is
possible to find such a χ. This follows easily from the existence of a partition of
unity in Ω as follows. It is possible to find functions φi ∈ C∞c (Ω), i ∈ N, which
have locally finite supports (i.e. any compact subset of Ω only meets the supports
of a finite number of the φi, ) such that

∑
i

φi(z) = 1 in Ω and also so there exist

functions φ′i ∈ C∞c (Ω), also with locally finite supports in the same sense and such
that φ′i = 1 on a neighborhood of the support of φi. The existence of such functions
is a standard result, or if you prefer, an exercise.

Accepting that such functions exists, consider

(2.40) χ(z, z′) =
∑
i

φi(z)φ′i(z
′).

Any compact subset of Ω2 is contained in a compact set of the form K × K and
hence meets the supports of only a finite number of terms in (2.40). Thus the sum
is locally finite and hence χ ∈ C∞(Ω2). Moreover, its support has the property
(2.37). Clearly, by the assumption that φ′i = 1 on the support of φi and that the
latter form a partition of unity, χ(z, z) = 1. In fact χ(z, z′) = 1 in a neighborhood
of the diagonal since each z has a neighborhood N such that z′ ∈ N, φi(z) 6= 0
implies φ′i(z

′) = 1. Thus we have shown that such a cutoff function χ exists.
Now, why do we want (2.38)? This arises because of the following ‘pseudolocal’

property of the kernel q.

Lemma 8. Any distribution q defined as the inverse Fourier transform of a
function satisfying (2.28) has the property

(2.41) sing supp(q) ⊂ {0}

Proof. This follows directly from (2.28) and the properties of the Fourier
transform. Indeed these estimates show that

(2.42) zαq(z) ∈ CN (Rn) if |α| > n+N

since this is enough to show that the Fourier transform, (i∂ζ)αq̂, is L1. At every
point of Rn, other than 0, one of the zj is non-zero and so, taking zα = zkj , (2.42)
shows that q(z) is in CN in Rn \ {0} for all N, i.e. (2.41) holds. �

Thus the distribution q(z − z′) is only singular at the diagonal. It follows that
different choices of χ with the properties listed above lead to kernels in (2.35) which
differ by smooth functions in Ω2 with proper supports.

Lemma 9. A properly supported smoothing operator, which is by defninition
given by an integral operator

(2.43) Ef(z) =
∫

Ω

E(z, z′)f(z′)dz′
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where E ∈ C∞(Ω2) has proper support (so both maps

(2.44) πL, πR : supp(E) −→ Ω

are proper), defines continuous operators

(2.45) E : C−∞(Ω) −→ C∞(Ω), C−∞c (Ω) −→ C∞c (Ω)

and has an adjoint of the same type.

See the discussion in Chapter 1.

Proposition 4. If P (D) is an elliptic operator with constant coefficients then
the kernel in (2.35) defines an operator QΩ : C−∞(Ω) −→ C−∞(Ω) which maps
Hs

loc(Ω) to Hs+m
loc (Ω) for each s ∈ R and gives a 2-sided parametrix for P (D) in Ω :

(2.46) P (D)QΩ = Id−R, QΩP (D) = Id−R′

where R and R′ are properly supported smoothing operators.

Proof. We have already seen that changing χ in (2.35) changes QΩ by a
smoothing operator; such a change will just change R and R′ in (2.46) to different
properly supported smoothing operators. So, we can use the explicit choice for χ
made in (2.40) in terms of a partition of unity. Thus, multiplying on the left by
some µ ∈ C∞c (Ω) the sum becomes finite and

(2.47) µQΩf =
∑
j

µψjq ∗ (ψ′jf).

It follows that QΩ acts on C−∞(Ω) and, from the properties of q it maps Hs
loc(Rn)

to Hs+m
loc (Rn) for any s. To check (2.46) we may apply P (D) to (2.47) and consider

a region where µ = 1. Since P (D)q = δ0− R̃ where R̃ ∈ S(Rn), P (D)QΩf = Id−R
where additional ‘error terms’ arise from any differentiation of φj . All such terms
have smooth kernels (since φ′j = 1 on the support of φj and q(z − z′) is smooth
outside the diagonal) and are properly supported. The second identity in (2.46)
comes from the same computation for the adjoints of P (D) and QΩ. �

3. Interior elliptic estimates

Next we proceed to prove the same type of regularity and estimates, (2.24), for
elliptic differential operators with variable coefficients. Thus consider

(2.48) P (z,D) =
∑
|α|≤m

pα(z)Dα, pα ∈ C∞(Ω).

We now assume ellipticity, of fixed order m, for the polynomial P (z, ζ) for each
z ∈ Ω. This is the same thing as ellipticity for the principal part, i.e. the condition
for each compact subset of Ω

(2.49) |
∑
|α|=m

pα(z)ζα| ≥ C(K)|ζ|m, z ∈ K b Ω, C(K) > 0.

Since the coefficients are smooth this and C∞(Ω) is a multiplier on Hs
loc(Ω) such a

differential operator (elliptic or not) gives continuous linear maps

(2.50) P (z,D) : Hs+m
loc (Ω) −→ Hs

loc(Ω), ∀ s ∈ R, P (z,D) : C∞(Ω) −→ C∞(Ω).

Now, we arrived at the estimate (2.19) in the constant coefficient case by it-
eration from the case M = s + m − 1 (by nesting cutoff functions). Pick a point
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z̄ ∈ Ω. In a small ball around z̄ the coefficients are ‘almost constant’. In fact, by
Taylor’s theorem,

(2.51) P (z, ζ) = P (z̄, ζ) +Q(z, ζ), Q(z, ζ) =
∑
j

(z − z̄)jPj(z, z̄, ζ)

where the Pj are also polynomials of degree m in ζ and smooth in z in the ball
(and in z̄.) We can apply the estimate (2.19) for P (z̄, D) and s = 0 to find

(2.52) ‖ψu‖m ≤ C‖ψ (P (z,D)u−Q(z,D))u‖0 + C ′‖φu‖m−1.

Because the coefficients are small

(2.53) ‖ψQ(z,D)u‖0 ≤
∑

j,|α|≤m

‖(z − z̄)jrj,αDαψu‖0 + C ′‖φu‖m−1

≤ δC‖ψu‖m + C ′‖φu‖m−1.

What we would like to say next is that we can choose δ so small that δC < 1
2 and

so inserting (2.53) into (2.52) we would get

(2.54) ‖ψu‖m ≤ C‖ψP (z,D)u‖0 + C‖ψQ(z,D)u‖0 + C ′‖φu‖m−1

≤ C‖ψP (z,D)u‖0 +
1
2
‖ψu‖m + C ′‖φu‖m−1

=⇒ 1
2
‖ψu‖m ≤ C‖ψP (z,D)u‖0 + C ′‖φu‖m−1.

However, there is a problem here. Namely this is an a priori estimate – to move the
norm term from right to left we need to know that it is finite. Really, that is what
we are trying to prove! So more work is required. Nevertheless we will eventually
get essentially the same estimate as in the constant coefficient case.

Theorem 1. If P (z,D) is an elliptic differential operator of order m with
smooth coefficients in Ω ⊂ Rn and u ∈ C−∞(Ω) is such that P (z,D)u ∈ Hs

loc(Ω)
for some s ∈ R then u ∈ Hs+m

loc (Ω) and for any φ, ψ ∈ C∞c (Ω) with φ = 1 in a
neighbourhood of supp(ψ) and M ∈ R, there exist constants C (depending only on
P and ψ) and C ′ (independent of u) such that

(2.55) ‖ψu‖m+s ≤ C‖ψP (z,D)u‖s + C ′‖φu‖M .

There are three main things to do. First we need to get the a priori estimate
first for general s, rather than s = 0, and then for general ψ (since up to this point
it is only for ψ with sufficiently small support). One problem here is that in the
estimates in (2.53) the L2 norm of a product is estimated by the L∞ norm of one
factor and the L2 norm of the other. For general Sobolev norms such an estimate
does not hold, but something similar does; see Lemma 2. The proof of this theorem
occupies the rest of this Chapter.

Proposition 5. Under the hypotheses of Theorem 1 if in addition u ∈ C∞(Ω)
then (2.55) follows.

Proof of Proposition 5. First we can generalize (2.52), now using Lemma 2.
Thus, if ψ has support near the point z̄

(2.56) ‖ψu‖s+m ≤ C‖ψP (z̄, D)u‖s + ‖φQ(z,D)ψu‖s + C ′‖φu‖s+m−1

≤ C‖ψP (z̄, D)u‖s + δC‖ψu‖s+m + C ′‖φu‖s+m−1.
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This gives the extension of (2.54) to general s (where we are assuming that u is
indeed smooth):

(2.57) ‖ψu‖s+m ≤ Cs‖ψP (z,D)u‖s + C ′‖φu‖s+m−1.

Now, given a general element ψ ∈ C∞c (Ω) and φ ∈ C∞c (Ω) with φ = 1 in a
neighbourhood of supp(ψ) we may choose a partition of unity ψj with respect to
supp(ψ) for each element of which (2.57) holds for some φj ∈ C∞c (Ω) where in
addition φ = 1 in a neighbourhood of supp(φj). Then, with various constants

(2.58)

‖ψu‖s+m ≤
∑
j

‖ψju‖s+m ≤ Cs
∑
j

‖ψjφP (z,D)u‖s + C ′
∑
j

‖φjφu‖s+m−1

≤ Cs(K)‖φP (z,D)u‖s + C ′′‖φu‖s+m−1,

where K is the support of ψ and Lemma 2 has been used again. This removes the
restriction on supports.

Now, to get the full (a priori) estimate (2.55), where the error term on the
right has been replaced by one with arbitrarily negative Sobolev order, it is only
necessary to iterate (2.58) on a nested sequence of cutoff functions as we did earlier
in the constant coefficient case.

This completes the proof of Proposition 5. �

So, this proves a priori estimates for solutions of the elliptic operator in terms
of Sobolev norms. To use these we need to show the regularity of solutions and I
will do this by constructing parametrices in a manner very similar to the constant
coefficient case.

Theorem 2. If P (z,D) is an elliptic differential operator of order m with
smooth coefficients in Ω ⊂ Rn then there is a continuous linear operator

(2.59) Q : C−∞(Ω) −→ C−∞(Ω)

such that

(2.60) P (z,D)Q = Id−RR, QP (z,D) = Id−RL
where RR, RL are properly-supported smoothing operators.

That is, both RR and RL have kernels in C∞(Ω2) with proper supports. We
will in fact conclude that

(2.61) Q : Hs
loc(Ω) −→ Hs+m

loc (Ω), ∀ s ∈ R
using the a priori estimates.

To construct at least a first approximation to Q essentially the same formula
as in the constant coefficient case suffices. Thus consider

(2.62) Q0f(z) =
∫

Ω

q(z, z − z′)χ(z, z′)f(z′)dz′.

Here q is defined as last time, except it now depends on both variables, rather than
just the difference, and is defined by inverse Fourier transform

(2.63) q0(z, Z) = F−1
ζ 7−→Z q̂0(z, ζ), q̂0 =

1− χ(z, ζ)
P (z, ζ)

where χ ∈ C∞(Ω × R) is chosen to have compact support in the second variable,
so supp(χ) ∩ (K ×Rn) is compact for each K b Ω, and to be equal to 1 on such a
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large set that P (z, ζ) 6= 0 on the support of 1− χ(z, ζ). Thus the right side makes
sense and the inverse Fourier transform exists.

Next we extend the esimates, (2.28), on the ζ derivatives of such a quotient,
using the ellipticity of P. The same argument works for derivatives with respect to
z, except no decay occurs. That is, for any compact set K b Ω

(2.64) |Dβ
zD

α
ζ q̂0(z, ζ)| ≤ Cα,β(K)(1 + |ζ|)−m−|α|, z ∈ K.

Now the argument, in Lemma 8, concerning the singularities of q0 works with z
derivatives as well. It shows that

(2.65) (zj − z′j)N+kq0(z, z − z′) ∈ CN (Ω× Rn) if k +m > n/2.

Thus,

(2.66) sing supp q0 ⊂ Diag = {(z, z) ∈ Ω2}.

The ‘pseudolocality’ statement (2.66), shows that as in the earlier case, chang-
ing the cutoff function in (2.62) changes Q0 by a properly supported smoothing
operator and this will not affect the validity of (2.60) one way or the other! For
the moment not worrying too much about how to make sense of (2.62) consider
(formally)

(2.67) P (z,D)Q0f =
∫

Ω

(P (z,DZ)q0(z, Z))Z=z−z′ χ(z, z′)f(z′)dz′ + E1f +R1f.

To apply P (z,D) we just need to apply Dα to Q0f, multiply the result by pα(z)
and add. Applying Dα

z (formally) under the integral sign in (2.62) each derivative
may fall on either the ‘parameter’ z in q0(z, z − z′), the variable Z = z − z′ or else
on the cutoff χ(z, z′). Now, if χ is ever differentiated the result vanishes near the
diagonal and as a consequence of (2.66) this gives a smooth kernel. So any such
term is included in R1 in (2.67) which is a smoothing operator and we only have
to consider derivatives falling on the first or second variables of q0. The first term
in (2.67) corresponds to all derivatives falling on the second variable. Thus

(2.68) E1f =
∫

Ω

e1(z, z − z′)χ(z, z′)f(z′)dz′

is the sum of the terms which arise from at least one derivative in the ‘parameter
variable’ z in q0 (which is to say ultimately the coefficients of P (z, ζ)). We need to
examine this in detail. First however notice that we may rewrite (2.67) as

(2.69) P (z,D)Q0f = Id +E1 +R′1

where E1 is unchanged and R′1 is a new properly supported smoothing operator
which comes from the fact that

(2.70) P (z, ζ)q0(z, ζ) = 1− ρ(z, ζ) =⇒
P (z,DZ)q0(z, Z) = δ(Z) + r(z, Z), r ∈ C∞(Ω× Rn)

from the choice of q0. This part is just as in the constant coefficient case.
So, it is the new error term, E1 which we must examine more carefully. This

arises, as already noted, directly from the fact that the coefficients of P (z,D) are
not assumed to be constant, hence q0(z, Z) depends parameterically on z and this is
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differentiated in (2.67). So, using Leibniz’ formula to get an explicit representation
of e1 in (2.68) we see that

(2.71) e1(z, Z) =
∑

|α|≤m, |γ|<m

pα(z)
(
α

γ

)
Dα−γ
z Dγ

Zq0(z, Z).

The precise form of this expansion is not really significant. What is important is
that at most m − 1 derivatives are acting on the second variable of q0(z, Z) since
all the terms where all m act here have already been treated. Taking the Fourier
transform in the second variable, as before, we find that

(2.72) ê1(z, ζ) =
∑

|α|≤m, |γ|<m

pα(z)
(
α

γ

)
Dα−γ
z ζγ q̂0(z, ζ) ∈ C∞(Ω× Rn).

Thus ê1 is the sum of products of z derivatives of q0(z, ζ) and polynomials in ζ of
degree at most m− 1 with smooth dependence on z. We may therefore transfer the
estimates (2.64) to e1 and conclude that

(2.73) |Dβ
zD

α
ζ ê1(z, ζ)| ≤ Cα,β(K)(1 + |ζ|)−1−|α|.

Let us denote by Sm(Ω × Rn) ⊂ C∞(Ω × Rn) the linear space of functions
satisfying (2.64) when −m is replaced by m, i.e.

(2.74) |Dβ
zD

α
ζ a(z, ζ)| ≤ Cα,β(K)(1 + |ζ|)m−|α| ⇐⇒ a ∈ Sm(Ω× Rn).

This allows (2.73) to be written succinctly as ê1 ∈ S−1(Ω× Rn).
To summarize so far, we have chosen q̂0 ∈ S−m(Ω × Rn) such that with Q0

given by (2.62),

(2.75) P (z,D)Q0 = Id +E1 +R′1

where E1 is given by the same formula (2.62), as (2.68), where now ê1 ∈ S−1(Ω×
Rn). In fact we can easily generalize this discussion, to do so let me use the notation

(2.76) Op(a)f(z) =
∫

Ω

A(z, z − z′)χ(z, z′)f(z′)dz′,

if Â(z, ζ) = a(z, ζ) ∈ Sm(Ω× Rn).

Proposition 6. If a ∈ Sm′(Ω× Rn) then

(2.77) P (z,D) Op(a) = Op(pa) + Op(b) +R

where R is a (properly supported) smoothing operator and b ∈ Sm′+m−1(Ω× Rn).

Proof. Follow through the discussion above with q̂0 replaced by a. �

So, we wish to get rid of the error term E1 in (2.68) to as great an extent as
possible. To do so we add to Q0 a second term Q1 = Op(a1) where

(2.78) a1 = − 1− χ
P (z, ζ)

ê1(z, ζ) ∈ S−m−1(Ω× Rn).

Indeed

(2.79) Sm
′
(Ω× Rn)Sm

′′
(Ω× Rn) ⊂ Sm

′+m′′(Ω× Rn)
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(pretty much as though we are multiplying polynomials) as follows from Leibniz’
formula and the defining estimates (2.74). With this choice of Q1 the identity (2.77)
becomes

(2.80) P (z,D)Q1 = −E1 + Op(b2) +R2, b2 ∈ S−2(Ω× Rn)

since p(z, ζ)a1 = −ê1 + r′(z, ζ) where supp(r′) is compact in the second variable
and so contributes a smoothing operator and by definition E1 = Op(ê1).

Now we can proceed by induction, let me formalize it a little.

Lemma 10. If P (z,D) is elliptic with smooth coefficients on Ω then we may
choose a sequence of elements ai ∈ S−m−i(Ω× Rn) i = 0, 1, . . . , such that if Qi =
Op(ai) then

(2.81) P (z,D)(Q0 +Q1 + · · ·+Qj) = Id +Ej+1 +R′j , Ej+1 = Op(bj+1)

with Rj a smoothing operator and bj ∈ S−j(Ω× Rn), j = 1, 2, . . . .

Proof. We have already taken the first two steps! Namely with a0 = q̂0, given
by (2.63), (2.75) is just (2.81) for j = 0. Then, with a1 given by (2.78), adding (2.80)
to (2.78) gives (2.81) for j = 1. Proceeding by induction we may assume that we
have obtained (2.81) for some j. Then we simply set

aj+1 = −1− χ(z, ζ)
P (z, ζ)

bj+1(z, ζ) ∈ S−j−1−m(Ω× Rn)

where we have used (2.79). Setting Qj+1 = Op(aj+1) the identity (2.77) becomes

(2.82) P (z,D)Qj+1 = −Ej+1 + Ej+2 +R′′j+1, Ej+2 = Op(bj+2)

for some bj+2 ∈ S−j−2(Ω×Rn). Adding (2.82) to (2.81) gives the next step in the
inductive argument. �

Consider the error term in (2.81) for large j. From the estimates on an element
a ∈ S−j(Ω× Rn)

(2.83) |Dβ
zD

α
ζ a(z, ζ)| ≤ Cα,β(K)(1 + |ζ|)−j−|α|

it follows that if j > n + k then ζγa is integrable in ζ with all its z derivatives
for |ζ| ≤ k. Thus the inverse Fourier transform has continuous derivatives in all
variables up to order k. Applied to the error term in (2.81) we conclude that

(2.84) Ej = Op(bj) has kernel in Cj−n−1(Ω2) for large j.

Thus as j increases the error terms in (2.81) have increasingly smooth kernels.
Now, standard properties of operators and kernels, see Lemma 5, show that

operator

(2.85) Q(k) =
k∑
j=0

Qj

comes increasingly close to satisfying the first identity in (2.60), except that the
error term is only finitely (but arbitrarily) smoothing. Since this is enough for
what we want here I will banish the actual solution of (2.60) to the addenda to this
Chapter.
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Lemma 11. For k sufficiently large, the left parametrix Q(k) is a continuous
operator on C∞(Ω) and

(2.86) Q(k) : Hs
loc(Ω) −→ Hs+m

loc (Ω) ∀ s ∈ R.

Proof. So far I have been rather cavalier in treating Op(a) for a ∈ Sm(Ω×Rn)
as an operator without showing that this is really the case, however this is a rather
easy exercise in distribution theory. Namely, from the basic properties of the Fourier
transform and Sobolev spaces

(2.87) A(z, z − z′) ∈ Ck(Ω;H−n−1+m−k
loc (Ω)) ∀ k ∈ N.

It follows that Op(a) : Hn+1−m+k
c (Ω) into Ck(Ω) and in fact into Ckc (Ω) by the

properness of the support. In particular it does define an operator on C∞(Ω) as we
have been pretending and the steps above are easily justified.

A similar argument, which I will not give here since it is better to do it by
duality (see the addenda), shows that for any fixed s

(2.88) A : Hs
loc(Ω) −→ HS

loc(Ω)

for some S. Of course we want something a bit more precise than this.
If f ∈ Hs

loc(Ω) then it may be approximated by a sequence fj ∈ C∞(Ω) in
the topology of Hs

loc(Ω), so µfj → µf in Hs(Rn) for each µ ∈ C∞c (Ω). Set uj =
Q(k)fj ∈ C∞(Ω) as we have just seen, where k is fixed but will be chosen to be
large. Then from our identity P (z,D)Q(k) = Id +R(k) it follows that

(2.89) P (z,D)uj = fj + gj , gj = R(k)fj → R(k)f in HN
loc(Ω)

for k large enough depending on s and N. Thus, for k large, the right side converges
in Hs

loc(Ω) and by (2.88), uj → u in some HS
loc(Ω). But now we can use the a priori

estimates (2.55) on uj ∈ C∞(Ω) to conclude that

(2.90) ‖ψuj‖s+m ≤ C‖ψ(fj + gj)‖s + C ′′‖φuj‖S
to see that ψuj is bounded in Hs+m(Rn) for any ψ ∈ C∞c (Ω). In fact, applied to the
difference uj − ul it shows the sequence to be Cauchy. Hence in fact u ∈ Hs+m

loc (Ω)
and the estimates (2.55) hold for this u. That is, Q(k) has the mapping property
(2.86) for large k. �

In fact the continuity property (2.86) holds for all Op(a) where a ∈ Sm(Ω×Rn), not
just those which are parametrices for elliptic differential operators. I will comment
on this below – it is one of the basic results on pseudodifferential operators.

There is also the question of the second identity in (2.60), at least in the same
finite-order-error sense. To solve this we may use the transpose identity. Thus
taking formal transposes this second identity should be equivalent to

(2.91) P tQt = Id−RtL.

The transpose of P (z,D) is the differential operotor

(2.92) P t(z,D) =
∑
|α|≤m

(−D)αz pα(z).

This is again of order m and after a lot of differenttiation to move the coefficients
back to the left we see that its leading part is just Pm(z,−D) where Pm(z,D) is the
leading part of P (z,D), so it is elliptic in Ω exactly when P is elliptic. To construct
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a solution to (2.92), up to finite order errors, we need just apply Lemma 10 to the
transpose differential operator. This gives Q′(N) = Op(a′(N) with the property

(2.93) P t(z,D)Q′(N) = Id−R′(N)

where the kernel of R′(N) is in CN (Ω2). Since this property is preserved under
transpose we have indeed solved the second identity in (2.60) up to an arbitrarily
smooth error.

Of course the claim in Theorem 2 is that the one operator satisfies both iden-
tities, whereas we have constructed two operators which each satisfy one of them,
up to finite smoothing error terms

(2.94) P (z,D)QR = Id−RR, QLP (z,D) = Id−RL.
However these operators must themselves be equal up to finite smoothing error
terms since composing the first identity on the left with QL and the second on the
right with QR shows that

(2.95) QL −QLRR = QLP (z,D)QR = QR −RLQR
where the associativity of operator composition has been used. We have already
checked the mapping property(2.86) for both QL and QR, assuming the error terms
are sufficiently smoothing. It follows that the composite error terms here map
H−ploc (Ω) into Hp

loc(Ω) where p→∞ with k with the same also true of the transposes
of these operators. Such an operator has kernel in Cp

′
(Ω2) where again p′ → ∞

with k. Thus the difference of QL and QR itself becomes arbitrarily smoothing as
k →∞.

Finally then we have proved most of Theorem 2 except with arbitrarily finitely
smoothing errors. In fact we have not quite proved the regularity statement that
P (z,D)u ∈ Hs

loc(Ω) implies u ∈ Hs+m
loc (Ω) although we came very close in the proof

of Lemma 11. Now that we know that Q(k) is also a right parametrix, i.e. satisfies
the second identity in (2.55) up to arbitrarily smoothing errors, this too follows.
Namely from the discussion above Q(k) is an operator on C−∞(Ω) and

Q(k)P (z,D)u = u+ vk, ψvk ∈ Hs+m(Ω)

for large enough k so (2.86) implies u ∈ Hs+m
loc (Ω) and the a priori estimates

magically become real estimates on all solutions.

Addenda to Chapter 2

Asymptotic completeness to show that we really can get smoothing errors.
Some discussion of pseudodifferential operators – adjoints, composition and bound-
edness, but only to make clear what is going on.
Some more reassurance as regards operators, kernels and mapping properties –
since I have treated these fairly shabbily!





CHAPTER 3

Coordinate invariance and manifolds

0.6Q; Revised: 6-8-2007; Run: February 7, 2008

For the geometric applications we wish to make later (and of course many
others) it is important to understand how the objects discussed above behave under
coordinate transformations, so that they can be transferred to manifolds (and vector
bundles). The basic principle is that the results above are independent of the choice
of coordinates, which is to say diffeomorphisms of open sets.

1. Local diffeomorphisms

Let Ωi ⊂ Rn be open and f : Ω1 −→ Ω2 be a diffeomorphism, so it is a C∞
map, which is equivalent to the condition

(3.1) f∗u ∈ C∞(Ω1) ∀ u ∈ C∞(Ω2), f∗u = u ◦ f, f∗u(z) = u(f(z)),

and has a C∞ inverse f−1 : Ω2 −→ Ω1. Such a map induces an isomorphisms f∗ :
C∞c (Ω2) −→ C∞c (Ω1) and f∗ : C∞(Ω2) −→ C∞(Ω1) with inverse (f−1)∗ = (f∗)−1.

Recall also that, as a homeomorphism, f∗ identifies the (Borel) measurable
functions on Ω2 with those on Ω1. Since it is continuously differentiable it also
identifies L1

loc(Ω2) with L1
loc(Ω1) and

(3.2) u ∈ L1
c(Ω2) =⇒

∫
Ω1

f∗u(z)|Jf (z)|dz =
∫

Ω1

u(z′)dz′, Jf (z) = det
∂fi(z)
∂zj

.

The absolute value appears because the definition of the Lebesgue integral is through
the Lebesgue measure.

It follows that f∗ : L2
loc(Ω2) −→ L2

loc(Ω1) is also an isomorphism. If u ∈ L2(Ω2)
has support in some compact subset K b Ω2 then f∗u has support in the compact
subset f−1(K) b Ω1 and

(3.3) ‖f∗u‖2L2 =
∫

Ω1

|f∗u|2dz ≤ C(K)
∫

Ω1

|f∗u|2|Jf (z)|dz = C(K)‖u‖2L2 .

Distributions are defined by duality, as the continuous linear functionals:-

(3.4) u ∈ C−∞(Ω) =⇒ u : C∞c (Ω) −→ C.

We always embed the smooth functions in the distributions using integration. This
presents a small problem here, namely it is not consistent under pull-back. Indeed

33
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if u ∈ C∞(Ω2) and µ ∈ C∞c (Ω1) then

(3.5)
∫

Ω1

f∗u(z)µ(z)|Jf (z)|dz =
∫

Ω2

u(z′)(f−1)∗µ(z′)dz′ or∫
Ω1

f∗u(z)µ(z)dz =
∫

Ω2

u(z′)(f−1)∗µ(z′)|Jf−1(z′)|dz′,

since f∗Jf−1 = (Jf )−1.

So, if we want distributions to be ‘generalized functions’, so that the identification
of u ∈ C∞(Ω2) as an element of C−∞(Ω2) is consistent with the identification of
f∗u ∈ C∞(Ω1) as an element of C−∞(Ω1) we need to use (3.5). Thus we define

(3.6) f∗ : C−∞(Ω2) −→ C−∞(Ω1) by f∗u(µ) = u((f−1)∗µ|Jf−1 |).

There are better ways to think about this, namely in terms of densities, but let me
not stop to do this at the moment. Of course one should check that f∗ is a map as
indicated and that it behaves correctly under composition, so (f ◦ g)∗ = g∗ ◦ f∗.

As already remarked, smooth functions pull back under a diffeomorphism (or
any smooth map) to be smooth. Dually, vector fields push-forward. A vector field,
in local coordinates, is just a first order differential operator without constant term

(3.7) V =
n∑
j=1

vj(z)Dzj
, Dzj

= Dj =
1
i

∂

∂zj
.

For a diffeomorphism, the push-forward may be defined by

(3.8) f∗(f∗(V )u) = V f∗u ∀ u ∈ C∞(Ω2)

where we use the fact that f∗ in (3.1) is an isomorphism of C∞(Ω2) onto C∞(Ω1).
The chain rule is the computation of f∗V, namely

(3.9) f∗V (f(z)) =
n∑

j,k=1

vj(z)
∂fj(z)
∂zk

Dk.

As always this operation is natural under composition of diffeomorphism, and in
particular (f−1)∗(f∗)V = V. Thus, under a diffeomorphism, vector fields push
forward to vector fields and so, more generally, differential operators push-forward
to differential operators.

Now, with these definitions we have

Theorem 3. For every s ∈ R, any diffeomorphism f : Ω1 −→ Ω2 induces an
isomorphism

(3.10) f∗ : Hs
loc(Ω2) −→ Hs

loc(Ω1).

Proof. We know this already for s = 0. To prove it for 0 < s < 1 we use the
norm on Hs(Rn) equivalent to the standard Fourier transform norm:-

(3.11) ‖u‖2s = ‖u‖2L2 +
∫

R2n

|u(z)− u(ζ)|2

|z − ζ|2s+n
dzdζ.

See Sect 7.9 of [?]. Then if u ∈ Hs
c (Ω2) has support in K b Ω2 with 0 < s < 1,

certainly u ∈ L2 so f∗u ∈ L2 and we can bound the second part of the norm in
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(3.11) on f∗u :

(3.12)
∫

R2n

|u(f(z))− u(f(ζ))|2

|z − ζ|2s+n
dzdζ

=
∫

R2n

|u(z′)− u(ζ ′)|2

|g(z′)− g(ζ ′)|2s+n
|Jg(z′)||Jg(ζ ′)|dz′dζ ′

≤ C
∫

R2n

|u(z)− u(ζ)|2

|z − ζ|2s+n
dzdζ

since C|g(z′)− g(ζ ′)| ≥ |z′ − ζ ′| where g = f−1.
For the spaces of order m+ s, 0 ≤ s < 1 and m ∈ N we know that

(3.13) u ∈ Hm+s
loc (Ω2)⇐⇒ Pu ∈ Hs

loc(Ω2) ∀ P ∈ Diffm(Ω2)

where Diffm(Ω) is the space of differential operators of order at most m with smooth
coefficients in Ω. As noted above, differential operators map to differential operators
under a diffeomorphism, so from (3.13) it follows that Hm+s

loc (Ω2) is mapped into
Hm+s

loc (Ω1) by f∗.
For negative orders we may proceed in the same way. That is if m ∈ N and

0 ≤ s < 1 then

(3.14) u ∈ Hs−m
loc (Ω2)⇐⇒ u =

∑
J

PJuJ , PJ ∈ Diffm(Ω2), uJ ∈ Hs(Ω2)

where the sum over J is finite. A similar argument then applies to prove (3.10) for
all real orders. �

Consider the issue of differential operators more carefully. If P : C∞(Ω1) −→
C∞(Ω1) is a differential operator of orderm with smooth coefficients then, as already
noted, so is

(3.15) Pf : C∞(Ω2) −→ C∞(Ω2), Pfv = (f−1)∗(Pf∗v).

However, the formula for the coefficients, i.e. the explicit formula for Pf , is rather
complicated:-

(3.16) P =
∑
|α|≤m

=⇒ Pf =
∑
|α|≤m

pα(g(z′))(Jf (z′)Dz′)α

since we have to do some serious differentiation to move all the Jacobian terms to
the left.

Even though the formula (3.16) is complicated, the leading part of it is rather
simple. Observe that we can compute the leading part of a differential operator by
‘oscillatory testing’. Thus, on an open set Ω consider

(3.17) P (z,D)(eitψu) = eitψ
m∑
k=0

tkPk(z,D)u, u ∈ C∞(Ω), ψ ∈ C∞(Ω), t ∈ R.

Here the Pk(z,D) are differential operators of order m−k acting on u (they involve
derivatives of ψ of course). Note that the only way a factor of t can occur is from
a derivative acting on eitψ through

(3.18) Dzj
eitψ = eitψt

∂ψ

∂zj
.
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Thus, the coefficient of tm involves no differentiation of u at all and is therefore
multiplication by a smooth function which takes the simple form

(3.19) σm(P )(ψ, z) =
∑
|α|=m

pα(z)(Dψ)α ∈ C∞(Ω).

In particular, the value of this function at any point z ∈ Ω is determined once we
know dψ, the differential of ψ at that point. Using this observation, we can easily
compute the leading part of Pf given that of P in (3.15). Namely if ψ ∈ C∞(Ω2)
and (Pf )(z′) is the leading part of Pf for

(3.20) σm(Pf )(ψ′, z′)v = lim
t→∞

t−me−itψPf (z′, Dz′)(eitψ
′
v)

= lim
t→∞

t−me−itψg∗(P (z,Dz)(eitf
∗ψ′f∗v)

= g∗( lim
t→∞

t−me−itf
∗ψ′g∗(P (z,Dz)(eitf

∗ψ′f∗v) = g∗Pm(f∗ψ, z)f∗v.

Thus

(3.21) σm(Pf )(ψ′, ζ ′)) = g∗σm(P )(f∗ψ′, z).

This allows us to ‘geometrize’ the transformation law for the leading part (called
the principal symbol) of the differential operator P. To do so we think of T ∗Ω, for
Ω and open subset of Rn, as the union of the T ∗ZΩ, z ∈ Ω, where T ∗z Ω is the linear
space

(3.22) T ∗z Ω = C∞(Ω)/ ∼z, ψ ∼z ψ′ ⇐⇒
ψ(Z)− ψ′(Z)− ψ(z) + ψ′(z) vanishes to second order at Z = z.

Essentially by definition of the derivative, for any ψ ∈ C∞(Ω),

(3.23) ψ ∼z
n∑
j=1

∂ψ

∂z
(z)(Zj − zj).

This shows that there is an isomorphism, given by the use of coordinates

(3.24) T ∗Ω ≡ Ω× Rn, [z, ψ] 7−→ (z, dψ(z)).

The point of the complicated-looking definition (3.22) is that it shows easily (and
I recommend you do it explicitly) that any smooth map h : Ω1 −→ Ω2 induces a
smooth map

(3.25) h∗T ∗Ω2 −→ T ∗Ω1, h([h(z), ψ]) = [z, h∗ψ]

which for a diffeomorphism is an isomorphism.

Lemma 12. The transformation law (3.21) shows that for any element P ∈
Diffm(Ω) the principal symbol is well-defined as an element

(3.26) σ(P ) ∈ C∞(T ∗Ω)

which furthermore transforms as a function under the pull-back map (3.25) induced
by any diffeomorphism of open sets.

Proof. The formula (3.19) is consistent with (3.23) and hence with (3.21) in
showing that σm(P ) is a well-defined function on T ∗Ω. �
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2. Manifolds

I will only give a rather cursory discussion of manifolds here. The main cases
we are interested in are practical ones, the spheres Sn and the balls Bn. Still, it is
obviously worth thinking about the general case, since it is the standard setting for
much of modern mathematics. There are in fact several different, but equivalent,
definitions of a manifold.

2.1. Coordinate covers. Take a Hausdorff topological (in fact metrizable)
space M. A coordinate patch on M is an open set and a homeomorphism

M ⊃ Ω F−→ Ω′ ⊂ Rn

onto an open subset of Rn. An atlas on M is a covering by such coordinate patches
(Ωa, Fa),

M =
⋃
a∈A

Ωa.

Since each Fab : Ω′a → Ω′a is, by assumption, a homeomorphism, the transition
maps

Fab : Ω′ab → Ω′ba ,

Ω′ab = Fb(Ωa ∩ Ωb) ,

(⇒ Ω′ba = Fa(Ωa ∩ Ωb))

Fab = Fa ◦ F−1
b

are also homeomorphisms of open subsets of Rn (in particular n is constructed on
components of M). The atlas is Ck, C∞, real analytic, etc.) if each Fab is Ck, C∞
or real analytic. A C∞ (Ck or whatever) structure on M is usually taken to be a
maximal C∞ atlas (meaning any coordinate patch compatible with all elements of
the atlas is already in the atlas).

2.2. Smooth functions. A second possible definition is to take again a Haus-
dorff topological space and a subspace F ⊂ C(M) of the continuous real-valued
function on M with the following two properties.

1) For each p ∈ M∃f1, . . . , fn ∈ F and an open set Ω 3 p such that
F = (f1, . . . , fn) : Ω→ Rn is a homeomorphism onto an open set, Ω′ ⊂ Rn
and (F−1)∗g ∈ C∞(Ω′)∀g ∈ F .
2) F is maximal with this property.

2.3. Embedding. Alternatively one can simply say that a (C∞) manifold is
a subset M ⊂ RN such that ∀p ∈ M∃ an open set U 3 p, U ⊂ RN , and h1, . . . ,
hN−n ∈ C∞(U) s.t.

M ∩ U = {q ∈ U ; hi(q) = 0, i = 1, . . . , N − n}
dhi(p) are linearly independent.

I leave it to you to show that these definitions are equivalent in an appropriate
sense. If we weaken the various notions of coordinates in each case, for instance in
the first case, by requiring that Ω′ ∈ Rn−k×[0,∞)k for some k, with a corresponding
version of smoothness, we arrive at the notion of a manifold with cones.1

1I always demand in addition that the boundary faces of a manifold with cones be a embedded
but others differ on this. I call the more general object a tied manifold.
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So I will assume that you are reasonably familiar with the notion of a smooth
(C∞) manifold M , equipped with the space C∞(M) — this is just F in the second
definition and in the first

C∞(M) = {u : M → R; u ◦ F−1 ∈ C∞(Ω′)∀ coordinate patches}.
Typically I will not distinguish between complex and real-valued functions unless
it seems necessary in this context.

Manifolds are always paracompact — so have countable covers by compact sets
— and admit partitions of unity.

Proposition 7. If M =
⋃
a∈A Ua is a cover of a manifold by open sets then

there exist ρa ∈ C∞(M) s.t. supp(ρa) b Ua (i.e., ∃Ka b Ua s.t. ρa = 0 on M\Ka),
these supports are locally finite, so if K bM then

{a ∈ A; ρa(m) 6= 0 for some m ∈ K}
is finite, and finally ∑

a∈A
ρa(m) = 1, ∀ m ∈M.

It can also be arranged that
(1) 0 ≤ ρa(m) ≤ 1 ∀ a, ∀ m ∈M.
(2) ρa = µ2

a , µa ∈ C∞(M).
(3) ∃ ϕa ∈ C∞(M), 0 ≤ ϕa ≤ 1, ϕ = 1 in a neighborhood of supp(ρa) and

the sets supp(ϕa) are locally finite.

Proof. Up to you. �

Using a partition of unity subordinate to a covering by coordinate patches we
may transfer definitions from Rn to M, provided they are coordinate-invariant in
the first place and preserved by multiplication by smooth functions of compact
support. For instance:

Definition 2. If u : M −→ C and s ≥ 0 then u ∈ Hs
loc(M) if for some partition

of unity subordinate to a cover of M by coordinate patches

(3.27)
(F−1
a )∗(ρau) ∈ Hs(Rn)

or (F−1
a )∗(ρau) ∈ Hs

loc(Ω′a).

Note that there are some abuses of notation here. In the first part of (3.27) we
use the fact that (F−1

a )∗(ρau), defined really on Ω′a (the image of the coordinate
patch Fa : Ωa → Ω′a ∈ Rn), vanishes outside a compact subset and so can be
unambiguously extended as zero outside Ω′a to give a function on Rn. The second
form of (3.27) is better, but there is an equivalence relation, of equality off sets of
measure zero, which is being ignored. The definition doesn’t work well for s < 0
because u might then not be representable by a function so we don’t know what u′

is to start with.
The most sysetematic approach is to define distributions on M first, so we

know what we are dealing with. However, there is a problem here too, because
of the transformation law (3.5) that was forced on us by the local identification
C∞(Ω) ⊂ C−∞(Ω). Namely, we really need densities on M before we can define
distributions. I will discuss densities properly later; for the moment let me use a
little ruse, sticking for simplicity to the compact case.
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Definition 3. If M is a compact C∞ manifold then C0(M) is a Banach space
with the supremum norm and a continuous linear functional

(3.28) µ : C0(M) −→ R

is said to be a positive smooth measure if for every coordinate patch on M, F :
Ω −→ Ω′ there exists µF ∈ C∞(Ω′), µF > 0, such that

(3.29) µ(f) =
∫

Ω′
(F−1)∗fµF dz ∀ f ∈ C0(M) with supp(f) ⊂ Ω.

Now if µ, µ′ : C0(M) −→ R is two such smooth measures then µ′F = vFµF with
vF ∈ C∞(Ω′). In fact ∃ v ∈ C∞(M), v > 0, such that F ∗vF

= v on Ω. That is, the
v’s patch to a well-defined function globally on M. To see this, notice that every
g ∈ C0

c (Ω′) is of the form (F−1)∗g for some g ∈ C0(M) (with support in Ω) so (3.29)
certainly determines µF on Ω′. Thus, assuming we have two smooth measures, vF
is determined on Ω′ for every coordinate patch. Choose a partition of unity ρa and
define

v =
∑
a

ρaF
∗
a vFa

∈ C∞(M).

Exercise. Show (using the transformation of integrals under diffeomorphisms) that

(3.30) µ′(f) = µ(vf) ∀ f ∈ C∞(M).

Thus we have ‘proved’ half of

Proposition 8. Any (compact) manifold admits a positive smooth density
and any two positive smooth densities are related by (3.30) for some (uniquely
determined) v ∈ C∞(M), v > 0.

Proof. I have already unloaded the hard part on you. The extension is similar.
Namely, chose a covering of M by coordinate patches and a corresponding partition
of unity as above. Then simply define

µ(f) =
∑
a

∫
Ω′a

(F−1
a )∗(ρaf)dz

using Lebesgue measure in each Ω′a. The fact that this satisfies (3.29) is similar to
the exercise above. �

Now, for a compact manifold, we can define a smooth positive density µ′ ∈
C∞(M ; Ω) as a continuous linear functional of the form

(3.31) µ′ : C0(M) −→ C, µ′(f) = µ(ϕf) for some ϕ ∈ C∞(M)

where ϕ is allowed to be complex-valued. For the moment the notation, C∞(M ; Ω),
is not explained. However, the choice of a fixed positive C∞ measure allows us to
identify

C∞(M ; Ω) 3 µ′ −→ ϕ ∈ C∞(M),

meaning that this map is an isomorphism.
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Lemma 13. For a compact manifold, M, C∞(M ; Ω) is a complete metric space
with the norms and distance function

‖µ′‖(k) = sup
|α|≤k

|V α1
1 · · ·V α1

p ϕ|

d(µ′1, µ
′
2) =

∞∑
k=0

2−k
‖µ′‖(k)

1 + ‖µ′‖(k)

where {V1, . . . , Vp} is a collection of vector fields spanning the tangent space at each
point of M.

This is really a result of about C∞(M) itself. I have put it this way because of the
current relevance of C∞(M ; Ω).

Proof. First notice that there are indeed such vector fields on a compact
manifold. Simply take a covering by coordinate patches and associated partitions
of unity, ϕa, supported in the coordinate patch Ωa. Then if Ψa ∈ C∞(M) has
support in Ωa and Ψa ≡ 1 in a neighborhood of supp(ϕa) consider

Va` = Ψa(F−1
a )∗(∂z`

), ` = 1, . . . , n,

just the coordinate vector fields cut off in Ωa. Clearly, taken together, these span
the tangent space at each point of M, i.e., the local coordinate vector fields are
really linear combinations of the Vi given by renumbering the Va`. It follows that

‖µ′‖(k) = sup
|α≤k
|V α1

1 · · ·V αp
p ϕ| ∈M

is a norm on C∞(M ; Ω) locally equivalent to the Ck norm on ϕf on compact subsets
of coordinate patches. It follows that (3.32) gives a distance function on C∞(M ; Ω)
with respect to what is complete — just as for S(Rn). �

Thus we can define the space of distributions on M as the space of continuous
linear functionals u ∈ C−∞(M)

(3.32) u : C∞(M ; Ω) −→ C, |u(µ)| ≤ Ck‖µ‖(k).

As in the Euclidean case smooth, and even locally integrable, functions embed in
C−∞(M) by integration

(3.33) L1(M) ↪→ C−∞(M), f 7→ f(µ) =
∫
M

fµ

where the integral is defined unambiguously using a partition of unity subordinate
to a coordinate cover: ∫

M

fµ =
∑
a

∫
Ω′a

(F−1
a )∗(ϕafµa)dz

since µ = µadz in local coordinates.

Definition 4. The Sobolev spaces on a compact manifold are defined by ref-
erence to a coordinate case, namely if u ∈ C−∞(M) then
(3.34)

u ∈ Hs(M)⇔ u(ψµ) = ua((F−1
a )∗ψµa), ∀ ψ ∈ C∞c (Ωa) with ua ∈ Hs

loc(Ω′a).
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Here the condition can be the requirement for all coordinate systems or for a
covering by coordinate systems in view of the coordinate independence of the local
Sobolev spaces on Rn, that is the weaker condition implies the stronger.

Now we can transfer the properties of Sobolev for Rn to a compact manifold;
in fact the compactness simplifies the properties

Hm(M) ⊂ Hm′(M), ∀ m ≥ m′(3.35)

Hm(M) ↪→ Ck(M), ∀ m > k +
1
2

dimM(3.36) ⋂
m

Hm(M) = C∞(M)(3.37) ⋃
m

Hm(M) = C−∞(M).(3.38)

These are indeed Hilbert(able) spaces — meaning they do not have a natural
choice of Hilbert space structure, but they do have one. For instance

〈u, v〉s =
∑
a

〈(F−1
a )∗ϕau, (F−1

a )∗ϕav〉Hs(Rn)

where ϕa is a square partition of unity subordinate to coordinate covers.

3. Vector bundles

Although it is not really the subject of this course, it is important to get used
to the coordinate-free language of vector bundles, etc. So I will insert here at
least a minimum treatment of bundles, connections and differential operators on
manifolds.

Addenda to Chapter 3





CHAPTER 4

Invertibility of elliptic operators

0.6Q; Revised: 6-8-2007; Run: February 7, 2008

Next we will use the local elliptic estimates obtained earlier on open sets in
Rn to analyse the global invertibility properties of elliptic operators on compact
manifolds. This includes at least a brief discussion of spectral theory in the self-
adjoint case.

1. Global elliptic estimates

For a single differential operator acting on functions on a compact manifold we
now have a relatively simple argument to prove global elliptic estimates.

Proposition 9. If M is a compact manifold and P : C∞(M) −→ C∞(M)
is a differential operator with C∞ coefficients which is elliptic (in the sense that
σm(P ) 6= 0) on T ∗M\0) then for any s, M ∈ R there exist constants Cs, C ′M such
that

(4.1)
u ∈ HM (M), Pu ∈ Hs(M) =⇒ u ∈ Hs+m(M)

‖u‖s+m ≤ Cs‖Pu‖s + C ′M‖u‖M ,

where m is the order of P.

Proof. The regularity result in (4.1) follows directly from our earlier local
regularity results. Namely, if M =

⋃
a Ωa is a (finite) covering of M by coordinate

patches,
Fa : Ωa −→ Ω′a ⊂ Rn

then

(4.2) Pav = (F−1
a )∗PF ∗a v, v ∈ C∞c (Ω′a)

defines Pa ∈ Diffm(Ω′a) which is a differential operator in local coordinates with
smooth coefficients; the invariant definition of ellipticity above shows that it is
elliptic for each a. Thus if ϕa is a partition of unity subordinate to the open cover
and ψa ∈ C∞c (Ωa) are chosen with ψa = 1 in a neighbourhood of supp(ϕa) then

(4.3) ‖ϕ′av‖s+m ≤ Ca,s‖ψ′aPav‖s + C ′a,m‖ψ′av‖M
where ϕ′a = (F−1

a )∗ϕa and similarly for ψ′a(F−1
a )∗ϕa ∈ C∞c (Ω′a), are the local coor-

dinate representations. We know that (4.3) holds for every v ∈ C−∞(Ω′a) such that
Pav ∈ HM

loc(Ω′a). Applying (4.3) to (F−1
a )∗u = va, for u ∈ HM (M), it follows that

Pu ∈ Hs(M) implies Pava ∈ HM
loc(Ω′a), by coordinate-invariance of the Sobolev

spaces and then conversely

va ∈ Hs+m
loc (Ω′a) ∀ a =⇒ u ∈ Hs+m(M).

43
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The norm on Hs(M) can be taken to be

‖u‖s =

(∑
a

‖(F−1
a )∗(ϕau)‖2s

)1/2

so the estimates in (4.1) also follow from the local estimates:

‖u‖2s+m =
∑
a

‖(F−1
a )∗(ϕau)‖2s+m

≤
∑
a

Ca,s‖ψ′aPa(F−1
a )∗u‖2s

≤ Cs‖Pu‖2s + C ′M‖u‖2M .
�

Thus the elliptic regularity, and estimates, in (4.1) just follow by patching from
the local estimates. The same argument applies to elliptic operators on vector
bundles, once we prove the corresponding local results. This means going back to
the beginning!

As discussed in Section 3, a differential operator between sections of the bundles
E1 and E2 is represented in terms of local coordinates and local trivializations of
the bundles, by a matrix of differential operators

P =

 P11(z,Dz) · · · P1`(z,Dz)
...

...
Pn1(z,Dz) · · · Pn`(z,Dz)

 .
The (usual) order of P is the maximum of the orders of the Pij(z,D3) and the
symbol is just the corresponding matrix of symbols

(4.4) σm(P )(z, ζ) =

 σm(P11)(z, ζ) · · · σm(P1`)(z, ζ)
...

...
σm(Pn1)(z, ζ) · · · σm(Pn`)(z, ζ)

 .
Such a P is said to be elliptic at z if this matrix is invariable for all ζ 6= 0, ζ ∈ Rn.
Of course this implies that the matrix is square, so the two vector bundles have the
same rank, `. As a differential operator, P ∈ Diffm(M,E), E = E1, E2, is elliptic if
it is elliptic at each point.

Proposition 10. If P ∈ Diffm(M,E) is a differential operator between sections
of vector bundles (E1, E2) = E which is elliptic of order m at every point of M then

(4.5) u ∈ C−∞(M ;E1), Pu ∈ Hs(M,E) =⇒ u ∈ Hs+m(M ;E1)

and for all s, t ∈ R there exist constants C = Cs, C
′ = C ′s,t such that

(4.6) ‖u‖s+m ≤ C‖Pu‖s + C ′‖u‖t.
Furthermore, there is an operator

(4.7) Q : C∞(M ;E2) −→ C∞M ;E1)

such that

(4.8) PQ− Id2 = R2, QP − Id1 = R1

are smoothing operators.
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Proof. As already remarked, we need to go back and carry the discussion
through from the beginning for systems. Fortunately this requires little more than
notational change.

Starting in the constant coefficient case, we first need to observe that elliptic-
ity of a (square) matrix system is equivalent to the ellipticity of the determinant
polynomial

(4.9) Dp(ζ) = det

 P11(ζ) · · · P1k(ζ)
...

...
Pk1(ζ) · · · Pkk(ζ)


which is a polynomial degree km. If the Pi’s are replaced by their leading parts, of
homogeneity m, then Dp is replaced by its leading part of degree km. From this it
is clear that the ellipticity at P is equivalent to the ellipticity at Dp. Furthermore
the invertibility of matrix in (4.9), under the assumption of ellipticity, follows for
|ζ| > C. The inverse can be written

P (ζ)−1 = cof(P (ζ))/Dp(ζ).

Since the cofactor matrix represents the Fourier transform of a differential operator,
applying the earlier discussion to Dp and then composing with this differential
operator gives a generalized inverse etc.

For example, if Ω ⊂ Rn is an open set and DΩ is the parameterix constructed
above for Dp on Ω then

QΩ = cof(P (D)) ◦DΩ

is a 2-sided parameterix for the matrix of operators P :

(4.10)
PQΩ − Idk×k = RR

QΩ − Idk×k = RL

where RL, RR are k × k matrices of smoothing operators. Similar considerations
apply to the variable coefficient case. To construct the global parameterix for an
elliptic operator P we proceed as before to piece together the local parameterices
Qa for P with respect to a coordinate patch over which the bundles E1, E2 are
trivial. Then

Qf =
∑
a

F ∗aψ
′
aQaϕ

′
a(Fa)−1f

is a global 1-sided parameterix for P ; here ϕa is a partition of unity and ψa ∈
C∞c (Ωa) is equal to 1 in a neighborhood of its support. �

(Probably should be a little more detail.)

2. Compact inclusion of Sobolev spaces

For any R > 0 consider the Sobolev spaces of elements with compact support
in a ball:

(4.11) Ḣs(B) = {u ∈ Hs(Rn);u) = 0 in |x| > 1}.

Lemma 14. Tthe inclusion map

(4.12) Ḣs(B) ↪→ Ḣt(B) is compact if s > t.
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Proof. Recall that compactness of a linear map between (separable) Hilbert
(or Banach) spaces is the condition that the image of any bounded sequence has
a convergent subsequence (since we are in separable spaces this is the same as the
condition that the image of the unit ball have compact closure). So, consider a
bounded sequence un ∈ Ḣs(B). Now u ∈ Ḣs(B) implies that u ∈ Hs(Rn) and that
φu = u where φ ∈ C∞c (Rn) is equal to 1 in a neighbourhood of the unit ball. Thus
the Fourier transform satifies

(4.13) û = φ̂ ∗ û =⇒ û ∈ C∞(Rn).

In fact this is true with uniformity. That is, one can bound any derivative of û on
a compact set by the norm

(4.14) sup
|z|≤R

|Dj û|+ max
j

sup
|z|≤R

|Dj û| ≤ C(R)‖u‖Hs

where the constant does not depend on u. By the Ascoli-Arzela theorem, this implies
that for each R the sequence ûn has a convergent subsequence in C({|ζ| ≤ R}). Now,
by diagonalization we can extract a subsequence which converges in Vc({|ζ| ≤ R})
for every R. This implies that the restriction to {|ζ| ≤ R} converges in the weighted
L2 norm corresponding to Ht, i.e. that (1 + |ζ|2)t/2χRûnj

→ (1 + |ζ|2)t/2χRv̂ in
L2 where χR is the characteristic function of the ball of radius R. However the
boundedness of un in Hs strengthens this to

(1 + |ζ|2)t/2ûnj
→ (1 + |ζ|2)t/2v̂ in L2(Rn).

Namely, the sequence is Cauchy in L(Rn) and hence convergnet. To see this, just
note that for ε > 0 one can first choose R so large that the norm outside the ball is
(4.15)∫
|ζ|≥R

(1+|ζ|2)t|un|2dζ ≤ (1+R2)
s−t
2

∫
|ζ|≥R

(1+|ζ|2)s|un|2dζ ≤ C(1+R2)
s−t
2 < ε/2

where C is the bound on the norm in Hs. Now, having chosen R, the subsequence
converges in |ζ| ≤ R. This proves the compactness. �

Once we have this local result we easily deduce the global result.

Proposition 11. On a compact manifold the inclusion Hs(M) ↪→ Ht(M), for
any s > t, is compact.

Proof. If φi ∈ C∞c (Ui) is a partition of unity subordinate to an open cover of
M by coordinate patches gi : Ui −→ U ′i ⊂ Rn, then

(4.16) u ∈ Hs(M) =⇒ (g−1
i )∗φiu ∈ Hs(Rn), supp((g−1

i )∗φiu) b U ′i .

Thus if un is a bounded sequence in Hs(M) then the (g−1
i )∗φiun form a bounded

sequence in Hs(Rn) with fixed compact supports. It follows from Lemma 14 that
we may choose a subsequence so that each φiunj converges in Ht(Rn). Hence the
subsequence unj

converges in Ht(M). �

3. Elliptic operators are Fredholm

If V1, V2 are two vector spaces then a linear operator P : V1 → V2 is said to be
Fredholm if these are finite-dimensional subspaces N1 ⊂ V1, N2 ⊂ V2 such that

(4.17)
{v ∈ V1; Pv = 0} ⊂ N1

{w ∈ V2; ∃ v ∈ V1, Pv = w}+N2 = V2.
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The first condition just says that the null space is finite-dimensional and the second
that the range has a finite-dimensional complement – by shrinking N1 and N2 if
necessary we may arrange that the inclusion in (4.17) is an equality and that the
sum is direct.

Theorem 4. For any elliptic operator, P ∈ Diffm(M ; E), acting between sec-
tions of vector bundles over a compact manifold,

P : Hs+m(M ;E1) −→ Hs(M ;E2)

and P : C∞(M ;E1) −→ C∞(M ;E2)

are Fredholm for all s ∈ R.

The result for the C∞ spaces follows from the result for Sobolev spaces. To
prove this, consider the notion of a Fredholm operator between Hilbert spaces,

P : H1 −→ H2.(4.18)

In this case we can unwind the conditions (4.17) which are then equivalent to the
three conditions

(4.19)

Nul(P ) ⊂ H1 is finite-dimensional.

Ran(P ) ⊂ H2 is closed.

Ran(P ))⊥ ⊂ H2 is finite-dimensional.

Note that any subspace of a Hilbert space with a finite-dimensional complement is
closed so (4.19) does follow from (4.17). On the other hand the ortho-complement
of a subspace is the same as the ortho-complement of its closure so the first and the
third conditions in (4.19) do not suffice to prove (4.17), in general. For instance
the range of an operator can be dense but not closed.

The main lemma we need, given the global elliptic estimates, is a standard
one:-

Lemma 15. If R : H −→ H is a compact operator on a Hilbert space then
Id−R is Fredholm.

Proof. A compact operator is one which maps the unit ball (and hence any
bounded subset) of H into a precompact set, a set with compact closure. The unit
ball in the null space of Id−R is

{u ∈ H; ‖u‖ = 1, u = Ru} ⊂ R{u ∈ H; ‖u‖ = 1}
and is therefore precompact. Since is it closed, it is compact and any Hilbert space
with a compact unit ball is finite-dimensional. Thus the null space of Id−R is
finite-dimensional.

Consider a sequence un = vn−Rvn in the range of Id−R and suppose un → u
in H; we need to show that u is in the range of Id−R. We may assume u 6= 0,
since 0 is in the range, and by passing to a subsequence suppose that ‖un‖ 6= 0;
‖un‖ → ‖u‖ 6= 0 by assumption. Now consider wn = vn/‖vn‖. Since ‖un‖ 6= 0,
infn ‖vn‖ 6= 0, since other wise there is a subsequence converging to 0, and so wn
is well-defined and of norm 1. Since wn = Rwn + un/‖vn‖ and ‖vn‖ is bounded
below, wn must have a convergence subsequence, by the compactness of R. Passing
to such a subsequence, and relabelling, wn → w, un → u, un/‖vn‖ → cu, c ∈ C.
If c = 0 then (Id−R)w = 0. However, we can assume in the first place that
un ⊥ Nul(Id−R) , so the same is true of wn. As ‖w‖ = 1 this is a contradiction,
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so ‖vn‖ is bounded above, c 6= 0, and hence there is a solution to (Id−R)w = u.
Thus the range of Id−R is closed.

The ortho-complement of the range Ran(Id−R)⊥ is the null space at Id−R∗
which is also finite-dimensional since R∗ is compact. Thus Id−R is Fredholm. �

Proposition 12. Any smoothing operator on a compact manifold is compact
as an operator between (any) Sobolev spaces.

Proof. By definition a smoothing operator is one with a smooth kernel. For
vector bundles this can be expressed in terms of local coordinates and a partition
of unity with trivialization of the bundles over the supports as follows.

(4.20)

Ru =
∑
a,b

ϕbRϕau

ϕbRϕau = F ∗b ϕ
′
bRabϕ

′
a(F−1

a )∗u

Rabv(z) =
∫

Ω′a

Rab(z, z′)v(z′), z ∈ Ω′b, v ∈ C∞c (Ω′a;E1)

where Rab is a matrix of smooth sections of the localized (hence trivial by refine-
ment) bundle on Ω′b × Ωa. In fact, by inserting extra cutoffs in (4.20), we may
assume that Rab has compact support in Ω′b × Ω′a. Thus, by the compactness of
sums of compact operators, it suffices to show that a single smoothing operator
of compact support compact support is compact on the standard Sobolev spaces.
Thus if R ∈ C∞c (R2n

(4.21) HL′(Rn) 3 u 7→
∫

Rn

R(z) ∈ HL(Rn)

is compact for any L, L′. By the continuous inclusion of Sobolev spaces it suffices
to take L′ = −L with L a large even integer. Then (∆ + 1)L/2 is an isomorphism
from (L2(Rn)) to H−L(R2) and from HL(Rn) to L2(Rn). Thus the compactness of
(4.21) is equivalent to the compactness of

(4.22) (∆ + 1)L/2R(∆ + 1)L/2 on L2(Rn).

This is still a smoothing operator with compactly supported kernel, then we are
reduced to the special case of (4.21) for L = L′ = 0. Finally then it suffices to use
Sturm’s theorem, that R is uniformly approximated by polynomials on a large ball.
Cutting off on left and right then shows that

ρ(z)Ri(z, z′)ρ(z′)→ Rz, z′) uniformly on R2n

the Ri is a polynomial (and ρ(z)ρ(z′) = 1 on supp(R)) with ρ ∈ C∞c (Rn). The
uniform convergence of the kernels implies the convergence of the operators on
L2(Rn) in the norm topology, so R is in the norm closure of the finite rank operators
on L2(Rn), hence is compact. �

Proof of Theorem 4. We know that P has a 2-sided parameterixQ : Hs(M ;E2) −→
Hs+m(M ;E1) (for any s) such that

PQ− Id2 = R2, QP − Id2 = R1,

are both smoothing (or at least CN for arbitrarily large N) operators. Then we
can apply Proposition 12 and Lemma 15. First

QP = Id−R1 : Hs+m(M ;E1) −→ Hs+m(M ;E2)
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have finite-dimensional null spaces. However, the null space of P is certainly con-
tained in the null space of Id−R, so it too is finite-dimensional. Similarly,

PQ = Id−R1 : Hs(M ;E2) −→ Hs(M ;E2)

has closed range of finite codimension. But the range of P certainly contains the
range of Id−R so it too must be closed and of finite codimension. Thus P is
Fredholm as an operator from Hs+m(M ;E2) to Hs(M ;E2) for any s ∈ R.

So consider P as an operator on the C∞ spaces. The null space of P :
Hm(M ;E1) −→ H0(M ;E2) consists of C∞ sections, by elliptic regularity, so must
be equal to the null space on C∞(M ;E1) — which is therefore finite-dimensional.
Similarly consider the range of P : Hm(M ;E1) −→ H0(M ;E2). We know this
to have a finite-dimensional complement, with basis v1, . . . , vn ∈ H0(M ;E2). By
the density of C∞(M ;E2) in L2(M ;E2) we can approximate the vi’s closely by
wi ∈ C∞(M ;E2). On close enough approximation, the wi must span the com-
plement. Thus PHm(M ;E1) has a complement in L2(M ;E2) which is a finite-
dimensional subspace of C∞(M ;E2); call this N2. If f ∈ C∞(M ;E2) ⊂ L2(M ;E2)
then there are constants ci such that

f −
N∑
i=1

ciwi = Pu, u ∈ Hm(M ;E1).

Again by elliptic regularity, u ∈ C∞(M ;E1) thusN2 is a complement to PC∞(M ;E1)
in C∞(M ;E2) and P is Fredholm. �

The point of Fredholm operators is that they are ‘almost invertible’ — in the
sense that they are invertible up to finite-dimensional obstructions. However, a
Fredholm operator may not itself be close to an invertible operator. This defect is
measured by the index

ind(P ) = dim Nul(P )− dim(Ran(P )⊥)

P : Hm(M ;E1) −→ L2(M ;E2).

4. Generalized inverses

Written, at least in part, by Chris Kottke.
As discussed above, a bounded operator between Hilbert spaces,

T : H1 −→ H2

is Fredholm if and only if it has a parametrix up to compact errors, that is, there
exists an operator

S : H2 −→ H1

such that
TS − Id2 = R2, ST − Id1 = R1

are both compact on the respective Hilbert spaces H1 and H2. In this case of
Hilbert spaces there is a “preferred” parametrix or generalized inverse.

Recall that the adjoint
T ∗ : H2 −→ H1

of any bounded operator is defined using the Riesz Representation Theorem. Thus,
by the continuity of T , for any u ∈ H2,

H1 3 φ −→ 〈Tφ, u〉 ∈ C
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is continuous and so there exists a unique v ∈ H1 such that

〈Tφ, u〉2 = 〈φ, v〉1, ∀ φ ∈ H1.

Thus v is determined by u and the resulting map

H2 3 u 7→ v = T ∗u ∈ H1

is easily seen to be continuous giving the adjoint identity

(4.23) 〈Tφ, u〉 = 〈φ, T ∗u〉, ∀ φ ∈ H1, u ∈ H2

In particular it is always the case that

(4.24) Nul(T ∗) = (Ran(T ))⊥

as follows directly from (4.23). As a useful consequence, if Ran(T ) is closed, then
H2 = Ran(T )⊕Nul(T ∗) is an orthogonal direct sum.

Proposition 13. If T : H1 −→ H2 is a Fredholm operator between Hilbert
spaces then T ∗ is also Fredholm, ind(T ∗) = − ind(T ), and T has a unique general-
ized inverse S : H2 −→ H1 satisfying

(4.25) TS = Id2−ΠNul(P∗), ST = Id1−ΠNul(P )

Proof. A straightforward exercise, but it should probably be written out! �

Notice that ind(T ) is the difference of the two non-negative integers dim Nul(T )
and dim Nul(T ∗). Thus

dim Nul(T ) ≥ ind(T )(4.26)
dim Nul(T ∗) ≥ − ind(T )(4.27)

so if ind(T ) 6= 0 then T is definitely not invertible. In fact it cannot then be made
invertible by small bounded perturbations.

Proposition 14. If H1 and H2 are two seperable, infinite-dimensional Hilbert
spaces then for all k ∈ Z,

Frk = {T : H1 −→ H2; T is Fredholm and ind(T ) = k}

is a non-empty subset of B(H1, H2), the Banach space of bounded operators from
H1 to H2.

Proof. All separable Hilbert spaces of infinite dimension are isomorphic, so
Fr0 is non-empty. More generally if {ei}∞i=1 is an orthonormal basis of H1, then the
shift operator, determined by

Skei =

 ei+k, i ≥ 1, k ≥ 0
ei+k, i ≥ −k, k ≤ 0
0, i < −k

is easily seen to be Fredholm of index k in H1. Composing with an isomorphism
to H2 shows that Frk 6= ∅ for all k ∈ Z. �

One important property of the spaces Frk(H1, H2) is that they are stable under
compact perturbations; that is, if K : H1 −→ H2 is a compact operator and T ∈ Frk
then (T +K) ∈ Frk . That (T +K) is Fredholm is clear, sinces a parametrix for T
is a parametrix for T +K, but it remains to show that the index itself is stable and
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we do this in steps. In what follows, take T ∈ Frk(H1, H2) with kernel N1 ⊂ H1.

Define T̃ by the factorization

(4.28) T : H1 −→ H̃1 = H1/N1
T̃−→ RanT ↪→ H2,

so that T̃ is invertible.

Lemma 16. Suppose T ∈ Frk(H1, H2) has kernel N1 ⊂ H1 and M1 ⊃ N1 is a
finite dimensional subspace of H1 then defining T ′ = T on M⊥1 and T ′ = 0 on M1

gives an element T ′ ∈ Frk .

Proof. Since N1 ⊂M1, T
′ is obtained from (4.28) by replacing T̃ by T̃ ′ which

is defined in essentially the same way as T ′, that is T̃ ′ = 0 on M1/N1, and T̃ ′ = T̃ on
the orthocomplement. Thus the range of T̃ ′ in Ran(T ) has complement T̃ (M1/N1)
which has the same dimension as M1/N1. Thus T ′ has null space M1 and has range
in H2 with complement of dimension that of M1/N1 + N2, and hence has index
k. �

Lemma 17. If A is a finite rank operator A : H1 −→ H2 such that RanA ∩
RanT = {0}, then T +A ∈ Frk .

Proof. First note that Nul(T +A) = NulT ∩NulA since

x ∈ Nul(T +A)⇔ Tx = −Ax ∈ RanT ∩ RanA = {0} ⇔ x ∈ NulT ∩NulA.

Similarly the range of T +A restricted to NulT meets the range of T +A restricted
to (nullT )⊥ only in 0 so the codimension of the Ran(T +A) is the codimension of
RanAN where AN is A as a map from NulT to H2/RanT. So, the equality of row
and column rank for matrices,

codim Ran(T+A) = codim RanT−dim Nul(AN ) = dim Nul(T )−k−dim Nul(AN ) = dim Nul(T+A)−k.
Thus T +A ∈ Frk . �

Proposition 15. If A : H1 −→ H2 is any finite rank operator, then T + A ∈
Frk .

Proof. Let E2 = RanA ∩ RanT , which is finite dimensional, then E1 =
T̃−1(E2) has the same dimension. Put M1 = E1 ⊕N1 and apply Lemma 16 to get
T ′ ∈ Frk with kernel M1. Then

T +A = T ′ +A′ +A

where A′ = T on E1 and A′ = 0 on E⊥1 . Then A′ +A is a finite rank operator and
Ran(A′ +A) ∩ RanT ′ = {0} and Lemma 17 applies. Thus

T +A = T ′ + (A′ +A) ∈ Frk(H1, H2).

�

Proposition 16. If B : H1 −→ H2 is compact then T +B ∈ Frk .

Proof. A compact operator is the sum of a finite rank operator and an opera-
tor of arbitrarily small norm so it suffices to show that T +C ∈ Frk where ‖C‖ < ε

for ε small enough and then apply Proposition 15. Let P : H1 −→ H̃1 = H1/N1

and Q : H2 −→ RanT be projection operators. Then

C = QCP +QC(Id−P ) + (Id−Q)CP + (Id−Q)C(Id−P )
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the last three of which are finite rank operators. Thus it suffices to show that

T̃ +QC : H̃1 −→ RanT

is invertible. The set of invertible operators is open, by the convergence of the
Neumann series so the result follows. �

Remark 1. In fact the Frk are all connected although I will not use this below.
In fact this follows from the multiplicativity of the index:-

(4.29) Frk ◦Frl = Frk+l

and the connectedness of the group of invertible operators on a Hilbert space. The
topological type of the Frk is actually a point of some importance. A fact, which
you should know but I am not going to prove here is:-

Theorem 5. The open set Fr =
⋃
k Frk in the Banach space of bounded oper-

ators on a separable Hilbert space is a classifying space for even K-theory.

That is, if X is a reasonable space – for instance a compact manifold – then the
space of homotopy classes of continuous maps into Fr may be canonically identified
as an Abelian group with the (complex) K-theory of X :

(4.30) K0(X) = [X; Fr].

5. Self-adjoint elliptic operators

Last time I showed that elliptic differential operators, acting on functions on
a compact manifold, are Fredholm on Sobolev spaces. Today I will first quickly
discuss the rudiments of spectral theory for self-adjoint elliptic operators and then
pass over to the general case of operators between sections of vector bundles (which
is really only notationally different from the case of operators on functions).

To define self-adjointness of an operator we need to define the adjoint! To
do so requires invariant integration. I have already talked about this a little, but
recall from 18.155 (I hope) Riesz’ theorem identifying (appropriately behaved, i.e.
Borel outer continuous and inner regular) measures on a locally compact space with
continuous linear functionals on C0

0(M) (the space of continuous functions ‘vanishing
at infinity’). In the case of a manifold we define a smooth positive measure, also
called a positive density, as one given in local coordinates by a smooth positive
multiple of the Lebesgue measure. The existence of such a density is guaranteed
by the existence of a partition of unity subordinate to a coordinate cover, since the
we can take

(4.31) ν =
∑
j

φjf
∗
j |dz|

where |dz| is Lebesgue measure in the local coordinate patch corresponding to
fj : Uj −→ U ′j . Since we know that a smooth coordinate transforms |dz| to a
positive smooth multiple of the new Lebesque measure (namely the absolute value
of the Jacobian) and two such positive smooth measures are related by

(4.32) ν′ = µν, 0 < µ ∈ C∞(M).

In the case of a compact manifold this allows one to define integration of func-
tions and hence an inner product on L2(M),

(4.33) 〈u, v〉ν =
∫
M

u(z)v(z)ν.
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It is with respect to such a choice of smooth density that adjoints are defined.

Lemma 18. If P : C∞(M) −→ C∞(M) is a differential operator with smooth
coefficients and ν is a smooth positive measure then there exists a unque differential
operator with smooth coefficients P ∗ : C∞(M) −→ C∞(M) such that

(4.34) 〈Pu, v〉ν = 〈u, P ∗v〉ν ∀ u, v ∈ C∞(M).

Proof. First existence. If φi is a partition of unity subordinate to an open
cover of M by coordinate patches and φ′i ∈ C∞(M) have supports in the same
coordinate patches, with φ′i = 1 in a neighbourhood of supp(φi) then we know that

(4.35) Pu =
∑
i

φ′iPφiu =
∑
i

f∗i Pi(f
−1
i )∗u

where fi : U)i −→ U ′i are the coordinate charts and Pi is a differential operator
on U ′i with smooth coefficients, all compactly supported in U ′i . The existence of
P ∗ follows from the existence of (φ′iPφi)

∗ and hence P ∗i in each coordinate patch,
where the P ∗i should satisfy

(4.36)
∫
U ′i

(Pi)u′v′µ′dz =
∫
U ′i

u′P ∗i v
′µ′dz, ∀ u′, v′ ∈ C∞(U ′i).

Here ν = µ′|dz| with 0 < µ′ ∈ C∞(U ′i) in the local coordinates. So in fact P ∗i is
unique and given by

(4.37) P ∗i (z,D)v′ =
∑
|α|≤m

(µ′)−1Dαpα(z)µ′v′ if Pi =
∑
|α|≤m

pα(z)Dα.

The uniqueness of P ∗ follows from (4.34) since the difference of two would be an
operator Q : C∞(M) −→ C∞(M) satisfying

(4.38) 〈u,Qv〉ν = 0 ∀ u, v ∈ C∞(M)

and this implies that Q = 0 as an operator. �

Proposition 17. If P : C∞(M) −→ C∞(M) is an elliptic differential operator
of order m > 0 which is (formally) self-adjoint with respect to some smooth positive
density then

(4.39) spec(P ) = {λ ∈ C; (P − λ) : C∞(M) −→ C∞(M) is not an isomorphism}

is a discrete subset of R, for each λ ∈ spec(P )

(4.40) E(λ) = {u ∈ C∞(M);Pu = λu}

is finite dimensional and

(4.41) L2(M) =
∑

λ∈spec(P )

E(λ) is orthogonal.

Formal self-adjointness just means that P ∗ = P as differential operators acting on
C∞(M). Actual self-adjointness means a little more but this follows easily from
formal self-adjointness and ellipticity.

Proof. First notice that spec(P ) ⊂ R since if Pu = λu with u ∈ C∞(M) then

(4.42) λ‖u‖ν2 = 〈Pu, u〉 = 〈u, Pu〉 = λ̄‖u‖ν2
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so λ /∈ R implies that the null space of P − λ is trivial. Since we know that the
range is closed and has complement the null space of (P − λ)∗ = P − λ̄ it follows
that P − λ is an isomorphism on C∞(M) if λ /∈ R.

If λ ∈ R then we also know that E(λ) is finite dimensional. For any λ ∈ R
suppose that (P − λ)u = 0 with u ∈ C∞(M). Then we know that P − λ is an
isomorphism from E(λ)⊥ to itself which extends by continuity to an isomorphism
from the closure of E⊥(λ) in Hm(M) to E⊥(λ) ⊂ L2(M). It follows that P − λ′
defines such an isomorphism for |λ = l′| < ε for some ε > 0. However acting on
E(λ), P−λ′ = (λ−λ′) is also an isomorphism for λ′ 6= λ so P−λ′ is an isomorphism.
This shows that E(λ′) = {0} for |λ′ − λ| < ε.

This leaves the completeness statement, (4.41). In fact this really amounts to
the existence of a non-zero eigenvalue as we shall see. Consider the generalized
inverse of P acting on L2(M). It maps the orthocomplement of the null space to
itself and is a compact operator, as follows from the a priori estimats for P and
the compactness of the embedding of Hm(M) in L2(M) for m > 0. Futhermore it
is self-adjoint. A standard result shows that a compact self-adjoint operator either
has a non-zero eigenvalue or is itself zero. For the completeness it is enough to
show that the generalized inverse maps the orthocomplement of the span of the
E(λ) in L2(M) into itself and is compact. It is therefore either zero or has a non-
zero eigenvalue. Any corresponding eigenfunction would be an eigenfunction of P
and hence in one of the E(λ) so this operator must be zero, meaning that (4.41)
holds. �

For single differential operators we first considered constant coefficient opera-
tors, then extended this to variable coefficient operators by a combination of per-
turbation (to get the a priori estimates) and construction of parametrices (to get
approximation) and finally used coordinate invariance to transfer the discussion to
a (compact) manifold. If we consider matrices of operators we can follow the same
path, so I shall only comment on the changes needed.

A k × l matrix of differential operators (so with k rows and l columns) maps
l-vectors of smooth functions to k vectors:

(4.43) Pij(D) =
∑
|α|≤m

cα,i,jD
α, (P (D)u)i(z) =

∑
j

Pij(D)uj(z).

The matrix Pij(ζ) is invertible if and only if k = l and the polynomial of order
mk, detP (ζ) 6= 0. Such a matrix is said to be elliptic if detP (ζ) is elliptic. The
cofactor matrix defines a matrix P ′ of differential operators of order (k − 1)m and
we may construct a parametrix for P (assuming it to be elliptic) from a parametrix
for detP :

(4.44) QP = QdetPP
′(D).

It is then easy to see that it has the same mapping properties as in the case of a
single operator (although notice that the product is no longer commutative because
of the non-commutativity of matrix multiplication)

(4.45) QPP = Id−RL, PQP = Id−RR
where RL and RR are given by matrices of convolution operators with all elements
being Schwartz functions. For the action on vector-valued functions on an open
subset of Rn we may proceed exactly as before, cutting off the kernel of QP with a
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properly supported function which is 1 near the diagonal

(4.46) QΩf(z) =
∫

Ω

q(z − z′)χ(z, z′)f(z′)dz′.

The regularity estimates look exactly the same as before if we define the local
Sobolev spaces to be simply the direct sum of k copies of the usual local Sobolev
spaces
(4.47)
Pu = f ∈ Hs

loc(Ω) =⇒ ‖ψu‖s+m ≤ C‖ψP (D)u‖s+C ′‖φu‖m−1 or ‖ψu‖s+m ≤ C‖φP (D)u‖s+C ′′‖φu‖M

where ψ, φ ∈ C∞c (Ω) and φ = 1 in a neighbourhood of ψ (and in the second case
C ′′ depends on M.

Now, the variable case proceed again as before, where now we are considering
a k× k matrix of differential operators of order m. I will not go into the details. A
priori estimates in the first form in (4.47), for functions ψ with small support near
a point, follow by perturbation from the constant coefficient case and then in the
second form by use of a partition of unity. The existence of a parametrix for the
variable coefficient matrix of operators also goes through without problems – the
commutativity which disappears in the matrix case was not used anyway.

As regards coordinate transformations, we get the same results as before. It
is also notural to allow transformations by variable coefficient matrices. Thus if
Gi(z) ∈ C∞(Ω; GL(k,C) i = 1, 2, are smooth family of invertible matrices we may
consider the composites PG2 or G−1

1 P, or more usually the ‘conjugate’ operator

(4.48) G−1
1 P (z,D)G)2 = P ′(z,D).

This is also a variable coefficient differential operator, elliptic if and only if P (z,D)
is elliptic. The Sobolev spaces Hs

loc(Ω; Rk) are invariant under composition with
such matrices, since they are the same in each variable.

Combining coordinate transformations and such matrix conjugation allows us
to consider not only manifolds but also vector bundles over manifolds. Let me
briefly remind you of what this is about. Over an open subset Ω ⊂ Rn one can
introduce a vector bundle as just a subbundle of some trivial N -dimensional bundle.
That is, consider a smooth N×N matrix Π ∈ C∞(Ω;M(N,C)) on Ω which is valued
in the projections (i.e. idempotents) meaning that Π(z)Π(z) = Π(z) for all z ∈ Ω.
Then the range of Π(z) defines a linear subspace of CN for each z ∈ Ω and together
these form a vector bundle over Ω. Namely these spaces fit together to define a
manifold of dimension n+k where k is the rank of Π(z) (constant if Ω is connected,
otherwise require it be the same on all components)

(4.49) EΩ =
⋃
z∈Ω

Ez, Ez = Π(z)CN .

If z̄ ∈ Ω then we may choose a basis of Ez̄ and so identify it with Ck. By
the smoothness of Π(z) in z it follows that in some small ball B(z̄, r), so that
‖Π(z)(Π(z)−Π(z̄))Π(z)‖ < 1

2 ) the map
(4.50)
EB(z̄,r) =

⋃
z∈B(z̄,r)

Ez, Ez = Π(z)CN 3 (z, u) 7−→ (z, E(z̄)u) ∈ B(z̄, r)×Ez̄ ' B(z̄, r)×Ck
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is an isomorphism. Injectivity is just injectivity of each of the maps Ez −→ Ez̄ and
this follows from the fact that Π(z)Π(z̄)Π(z) is invertible on Ez; this also implies
surjectivity.

6. Index theorem

Addenda to Chapter 4



CHAPTER 5

Suspended families and the resolvent

0.6Q; Revised: 6-8-2007; Run: February 7, 2008

For a compact manifold, M, the Sobolev spaces Hs(M ;E) (of sections of a
vector bundle E) are defined above by reference to local coordinates and local
trivializations of E. If M is not compact (but is paracompact, as is demanded by
the definition of a manifold) the same sort of definition leads either to the spaces
of sections with compact support, or the “local” spaces:

(5.1) Hs
c (M ;E) ⊂ Hs

loc(M ;E), s ∈ R.

Thus, if Fa : Ωa → Ω′a is a covering of M , for a ∈ A, by coordinate patches over
which E is trivial, Ta : (F−1

a )∗E ∼= CN , and {ρa} is a partition of unity subordinate
to this cover then

(5.2) µ ∈ Hs
loc(M ;E)⇔ Ta(F−1

a )∗(ρaµ) ∈ Hs(Ω′a; CN ) ∀ a.

Practically, these spaces have serious limitations; for instance they are not
Hilbert or even Banach spaaces. On the other hand they certainly have their uses
and differential operators act on them in the usual way,

(5.3)

P ∈ Diffm(M ; E)⇒
P :Hs+m

loc (M ;E+)→ Hs
loc(M ;E−),

P :Hs+m
c (M ;E+)→ Hs

c (M ;E−).

However, without some limitations on the growth of elements, as is the case in
Hs

loc(M ;E), it is not reasonable to expect the null space of the first realization of
P above to be finite dimensional. Similarly in the second case it is not reasonable
to expect the operator to be even close to surjective.

1. Product with a line

Some corrections from Fang Wang added, 25 July, 2007.
Thus, for non-compact manifolds, we need to find intermediate spaces which

represent some growth constraints on functions or distributions. Of course this is
precisely what we have done for Rn in defining the weighted Sobolev spaces,

(5.4) Hs,t(Rn) =
{
u ∈ S ′(Rn); 〈z〉−tu ∈ Hs(Rn)

}
.

However, it turns out that even these spaces are not always what we want.
To lead up to the discussion of other spaces I will start with the simplest sort

of non-compact space, the real line. To make things more interesting (and useful)
I will conisider

(5.5) X = R×M

57
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where M is a compact manifold. The new Sobolev spaces defined for this product
will combine the features of Hs(R) and Hs(M). The Sobolev spaces on Rn are
associated with the translation action of Rn on itself, in the sense that this fixes
the “uniformity” at infinity through the Fourier transform. What happens on X is
quite similar.

First we can define “tempered distributions” on X. The space of Schwartz
functions of rapid decay on X can be fixed in terms of differential operators on M
and differentiation on R.
(5.6)

S(R×M) =
{
u : R×M → C; sup

R×M

∣∣tlDk
t Pu(t, ·)

∣∣ <∞ ∀ l, k, P ∈ Diff∗(M)
}
.

Exercise 1. Define the corresponding space for sections of a vector bundle E
over M lifted to X and then put a topology on S(R×M ;E) corresponding to these
estimates and check that it is a complete metric space, just like S(R) in Chapter 1.

There are several different ways to look at

S(R×M) ⊂ C∞(R×M).

Namely we can think of either R or M as “coming first” and see that

(5.7) S(R×M) = C∞(M ;S(R)) = S(R; C∞(M)).

The notion of a C∞ function on M with values in a topological vector space is
easy to define, since C0(M ;S(R)) is defined using the metric space topology on
S(R). In a coordinate patch on M higher derivatives are defined in the usual way,
using difference quotients and these definitions are coordinate-invariant. Similarly,
continuity and differentiability for a map R→ C∞(M) are easy to define and then

(5.8) S(R; C∞(M)) =
{
u : R→ C∞(M); sup

t

∥∥tkDp
t u
∥∥
Cl(M)

<∞, ∀ k, p, l
}
.

Using such an interpretation of S(R×M), or directly, it follows easily that the
1-dimensional Fourier transform gives an isomorphism F : S(R×M)→ S(R×M)
by

(5.9) F : u(t, ·) 7−→ û(τ, ·) =
∫

R
e−itτu(t, ·) dt.

So, one might hope to use F to define Sobolev spaces on R×M with uniform
behavior as t → ∞ in R. However this is not so straightforward, although I will
come back to it, since the 1-dimensional Fourier transform in (5.9) does nothing in
the variables in M. Instead let us think about L2(R×M), the definition of which
requires a choice of measure.

Of course there is an obvious class of product measures on R × M, namely
dt · νM , where νM is a positive smooth density on M and dt is Lebesgue measure
on R. This corresponds to the functional

(5.10)
∫

: C0
c (R×M) 3 u 7−→

∫
u(t, ·) dt · ν ∈ C.
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The analogues of (5.7) correspond to Fubini’s Theorem.
(5.11)

L2
ti(R×M) =

{
u : R×M → C measurable;

∫
|u(t, z)|2 dt νz <∞

}
/ ∼ a.e.

L2
ti(R×M) = L2(R;L2(M)) = L2(M ;L2(R)).

Here the subscript “ti” is supposed to denote translation-invariance (of the measure
and hence the space).

We can now easily define the Sobolev spaces of positive integer order:

(5.12) Hm
ti (R×M) =

{
u ∈ L2

ti(R×M);

Dj
tPku ∈ L2

ti(R×M) ∀ j ≤ m− k, 0 ≤ k ≤ m, Pk ∈ Diffk(M)
}
.

In fact we can write them more succinctly by defining
(5.13)

Diffkti(R×M) =

Q ∈ Diffm(R×M); Q =
∑

0≤j≤m

Dj
tPj , Pj ∈ Diffm−j(M)

 .

This is the space of “t-translation-invariant” differential operators on R ×M and
(5.12) reduces to
(5.14)
Hm

ti (R×M) =
{
u ∈ L2

ti(R×M); Pu ∈ L2
ti(R×M), ∀ P ∈ Diffmti (R×M)

}
.

I will discuss such operators in some detail below, especially the elliptic case.
First, we need to consider the Sobolev spaces of non-integral order, for completeness
sake if nothing else. To do this, observe that on R itself (so for M = {pt}),
L2

ti(R × {pt}) = L2(R) in the usual sense. Let us consider a special partition of
unity on R consisting of integral translates of one function.

Definition 5. An element µ ∈ C∞c (R) generates a “ti-partition of unity”
(a non-standard description) on R if 0 ≤ µ ≤ 1 and

∑
k∈Z µ(t− k) = 1.

It is easy to construct such a µ. Just take µ1 ∈ C∞c (R), µ1 ≥ 0 with µ1(t) = 1
in |t| ≤ 1/2. Then let

F (t) =
∑
k∈Z

µ1(t− k) ∈ C∞(R)

since the sum is finite on each bounded set. Moreover F (t) ≥ 1 and is itself
invariant under translation by any integer; set µ(t) = µ1(t)/F (t). Then µ generates
a ti-partition of unity.

Using such a function we can easily decompose L2(R). Thus, setting τk(t) =
t− k,

(5.15) f ∈ L2(R) ⇐⇒ (τ∗k f)µ ∈ L2
loc(R) ∀ k ∈ Z and

∑
k∈Z

∫
|τ∗k fµ|

2
dt <∞.

Of course, saying (τ∗k f)µ ∈ L2
loc(R) is the same as (τ∗k f)µ ∈ L2

c(R). Certainly, if
f ∈ L2(R) then (τ∗k f)µ ∈ L2(R) and since 0 ≤ µ ≤ 1 and supp(µ) ⊂ [−R,R] for
some R, ∑

k

∫
|(τ∗k f)µ|2 ≤ C

∫
|f |2 dt.
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Conversely, since
∑
|k|≤T µ = 1 on [−1, 1] for some T, it follows that∫

|f |2 dt ≤ C ′
∑
k

∫
|(τ∗k f)µ|2 dt.

Now, Dtτ
∗
k f = τ∗k (Dtf), so we can use (5.15) to rewrite the definition of the spaces

Hk
ti(R×M) in a form that extends to all orders. Namely

(5.16) u ∈ Hs
ti(R×M) ⇐⇒ (τ∗ku)µ ∈ Hs

c (R×M) and
∑
k

‖τ∗ku‖Hs <∞

provided we choose a fixed norm on Hs
c (R × M) giving the usual topology for

functions supported in a fixed compact set, for example by embedding [−T, T ] in a
torus T and then taking the norm on Hs(T×M).

Lemma 19. With Diffmti (R×M) defined by (5.13) and the translation-invariant
Sobolev spaces by (5.16),

(5.17)
P ∈ Diffmti (R×M) =⇒

P :Hs+m
ti (R×M) −→ Hs

ti(R×M) ∀ s ∈ R.

Proof. This is basically an exercise. Really we also need to check a little
more carefully that the two definitions of H(

tiR ×M) for k a positive integer, are
the same. In fact this is similar to the proof of (5.17) so is omitted. So, to prove
(5.17) we will proceed by induction over m. For m = 0 there is nothing to prove.
Now observe that the translation-invariant of P means that Pτ∗ku = τ∗k (Pu) so

(5.18) u ∈ Hs+m
ti (R×M) =⇒

P (τ∗kuµ) = τ∗k (Pu) +
∑
m′<m

τ∗k (Pm′u)Dm−m′
t µ, Pm′ ∈ Diffm

′

ti (R×M).

The left side is in Hs
ti(R ×M), with the sum over k of the squares of the norms

bounded, by the regularity of u. The same is easily seen to be true for the sum on
the right by the inductive hypothesis, and hence for the first term on the right. This
proves the mapping property (5.17) and continuity follows by the same argument
or the closed graph theorem. �

We can, and shall, extend this in various ways. If E = (E1, E2) is a pair of
vector bundles over M then it lifts to a pair of vector bundles over R×M , which we
can again denote by E. It is then straightforward to define Diffmti (R ×M); E) and
the Sobolev spaces Hs

ti(R×M ;Ei) and to check that (5.17) extends in the obvious
way.

Then main question we want to understand is the invertibility of an operator
such as P in (5.17). However, let me look first at these Sobolev spaces a little more
carefully. As already noted we really have two definitions in the case of positive
integral order. Thinking about these we can also make the following provisional
definitions in terms of the 1-dimensional Fourier transform discussed above – where
the ‘H̃’ notation is only temporary since these will turn out to be the same as the
spaces just considered.
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For any compact manifold define

H̃s
ti(R×M) =

{
u ∈ L2(R×M);

‖u‖2s =
∫

R

(
〈τ〉s|û(τ, ·)|2L2(M) +

∫
R
|û(τ, ·)|2Hs(M)

)
dτ <∞

}
, s ≥ 0

(5.19)

H̃s
ti(R×M) =

{
u ∈ S ′(R×M);u = u1 + u2,

u1 ∈ L2(R;Hs(M)), u2 ∈ L2(M ;Hs(R))
}
, ‖u‖2s = inf ‖u1‖2 + ‖u2‖2, s < 0.

(5.20)

The following interpolation result for Sobolev norms on M should be back in
Chapter 3.

Lemma 20. If M is a compact manifold or Rn then for any m1 ≥ m2 ≥ m3

and any R, the Sobolev norms are related by

(5.21) ‖u‖m2 ≤ C
(
(1 +R)m2−m1‖u‖m1 + (1 +R)m2−m3‖u‖m3

)
.

Proof. On Rn this follows directly by dividing Fourier space in two pieces
(5.22)

‖u‖2m2
=
∫
|ζ|>R

〈ζ〉2m2 |û|dζ +
∫
|ζ|≤R

〈ζ〉2m2 |û|dζ

≤ 〈R〉2(m1−m2)

∫
|ζ|>R

〈ζ〉2m1 |û|dζ + 〈R〉2(m2−m3)

∫
|ζ|≤R

〈ζ〉2m3 |û|dζ

≤ 〈R〉2(m1−m2)‖u‖2m1
+ 〈R〉2(m2−m3)‖u‖2m3

.

On a compact manifold we have defined the norms by using a partition φi of unity
subordinate to a covering by coordinate patches Fi : Yi −→ U ′i :

(5.23) ‖u‖2m =
∑
i

‖(Fi)∗(φiu)‖2m

where on the right we are using the Sobolev norms on Rn. Thus, applying the
estimates for Euclidean space to each term on the right we get the same estimate
on any compact manifold. �

Corollary 1. If u ∈ H̃s
ti(R×M), for s > 0, then for any 0 < t < s

(5.24)
∫

R
〈τ〉2t‖û(τ, ·)‖2Hs−t(M)dτ <∞

which we can interpret as meaning ‘u ∈ Ht(R;Hs−t(M)) or u ∈ Hs−t(M ;Hs(R)).’

Proof. Apply the estimate to û(τ, ·) ∈ Hs(M), with R = |τ |, m1 = s and
m3 = 0 and integrate over τ. �

Lemma 21. The Sobolev spaces H̃s
ti(R×M) and Hs

ti(R×M) are the same.

Proof. �

Lemma 22. For 0 < s < 1 u ∈ Hs
ti(R×M) if and only if u ∈ L2(R×M) and

(5.25)∫
R2×M

|u(t, z)− u(t′, z)|2

|t− t′|2s+1
dtdt′ν +

∫
R×M2

|u(t, z′)− u(t, z)|2

ρ(z, z′)s+
n
2

dtν(z)ν(z′) <∞,

n = dimM,
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where 0 ≤ ρ ∈ C∞(M2) vanishes exactly quadratically at Diag ⊂M2.

Proof. This follows as in the cases of Rn and a compact manifold discussed
earlier since the second term in (5.25) gives (with the L2 norm) a norm on L2(R;Hs(M))
and the first term gives a norm on L2(M ;Hs(R)). �

Using these results we can see directly that the Sobolev spaces in (5.19) have
the following ‘obvious’ property as in the cases of Rn and M.

Lemma 23. Schwartz space S(R×M) = C∞(M ;S(R)) is dense in each Hs
ti(R×

M) and the L2 pairing extends by continuity to a jointly continuous non-degenerate
pairing

(5.26) Hs
ti(R×M)×H−sti (R×M) −→ C

which identifies H−sti (R×M) with the dual of Hs
ti(R×M) for any s ∈ R.

Proof. I leave the density as an exercise – use convolution in R and the density
of C∞(M) in Hs(M) (explicity, using a partition of unity on M and convolution
on Rn to get density in each coordinate patch).

Then the existence and continuity of the pairing follows from the definitions
and the corresponding pairings on R and M. We can assume that s > 0 in (5.26)
(otherwise reverse the factors). Then if u ∈ Hs

ti(R × M) and v = v1 + v2 ∈
H−sti (R×M) as in (5.20),

(5.27) (u, v) =
∫

R
(u(t, ·), u1(t, ·)) dt+

∫
M

(u(·, z), v2(·, z)) νz

where the first pairing is the extension of the L2 pairing to Hs(M)×H−s(M) and
in the second case to Hs(R)×H−s(R). The continuity of the pairing follows directly
from (5.27).

So, it remains only to show that the pairing is non-degenerate – so that

(5.28) H−sti (R×M) 3 v 7−→ sup
‖u‖Hs

ti(R×M)=1

|(u, v)|

is equivalent to the norm on H−sti (R×M). We already know that this is bounded
above by a multiple of the norm on H−sti so we need the estimate the other way. To
see this we just need to go back to Euclidean space. Take a partition of unity ψi
with our usual φi on M subordinate to a coordinate cover and consider with φi = 1
in a neighbourhood of the support of ψi. Then

(5.29) (u, ψiv) = (φiu, ψiv)

allows us to extend ψiv to a continuous linear functional on Hs(Rn) by reference
to the local coordinates and using the fact that for s > 0 (F−1

i )∗(φiu) ∈ Hs(Rn+1).
This shows that the coordinate representative of ψiv is a sum as desired and sum-
ming over i gives the desired bound. �

2. Translation-invariant Operators

Some corrections from Fang Wang added, 25 July, 2007.
Next I will characterize those operators P ∈ Diffmti (R ×M ; E) which give in-

vertible maps (5.17), or rather in the case of a pair of vector bundles E = (E1, E2)
over M :

(5.30) P : Hs+m
ti (R×M ;E1) −→ Hs

ti(R×M ;E2), P ∈ Diffmti (R×M ; E).
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This is a generalization of the 1-dimensional case, M = {pt} which we have already
discussed. In fact it will become clear how to generalize some parts of the discussion
below to products Rn×M as well, but the case of a 1-dimensional Euclidean factor
is both easier and more fundamental.

As with the constant coefficient case, there is a basic dichotomy here. A t-
translation-invariant differential operator as in (5.30) is Fredholm if and only if it
is invertible. To find necessary and sufficient conditons for invertibility we will we
use the 1-dimensional Fourier transform as in (5.9).

If

(5.31) P ∈ Diffmti (R×M); E)⇐⇒ P =
m∑
i=0

Di
tPi, Pi ∈ Diffm−i(M ; E)

then
P : S(R×M ;E1) −→ S(R×M ;E2)

and

(5.32) P̂ u(τ, ·) =
m∑
i=0

τ iPiû(τ, ·)

where û(τ, ·) is the 1-dimensional Fourier transform from (5.9). So we clearly need
to examine the “suspended” family of operators

(5.33) P (τ) =
m∑
i=0

τ iPi ∈ C∞ (C; Diffm(M ; E)) .

I use the term “suspended” to denote the addition of a parameter to Diffm(M ; E)
to get such a family—in this case polynomial. They are sometimes called “operator
pencils” for reasons that escape me. Anyway, the main result we want is

Theorem 6. If P ∈ Diffmti (M ; E) is elliptic then the suspended family P (τ) is
invertible for all τ ∈ C \D with inverse

(5.34) P (τ)−1 : Hs(M ;E2) −→ Hs+m(M ;E1)

where

(5.35) D ⊂ C is discrete and D ⊂ {τ ∈ C; |Re τ | ≤ c| Im τ |+ 1/c}

for some c > 0 (see Fig. 1 – still not quite right).

In fact we need some more information on P (τ)−1 which we will pick up during
the proof of this result. The translation-invariance of P can be written in operator
form as

(5.36) Pu(t+ s, ·) = (Pu)(t+ s, ·) ∀ s ∈ R

Lemma 24. If P ∈ Diffmti (R×M ; E) is elliptic then it has a parametrix

(5.37) Q : S(R×M ;E2) −→ S(R×M ;E1)

which is translation-invariant in the sense of (5.36) and preserves the compactness
of supports in R,

(5.38) Q : C∞c (R×M ;E2) −→ C∞c (R×M ;E1)
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Figure 1. The region D.

Proof. In the case of a compact manifold we contructed a global parametrix
by patching local parametricies with a partition of unity. Here we do the same
thing, treating the variable t ∈ R globally throughout. Thus if Fa : Ωa → Ω′a is
a coordinate patch in M over which E1 and (hence) E2 are trivial, P becomes a
square matrix of differential operators

(5.39) Pa =

 P11(z,Dt, Dz) · · · Pl1(z,Dt, Dz)
...

...
P1l(z,Dt, Dz) · · · Pll(z,Dt, Dz)


in which the coefficients do not depend on t. As discussed in Sections 2 and 3 above,
we can construct a local parametrix in Ω′a using a properly supported cutoff χ. In
the t variable the parametrix is global anyway, so we use a fixed cutoff χ̃ ∈ C∞c (R),
χ̃ = 1 in |t| < 1, and so construct a parametrix

(5.40) Qaf(t, z) =
∫

Ω′a

q(t− t′, z, z′)χ̃(t− t′)χ(z, z′)f(t′, z′) dt′ dz′.

This satisfies

(5.41) PaQa = Id−Ra, QaPa = Id−R′a
where Ra and R′a are smoothing operators on Ω′a with kernels of the form

(5.42)
Raf(t, z) =

∫
Ω′a

Ra(t− t′, z, z′)f(t′, z′) dt′ dz′

Ra ∈C∞(R× Ω′2a ), Ra(t, z, z′) = 0 if |t| ≥ 2

with the support proper in Ω′a.
Now, we can sum these local parametricies, which are all t-translation-invariant

to get a global parametrix with the same properties

(5.43) Qf =
∑
a

χa(F−1
a )∗(T−1

a )∗QaT ∗aF
∗
a f
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where Ta denotes the trivialization of bundles E1 and E2. It follows that Q satisfies
(5.38) and since it is translation-invariant, also (5.37). The global version of (5.41)
becomes

(5.44)

PQ = Id−R2, QP = Id−R1,

Ri :C∞c (R×M ;Ei) −→ C∞c (R×M ;Ei),

Rif =
∫

R×M
Ri(t− t′, z, z′)f(t′, z′) dt′ νz′

where the kernels

(5.45) Ri ∈ C∞c
(
R×M2; Hom(Ei)

)
, i = 1, 2.

�

In fact we can deduce directly from (5.40) the boundedness of Q.

Lemma 25. The properly-supported parametrix Q constructed above extends by
continuity to a bounded operator

(5.46)
Q :Hs

ti(R×M ;E2) −→ Hs+m
ti (R×M ;E1) ∀ s ∈ R

Q :S(R×M ;E2) −→ S(R×M ;E1).

Proof. This follows directly from the earlier discussion of elliptic regularity
for each term in (5.43) to show that

(5.47) Q : {f ∈ Hs
ti(R×M ;E2; supp(f) ⊂ [−2, 2]×M}
−→

{
u ∈ Hs+m

ti (R×M ;E1; supp(u) ⊂ [−2−R, 2 +R]×M
}

for some R (which can in fact be taken to be small and positive). Indeed on
compact sets the translation-invariant Sobolev spaces reduce to the usual ones.
Then (5.46) follows from (5.47) and the translation-invariance of Q. Using a µ ∈
C∞c (R) generating a ti-paritition of unity on R we can decompose

(5.48) Hs
ti(R×M ;E2) 3 f =

∑
k∈Z

τ∗k (µτ∗−kf).

Then

(5.49) Qf =
∑
k∈Z

τ∗k
(
Q(µτ∗−kf)

)
.

The estimates corresponding to (5.47) give

‖Qf‖Hs+m
ti
≤ C‖f‖Hs

ti

if f has support in [−2, 2]×M. The decomposition (5.48) then gives∑
‖µτ∗−kf‖2Hs = ‖f‖2Hs

<∞ =⇒ ‖Qf‖2 ≤ C ′‖f‖2Hs .

This proves Lemma 25. �

Going back to the remainder term in (5.44), we can apply the 1-dimensional
Fourier transform and find the following uniform results.
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Lemma 26. If R is a compactly supported, t-translation-invariant smoothing
operator as in (5.44) then

(5.50) R̂f(τ, ·) = R̂(τ)f̂(τ, ·)

where R̂(τ) ∈ C∞
(
C×M2; Hom(E)

)
is entire in τ ∈ C and satisfies the estimates

(5.51) ∀ k, p ∃Cp,k such that ‖τkR̂(τ)‖Cp ≤ Cp,k exp(A| Im τ |).
Here A is a constant such that

(5.52) suppR(t, ·) ⊂ [−A,A]×M2.

Proof. This is a parameter-dependent version of the usual estimates for the
Fourier-Laplace transform. That is,

(5.53) R̂(τ, ·) =
∫
e−iτtR(t, ·) dt

from which all the statements follow just as in the standard case when R ∈ C∞c (R)
has support in [−A,A]. �

Proposition 18. If R is as in Lemma 26 then there exists a discrete subset

D ⊂ C such that
(

Id−R̂(τ)
)−1

exists for all τ ∈ C \D and

(5.54)
(

Id−R̂(τ)
)−1

= Id−Ŝ(τ)

where Ŝ : C −→ C∞(M2; Hom(E)) is a family of smoothing operators which is
meromorphic in the complex plane with poles of finite order and residues of finite
rank at D. Furthermore,

(5.55) D ⊂ {τ ∈ C; log(|Re τ |) < c| Im τ |+ 1/c}
for some c > 0 and for any C > 0, there exists C ′ such that

(5.56) | Im τ | < C, |Re τ | > C ′ =⇒ ‖τkŜ(τ)‖Cp ≤ Cp,k.

Proof. This is part of “Analytic Fredholm Theory” (although usually done
with compact operators on a Hilbert space). The estimates (5.51) on R̂(τ) show
that, in some region as on the right in (5.55),

(5.57) ‖R̂(τ)‖L2 ≤ 1/2.

Thus, by Neumann series,

(5.58) Ŝ(τ) =
∞∑
k=1

(
R̂(τ)

)k
exists as a bounded operator on L2(M ;E). In fact it follows that Ŝ(τ) is itself a
family of smoothing operators in the region in which the Neumann series converges.
Indeed, the series can be rewritten

(5.59) Ŝ(τ) = R̂(τ) + R̂(τ)2 + R̂(τ)Ŝ(τ)R̂(τ)

The smoothing operators form a “corner” in the bounded operators in the sense
that products like the third here are smoothing if the outer two factors are. This
follows from the formula for the kernel of the product∫

M×M
R̂1(τ ; z, z′)Ŝ(τ ; z′, z′′)R̂2(τ ; z′′, z̃) νz′ νz′′ .
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Thus Ŝ(τ) ∈ C∞(M2; Hom(E)) exists in a region as on the right in (5.55). To see
that it extends to be meromorphic in C \D for a discrete divisor D we can use a
finite-dimensional approximation to R̂(τ).

Recall — if neccessary from local coordinates — that given any p ∈ N, R >

0, q > 0 there are finitely many sections f (τ)
i ∈ C∞(M ;E′), g(τ)

i ∈ C∞(M ;E) and
such that

(5.60) ‖R̂(τ)−
∑
i

gi(τ, z) · fi(τ, z′)‖Cp < ε, |τ | < R.

Writing this difference as M(τ),

Id−R̂(τ) = Id−M(τ) + F (τ)

where F (τ) is a finite rank operator. In view of (5.60), Id−M(τ) is invertible and,
as seen above, of the form Id−M̂(τ) where M̂(τ) is holomorphic in |τ | < R as a
smoothing operator.

Thus
Id−R̂(τ) = (Id−M(τ))(Id +F (τ)− M̂(τ)F (τ))

is invertible if and only if the finite rank perturbation of the identity by (Id−M̂(τ))F (τ)
is invertible. For R large, by the previous result, this finite rank perturbation must
be invertible in an open set in {|τ | < R}. Then, by standard results for finite
dimensional matrices, it has a meromorphic inverse with finite rank (generalized)
residues. The same is therefore true of Id−R̂(τ) itself.

Since R > 0 is arbitrary this proves the result. �

Proof. Proof of Theorem 6 We have proved (5.44) and the corresponding form
for the Fourier transformed kernels follows:

(5.61) P̂ (τ)Q̂′(τ) = Id−R̂2(τ), Q̂′(τ)P̂ (τ) = Id−R̂1(τ)

where R̂1(τ), R̂2(τ) are families of smoothing operators as in Proposition 18. Ap-
plying that result to the first equation gives a new meromorphic right inverse

Q̂(τ) = Q̂′(τ)(Id−R̂2(τ))−1 = Q̂′(τ)− Q̂′(τ)M(τ)

where the first term is entire and the second is a meromorphic family of smoothing
operators with finite rank residues. The same argument on the second term gives
a left inverse, but his shows that Q̂(τ) must be a two-sided inverse.

This we have proved everything except the locations of the poles of Q̂(τ) —
which are only constrained by (5.55) instead of (5.35). However, we can apply the
same argument to Pθ(z,Dt, Dz) = P (z, eiθDt, Dz) for |θ| < δ, δ > 0 small, since Pθ
stays elliptic. This shows that the poles of Q̂(τ) lie in a set of the form (5.35). �

3. Invertibility

We are now in a position to characterize those t-translation-invariant differential
operators which give isomorphisms on the translation-invariant Sobolev spaces.

Theorem 7. An element P ∈ Diffmti (R ×M ;E) gives an isomorphism (5.30)
(or equivalently is Fredholm) if and only if it is elliptic and D∩R = ∅, i.e. P̂ (τ) is
invertible for all τ ∈ R.
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Proof. We have already done most of the work for the important direction
for applications, which is that the ellipticity of P and the invertibility at P̂ (τ) for
all τ ∈ R together imply that (5.30) is an isomorphism for any s ∈ R.

Recall that the ellipticity of P leads to a parameterix Q which is translation-
invariant and has the mapping property we want, namely (5.46).

To prove the same estimate for the true inverse (and its existence) consider the
difference

(5.62) P̂ (τ)−1 − Q̂(τ) = R̂(τ), τ ∈ R.

Since P̂ (τ) ∈ Diffm(M ; E) depends smoothly on τ ∈ R and Q̂(τ) is a paramaterix
for it, we know that

(5.63) R̂(τ) ∈ C∞(R; Ψ−∞(M ; E))

is a smoothing operator on M which depends smoothly on τ ∈ R as a parameter.
On the other hand, from (5.61) we also know that for large real τ,

P̂ (τ)−1 − Q̂(τ) = Q̂(τ)M(τ)

where M(τ) satisfies the estimates (5.56). It follows that Q̂(τ)M(τ) also satisfies
these estimates and (5.63) can be strengthened to

(5.64) sup
τ∈R
‖τkR̂(τ, ·, ·)‖Cp <∞ ∀ p, k.

That is, the kernel R̂(τ) ∈ S(R; C∞(M2; Hom(E))). So if we define the t-translation-
invariant operator

(5.65) Rf(t, z) = (2π)−1

∫
eitτ R̂(τ)f̂(τ, ·)dτ

by inverse Fourier transform then

(5.66) R : Hs
ti(R×M ;E2) −→ H∞ti (R×M ;E1) ∀ s ∈ R.

It certainly suffices to show this for s < 0 and then we know that the Fourier
transform gives a map

(5.67) F : Hs
ti(R×M ;E2) −→ 〈τ〉|s|L2(R;H−|s|(M ;E2)).

Since the kernel R̂(τ) is rapidly decreasing in τ, as well as being smooth, for every
N > 0,

(5.68) R̂(τ) : 〈τ〉|s|L2(R;H−|s|M ;E2) −→ 〈τ〉−NL2(R;HN (M ;E2))

and inverse Fourier transform maps

F−1 : 〈τ〉−NHN (M ;E2) −→ HN
ti (R×M ;E2)

which gives (5.66).
Thus Q+R has the same property as Q in (5.46). So it only remains to check

that Q+R is the two-sided version of P and it is enough to do this on S(R×M ;Ei)
since these subspaces are dense in the Sobolev spaces. This in turn follows from
(5.62) by taking the Fourier transform. Thus we have shown that the invertibility
of P follows from its ellipticity and the invertibility of P̂ (τ) for τ ∈ R.

The converse statement is less important but certainly worth knowing! If P
is an isomorphism as in (5.30), even for one value of s, then it must be elliptic —
this follows as in the compact case since it is everywhere a local statement. Then
if P̂ (τ) is not invertible for some τ ∈ R we know, by ellipticity, that it is Fredholm
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and, by the stability of the index, of index zero (since P̂ (τ) is invertible for a dense
set of τ ∈ C). There is therefore some τ0 ∈ R and f0 ∈ C∞(M ;E2), f0 6= 0, such
that

(5.69) P̂ (τ0)∗f0 = 0.

It follows that f0 is not in the range of P̂ (τ0). Then, choose a cut off function,
ρ ∈ C∞c (R) with ρ(τ0) = 1 (and supported sufficiently close to τ0) and define
f ∈ S(R×M ;E2) by

(5.70) f̂(τ, ·) = ρ(τ)f0(·).

Then f /∈ P ·Hs
ti(R×M ;E1) for any s ∈ R. To see this, suppose u ∈ Hs

ti(R×M ;E1)
has

(5.71) Pu = f ⇒ P̂ (τ)û(τ) = f̂(τ)

where û(τ) ∈ 〈τ〉|s|L2(R;H−|s|(M ;E1)). The invertibility of P (τ) for τ 6= τ0 on
supp(ρ) (chosen with support close enough to τ0) shows that

û(τ) = P̂ (τ)−1f̂(τ) ∈ C∞((R\{τ0})×M ;E1).

Since we know that P̂ (τ)−1− Q̂(τ) = R̂(τ) is a meromorphic family of smooth-
ing operators it actually follows that û(ι) is meromorphic in τ near τ0 in the sense
that

(5.72) û(τ) =
k∑
j=1

(τ − τ0)−juj + v(τ)

where the uj ∈ C∞(M ;E1) and v ∈ C∞((τ − ε, τ + ε) ×M ;E1). Now, one of the
uj is not identically zero, since otherwise P̂ (τ0)v(τ0) = f0, contradicting the choice
of f0. However, a function such as (5.72) is not locally in L2 with values in any
Sobolev space on M, which contradicts the existence of u ∈ Hs

ti(R×M ;E1).
This completes the proof for invertibility of P. To get the Fredholm version it

suffices to prove that if P is Fredholm then it is invertible. Since the arguments
above easily show that the null space of P is empty on any of the Hs

ti(R×M ;E1)
spaces and the same applies to the adjoint, we easily conclude that P is an isomor-
phism if it is Fredholm. �

This result allows us to deduce similar invertibility conditions on exponentially-
weighted Sobolev spaces. Set

(5.73) eatHs
ti(R×M ;E) = {u ∈ Hs

loc(R×M ;E); e−atu ∈ Hs
ti(R×M ;E)}

for any C∞ vector bundle E over M. The translation-invariant differential operators
also act on these spaces.

Lemma 27. For any a ∈ R, P ∈ Diffmti (R ×M ; E) defines a continuous linear
operator

(5.74) P : eatHs+m
ti (R×M ;E1) −→ eatHs+m

ti (R×M ;E2).

Proof. We already know this for a = 0. To reduce the general case to this
one, observe that (5.74) just means that

(5.75) P · eatu ∈ eatHs
ti(R×M ;E2) ∀ u ∈ Hs

ti(R×M ;E1)
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with continuity meaning just continuous dependence on u. However, (5.75) in turn
means that the conjugate operator

(5.76) Pa = e−at · P · eat : Hs+m
ti (R×M ;E1) −→ Hs

ti(R×M ;E2).

Conjugation by an exponential is actually an isomorphism

(5.77) Diffmti (R×M ; E) 3 P 7−→ e−atPeat ∈ Diffmti (R×M ; E).

To see this, note that elements of Diffj(M ; E) commute with multiplication by eat

and

(5.78) e−atDte
at = Dt − ia

which gives (5.77)).
The result now follows. �

Proposition 19. If P ∈ Diffmti (R×M ; E) is elliptic then as a map (5.74) it is
invertible precisely for

(5.79) a /∈ − Im(D), D = D(P ) ⊂ C,

that is, a is not the negative of the imaginary part of an element of D.

Note that the set − Im(D) ⊂ R, for which invertibility fails, is discrete. This
follows from the discreteness of D and the estimate (5.35). Thus in Fig 1 invert-
ibility on the space with weight eat correspond exactly to the horizonatal line with
Im τ = −a missing D.

Proof. This is direct consequence of (??) and the discussion around (5.76).
Namely, P is invertible as a map (5.74) if and only if Pa is invertible as a map
(5.30) so, by Theorem 7, if

and only if
D(Pa) ∩ R = ∅.

From (5.78), D(Pa) = D(P ) + ia so this condition is just D(P ) ∩ (R − ia) = ∅ as
claimed. �

Although this is a characterization of the Fredholm properties on the standard
Sobolev spaces, it is not the end of the story, as we shall see below.

One important thing to note is that R has two ends. The exponential weight
eat treats these differently – since if it is big at one end it is small at the other
– and in fact we (or rather you) can easily define doubly-exponentially weighted
spaces and get similar results for those. Since this is rather an informative extended
exercise, I will offer some guidance.

Definition 6. Set

(5.80)
Hs,a,b

ti,exp(R×M ;E) = {u ∈ Hs
loc(R×M ;E);

χ(t)e−atu ∈ Hs
ti(R×M ;E)(1− χ(t))ebtu ∈ Hs

ti(R×M ;E)}

where χ ∈ C∞(R), χ = 1 in t > 1, χ = 0 in t < −1.

Exercises.
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(1) Show that the spaces in (5.80) are independent of the choice of χ, are all
Hilbertable (are complete with respect to a Hilbert norm) and show that
if a+ b ≥ 0

(5.81) Hs,a,b
ti,exp(R×M ;E) = eatHs

ti(R×M ;E) + e−btHs
ti(R×M ;E)

whereas if a+ b ≤ 0 then

(5.82) Hs,a,b
ti,exp(R×M ;E) = eatHs

ti(R×M ;E) ∩ e−btHs
ti(R×M ;E).

(2) Show that any P ∈ Diffmti (R×M ; E) defines a continuous linear map for
any s, a, b ∈ R

(5.83) P : Hs+m,a,b
ti- exp (R×M ;E1) −→ Hs,a,b

ti- exp(R×M ;E2).

(3) Show that the standard L2 pairing, with respect to dt, a smooth positive
density on M and an inner product on E extends to a non-degenerate
bilinear pairing

(5.84) Hs,a,b
ti,exp(R×M ;E)×H−s,−a,−bti,exp (R×M ;E) −→ C

for any s, a and b. Show that the adjoint of P with respect to this pairing
is P ∗ on the ‘negative’ spaces – you can use this to halve the work below.

(4) Show that if P is elliptic then (5.83) is Fredholm precisely when

(5.85) a /∈ − Im(D) and b /∈ Im(D).

Hint:- Assume for instance that a + b ≥ 0 and use (5.81). Given (5.85)
a parametrix for P can be constructed by combining the inverses on the
single exponential spaces

(5.86) Qa,b = χ′P−1
a χ+ (1− χ′′)P−1

−b (1− χ)

where χ is as in (5.80) and χ′ and χ′′ are similar but such that χ′χ = 1,
(1− χ′′)(1− χ) = 1− χ.

(5) Show that P is an isomorphism if and only if

a+ b ≤ 0 and [a,−b] ∩ − Im(D) = ∅ or a+ b ≥ 0 and [−b, a] ∩ − Im(D) = ∅.
(6) Show that if a+ b ≤ 0 and (5.85) holds then

ind(P ) = dim null(P ) =
∑

τi∈D∩(R×[b,−a])

Mult(P, τi)

where Mult(P, τi) is the algebraic multiplicity of τ as a ‘zero’ of P̂ (τ),
namely the dimension of the generalized null space

Mult(P, τi) = dim

{
u =

N∑
p=0

up(z)Dp
τδ(τ − τi);P (τ)u(τ) ≡ 0

}
.

(7) Characterize these multiplicities in a more algebraic way. Namely, if τ ′ is
a zero of P (τ) set E0 = nullP (τ ′) and F0 = C∞(M ;E2)/P (τ ′)C∞(M ;E1).
Since P (τ) is Fredholm of index zero, these are finite dimensional vector
spaces of the same dimension. Let the derivatives of P be Ti = ∂iP/∂τ i

at τ = τ ′ Then define R1 : E0 −→ F0 as T1 restricted to E0 and projected
to F0. Let E1 be the null space of R1 and F1 = F0/R1E0. Now proceed
inductively and define for each i the space Ei as the null space of Ri,
Fi = Fi−1/RiEi−1 and Ri+1 : Ei −→ Fi as Ti restricted to Ei and
projected to Fi. Clearly Ei and Fi have the same, finite, dimension which
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is non-increasing as i increases. The properties of P (τ) can be used to
show that for large enough i, Ei = Fi = {0} and

(5.87) Mult(P, τ ′) =
∞∑
i=0

dim(Ei)

where the sum is in fact finite.
(8) Derive, by duality, a similar formula for the index of P when a + b ≥ 0

and (5.85) holds, showing in particular that it is injective.

4. Resolvent operator

Addenda to Chapter 5

More?
• Why – manifold with boundary later for Euclidean space, but also resol-

vent (Photo-C5-01)
• Hölder type estimates – Photo-C5-03. Gives interpolation.

As already noted even a result such as Proposition 19 and the results in the
exercises above by no means exhausts the possibile realizations of an element P ∈
Diffmti (R×M ; E) as a Fredholm operator. Necessarily these other realization cannot
simply be between spaces like those in (5.80). To see what else one can do, suppose
that the condition in Theorem 7 is violated, so

(5.88) D(P ) ∩ R = {τ1, . . . , τN} 6= ∅.

To get a Fredholm operator we need to change either the domain or the range
space. Suppose we want the range to be L2(R×M ;E2). Now, the condition (5.85)
guarantees that P is Fredholm as an operator (5.83). So in particular

(5.89) P : Hm,ε,ε
ti−exp(R×M ;E1) −→ H0,ε,ε

ti- exp(R×M ;E2)

is Fredholm for all ε > 0 sufficiently small (becuase D is discrete). The image space
(which is necessarily the range in this case) just consists of the sections of the form
exp(a|t|)f with f in L2. So, in this case the range certainly contains L2 so we can
define
(5.90)
DomAS(P ) = {u ∈ Hm,ε,ε

ti- exp(R×M ;E1);Pu ∈ L2(R×M ;E2)}, ε > 0 sufficiently small.

This space is independent of ε > 0 if it is taken smalle enough, so the same space
arises by taking the intersection over ε > 0.

Proposition 20. For any elliptic element P ∈ Diffmti (R ×M ; E) the space in
(5.90) is Hilbertable space and

(5.91) P : DomAS(P ) −→ L2(R×M ;E2) is Fredholm.

I have not made the assumption (5.88) since it is relatively easy to see that if
D∩R = ∅ then the domain in (5.90) reduces again to Hm

ti (R×M ;E1) and (5.91) is
just the standard realization. Conversely of course under the assumption (5.88) the
domain in (5.91) is strictly larger than the standard Sobolev space. To see what
it actually is requires a bit of work but if you did the exercises above you are in a
position to work this out! Here is the result when there is only one pole of P̂ (τ) on
the real line and it has order one.
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Proposition 21. Suppose P ∈ Diffmti (R×M ; E) is elliptic, P̂ (τ) is invertible
for τ ∈ R \ {0} and in addition τP̂ (τ)−1 is holomorphic near 0. Then the Atiyah-
Singer domain in (5.91) is

(5.92) DomAS(P ) =
{
u = u1 + u2;u1 ∈ Hm

ti (R×M ;E1),

u2 = f(t)v, v ∈ C∞(M ;E1), P̂ (0)v = 0, f(t) =
∫ t

0

g(t)dt, g ∈ Hm−1(R)
}
.

Notice that the ‘anomalous’ term here, u2, need not be square-integrable. In
fact for any δ > 0 the power 〈t〉 12−δv ∈ 〈t〉1−δL2(R × M ;E1) is included and
conversely

(5.93) f ∈
⋂
δ>0

〈t〉1+δHm−1(R).

One can say a lot more about the growth of f if desired but it is generally quite
close to 〈t〉L2(R).

Domains of this sort are sometimes called ‘extended L2 domains’ – see if you
can work out what happens more generally.





CHAPTER 6

Manifolds with boundary
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• Dirac operators – Photos-C5-16, C5-17.
• Homogeneity etc Photos-C5-18, C5-19, C5-20, C5-21, C5-23, C5-24.

1. Compactifications of R.

As I will try to show by example later in the course, there are I believe con-
siderable advantages to looking at compactifications of non-compact spaces. These
advantages show up last in geometric and analytic considerations. Let me start
with the simplest possible case, namely the real line. There are two standard com-
pactifications which one can think of as ‘exponential’ and ‘projective’. Since there is
only one connected compact manifold with boundary compactification corresponds
to the choice of a diffeomorphism onto the interior of [0, 1]:

(6.1)
γ : R −→ [0, 1], γ(R) = (0, 1),

γ−1 : (0, 1) −→ R, γ, γ−1C∞.

In fact it is not particularly pleasant to have to think of the global maps γ,
although we can. Rather we can think of separate maps

(6.2)
γ+ : (T+,∞) −→ [0, 1]

γ− : (T−,−∞) −→ [0, 1]

which both have images (0, x±) and as diffeomorphism other than signs. In fact if
we want the two ends to be the ‘same’ then we can take γ−(t) = γ+(−t). I leave it
as an exercise to show that γ then exists with

(6.3)

{
γ(t) = γ+(t) t� 0
γ(t) = 1− γ−(t) t� 0.

So, all we are really doing here is identifying a ‘global coordinate’ γ∗+x near ∞
and another near −∞. Then two choices I refer to above are

(CR.4)
x = e−t exponential compactification
x = 1/t projective compactification .

Note that these are alternatives!
Rather than just consider R, I want to consider R ×M, with M compact, as

discussed above.

Lemma 28. If R : H −→ H is a compact operator on a Hilbert space then
Id−R is Fredholm.

75
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Proof. A compact operator is one which maps the unit ball (and hence any
bounded subset) of H onto a precompact set, a set with compact closure. The unit
ball in the null space of Id−R is

{u ∈ H; ‖u‖ = 1 , u = Ru} ⊂ R{u ∈ H; ‖u‖ = 1}
and is therefore precompact. Since it is closed, it is compact and any Hilbert space
with a compact unit ball is finite dimensional. Thus the null space of (Id−R) is
finite dimensional.

Consider a sequence un = vn−Rvn in the range of Id−R and suppose un → u
in H. We may assume u 6= 0, since 0 is in the range, and by passing to a subsequence
suppose that of γ on ?? fields. Clearly

(CR.5)
γ(t) = e−t ⇒ γ∗(∂t) = −x(∂x)
γ̃(t) = 1/t ⇒ γ̃∗(∂t) = −s2∂s

where I use ‘s’ for the variable in the second case to try to reduce confusion, it is
just a variable in [0, 1]. Dually

(CR.6)
γ∗
(
dx

x

)
= −dt

γ̃∗
(
ds

s2

)
= −dt

in the two cases. The minus signs just come from the fact that both γ’s reverse
orientation.

Proposition 22. Under exponential compactification the translation-invariant
Sobolev spaces on R×M are identified with

(6.4)
Hk

b ([0, 1]×M) =
{
u ∈ L2

(
[0, 1]×M ;

dx

x
VM

)
; ∀ `, p ≤ k

Pp ∈ Diffp(M) , (xDx)`Ppu ∈ L2
(
[0, 1]×M ;

dx

x
VM
)}

for k a positive integer, dimM = n,

(6.5) Hs
b ([0, 1]×M) =

{
u ∈ L2

(
[0, 1]×M ;

dx

x
VM

)
;∫∫

|u(x, z)− u(x′, z′)|2(
| log x

x′ |2 + ρ(z, z′)
)n+s+1

2

dx

x

dx′

x′
νν′ <∞

}
0 < s < 1

and for s < 0, k ∈ N s.t., 0 ≤ s+ k < 1,

(6.6) Hs
b ([0, 1]×M) =

{
u =

∑
0≤j+p≤k

(XdJX)pPuj,p,

Pp ∈ Diffp(M) , uj,p ∈ Hs+k
b ([0, 1]×M)

}
.

Moreover the L2 pairing with respect to the measure dx
x ν extends by continuity from

the dense subspaces C∞c ((0, 1)×M) to a non-degenerate pairing

(6.7) Hs
b ([0, 1]×M)×H−sb ([0, 1]×M) 3 (n, u) 7−→

∫
u · v dx

x
ν ∈ C.

�
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Proof. This is all just translation of the properties of the space Hs
ti(R ×M)

to the new coordinates. �

Note that there are other properties I have not translated into this new setting.
There is one additional fact which it is easy to check. Namely C∞([0, 1] × M)
acts as multipliers on all the spaces Hs

b([0, 1] × M). This follows directly from
Proposition 22;

C∞([0, 1]×M)×Hs
b([0, 1]×M) 3 (ϕ, u) 7→ ϕu ∈ Hs

b([0, 1]×M) .(CR.12)

What about the ‘b’ notation? Notice that (1 − x)x∂x and the smooth vector
fields on M span, over C∞(X), for X = [0, 1]×M , all the vector fields tangent to
{x = 0|u|x = 1}. Thus we can define the ‘boundary differential operators’ as

Diffmb ([0, 1]×Mi)E =

P =
∑

0≤j+p≤m

aj,p(xj)((1− x)xDx)jPp ,(CR.13)

Pp ∈ Diffp(Mi)E
}

and conclude from (CR.12) and the earlier properties that

P ∈ Diffmb (X;E)⇒(CR.14)

P : Hs+m
b (X;E)→ Hs

b(X;E)∀s ∈ R .

Theorem 8. A differential operator as in (8) is Fredholm if and only if it is
elliptic in the interior and the two “normal operators’

(CR.16) I±(P ) =
∑

0≤j+p≤m

aj,p(x±1)(±Dk)iPp x+ = 0 , x− = 1

derived from (CR.13), are elliptic and invertible on the translation-invariant Sobolev
spaces.

Proof. As usual we are more interested in the sufficiency of these conditions
than the necessity. To prove this result by using the present (slightly low-tech)
methods requires going back to the beginning and redoing most of the proof of the
Fredholm property for elliptic operators on a compact manifold.

The first step then is a priori bounds. What we want to show is that if the
conditions of the theorem hold then for u ∈ Hs+m

b (X;E), x = R×M , ∃C > 0 s.t.

‖u‖m+s ≤ Cs‖Pu‖s + Cs‖x(1− x)u‖s−1+m .(CR.17)

Notice that the norm on the right has a factor, x(1 − x), which vanishes at the
boundary. Of course this is supposed to come from the invertibility of I±(P ) in
R(0) and the ellipticity of P .

By comparison I±(P ) : Hs+m
~ (R ×M) → Hs

~(R ×M) are isomorphisms —
necessary and sufficient conditions for this are given in Theorem ???. We can
use the compactifying map γ to convert this to a statement as in (CR.17) for the
operators

(CR.18) P± ∈ Diffmb (X) , P± = I±(P )(γ∗Dt, ·) .

Namely

(CR.19) ‖u‖m+s ≤ Cs‖P±u‖s
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where these norms, as in (CR.17) are in the Hs
b spaces. Note that near x = 0 or

x = 1, P± are obtained by substituting Dt 7→ xDx or (1− x)Dx in (CR.17). Thus

P − P± ∈ (x− x±) Diffmb (X) , x± = 0, 1(CR.20)

have coefficients which vanish at the appropriate boundary. This is precisely how
(CR.16) is derived from (CR.13). Now choose ϕ ∈ C∞, (0, 1)×M which is equal to
1 on a sufficiently large set (and has 0 ≤ ϕ ≤ 1) so that

(CR.21) 1− ϕ = ϕ+ + ϕ− , ϕ± ∈ C∞([0, 1]×M)

have supp(ϕ±) ⊂ {|x− x±| ≤ ε), 0 ≤ ϕ+1.
By the interim elliptic estimate,

(CR.22) ‖ϕu‖s+m ≤ Cs‖ϕPu‖s + C ′s‖ψu‖s−1+m

where ψ ∈ C∞c ((0, 1)×M). On the other hand, because of (CR.20)

‖ϕ±u‖m+s ≤ Cs‖ϕ±P±u‖s + Cs‖[ϕ±, P±u]‖s(CR.23)

≤ Cs‖ϕ±Pu‖s + Csϕ±(P − P±)u‖s + Cs‖[ϕ±, P±]u‖s .

Now, if we can choose the support at ϕ± small enough — recalling that Cs truly
depends on I±(Pt) and s — then the second term on the right in (CR.23) is bounded
by 1

4‖u‖m+s, since all the coefficients of P − P± are small on the support off ϕ±.
Then (CR.24) ensures that the final term in (CR.17), since the coefficients vanish
at x = x±.

The last term in (CR.22) has a similar bound since ψ has compact support in
the interim. This combining (CR.2) and (CR.23) gives the desired bound (CR.17).

To complete the proof that P is Fredholm, we need another property of these
Sobolev spaces.

Lemma 29. The map

(6.8) Xx(1− x) : Hs
b (X) −→ Hs−1

b (X)

is compact.

Proof. Follow it back to R×M !
�

Now, it follows from the a priori estimate (CR.17) that, as a map (CR.14),
P has finite dimensional null space and closed range. This is really the proof of
Proposition ?? again. Moreover the adjoint of P with respect to dx

x V, P
∗, is again

elliptic and satisfies the condition of the theorem, so it too has finite-dimensional
null space. Thus the range of P has finite codimension so it is Fredholm.

�

A corresponding theorem, with similar proof follows for the cusp compactifica-
tion. I will formulate it later.

2. Basic properties

A discussion of manifolds with boundary goes here.

3. Boundary Sobolev spaces

Generalize results of Section 1 to arbitrary compact manifolds with boundary.
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4. Dirac operators

Euclidean and then general Dirac operators

5. Homogeneous translation-invariant operators

One application of the results of Section 3 is to homogeneous constant-coefficient
operators on Rn, including the Euclidean Dirac operators introduced in Section 4.
Recall from Chapter 2 that an elliptic constant-coefficient operator is Fredholm, on
the standard Sobolev spaces, if and only if its characteristic polynomial has no real
zeros. If P is homogeneous

(6.9) Pij(tζ) = tmPij(ζ) ∀ ζ ∈ Cn , t ∈ R ,

and elliptic, then the only real zero (of the determinant) is at ζ = 0. We will
proceed to discuss the radial compactification of Euclidean space to a ball, or more
conveniently a half-sphere

(6.10) γR : Rn ↪→ Sn,1 = {Z ∈ Rn+1 ; |Z| = 1 , Z0 ≥ 0} .

Transferring P to Sn,1 gives

(6.11) PR ∈ Zm0 Diffmb (Sn,1 ; CN )

which is elliptic and to which the discussion in Section 3 applies.
In the 1-dimensional case, the map (6.10) reduces to the second ‘projective’

compactification of R discussed above. It can be realized globally by

(6.12) γR(z) =

(
1√

1 + |z|2
,

z√
1 + |z|2

)
∈ Sn,1 .

Geometrically this corresponds to a form of stereographic projection. Namely, if
Rn 3 z 7→ (1, z) ∈ Rn+1 is embedded as a ‘horizontal plane’ which is then projected
radially onto the sphere (of radius one around the origin) one arrives at (6.12). It
follows easily that γR is a diffeomorphism onto the open half-sphere with inverse

(6.13) z = Z ′/Z0 , Z
′ = (Z1, . . . , Zn) .

Whilst (6.12) is concise it is not a convenient form of the compactification as
far as computation is concerned. Observe that

x 7→ x√
1 + x2

is a diffeomorphism of neighborhoods of 0 ∈ R. It follows that Z0, the first variable in
(6.12) can be replaced, near Z0 = 0, by 1/|z| = x. That is, there is a diffeomorphism

(6.14) {0 ≤ Z0 ≤ ε} ∩ Sn,1 ↔ [0, δ]x × Sn−1
θ

which composed with (6.12) gives x = 1/|z| and θ = z/|z|. In other words the
compactification (6.12) is equivalent to the introduction of polar coordinates near
infinity on Rn followed by inversion of the radial variable.

Lemma 30. If P = (Pij(Dz)) is an N × N matrix of constant coefficient op-
erators in Rn which is homogeneous of degree −m then (6.11) holds after radial
compactification. If P is elliptic then PR is elliptic.
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Proof. This is a bit tedious if one tries to do it by direct computation. How-
ever, it is really only the homogeneity that is involved. Thus if we use the coor-
dinates x = 1/|z| and θ = z/|z| valid near the boundary of the compactification
(i.e., near ∞ on Rn) then

(6.15) Pij =
∑

0≤`≤m

D`
xP`,i,j(x, θ,Dθ) , P`,i,j ∈ C∞(0, δ)x ; Diffm−`(Sn−1).

Notice that we do know that the coefficients are smooth in 0 < x < δ, since we
are applying a diffeomorphism there. Moreover, the operators P`,i,j are uniquely
determined by (6.15).

So we can exploit the assumed homogeneity of Pij . This means that for any
t > 0, the transformation z 7→ tz gives

(6.16) Pijf(tz) = tm(Pijf)(tz) .

Since |tz| = t|z|, this means that the transformed operator must satisfy

(6.17)
∑
`

D`
xP`,i,j(x, θ,Dθ)f(x/t, θ) = tm(

∑
`

D`P`,i,j(·, θ,Dθ)f(·, θ))(x/t) .

Expanding this out we conclude that

x−m−`P`,i,j(x, θ,Dθ) = P`,i,j(θ,Dθ)(6.18)

is independent of x. Thus in fact (6.15) becomes

(6.19) Pij = xm
∑

0≤j≤`

x`D`
xP`,j,i(θ,Dθ) .

Since we can rewrite

(6.20) x`Dx =
∑

0≤j≤`

C`,j(xDx)j

(with explicit coefficients if you want) this gives (6.11). Ellipticity in this sense,
meaning that

(6.21) x−mPR ∈ Diffmb (Sn,1; CN )

(6.19) and the original ellipticity at P. Namely, when expressed in terms of xDx

the coefficients of 6.21 are independent of x (this of course just reflects the homo-
geneity), ellipticity in x > 0 follows by the coordinate independence of ellipticity,
and hence extends down to x = 0. �

Now the coefficient function Zw+m
0 in (6.11) always gives an isomorphism

(6.22) × Zm0 : Zw0 H
s
b(Sn,1) −→ Zw+m

0 Hs
b(Sn,1) .

Combining this with the results of Section 3 we find most of

Theorem 9. If P is an N×N matrix of constant coefficient differential opera-
tors on Rn which is elliptic and homogeneous of degree −m then there is a discrete
set − Im(D(P )) ⊂ R such that

(6.23) P : Zw0 H
m+s
b (Sn,1) −→ Zw+m

0 Hs
b (Sn,1) is Fredholm ∀ w /∈ − Im(D(P ))

where (6.12) is used to pull these spaces back to Rn. Moreover,

(6.24)
P is injective for w ∈ [0,∞) and

P is surjective for w ∈ (−∞, n−m] ∩ (− Im(D)(P )) .
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Proof. The conclusion (6.23) is exactly what we get by applying Theorem X
knowing (6.11).

To see the specific restriction (6.24) on the null space and range, observe that
the domain spaces in (6.23) are tempered. Thus the null space is contained in the
null space on S ′(Rn). Fourier transform shows that P (ζ)û(ζ) = 0. From the assumed
ellipticity of P and homogeneity it follows that supp(û(ζ)) ⊂ {0} and hence û is
a sum of derivatives of delta functions and finally that u itself is a polynomial. If
w ≥ 0 the domain in (6.23) contains no polynomials and the first part of (6.24)
follows.

The second part of (6.24) follows by a duality argument. Namely, the adjoint of
P with respect to L2(Rn), the usual Lebesgue space, is P ∗ which is another elliptic
homogeneous differential operator with constant coefficients. Thus the first part of
(6.24) applies to P ∗. Using the homogeneity of Lebesgue measure,

(6.25) |dz| = dx

xn+1
· νθ near ∞

and the shift in weight in (6.23), the second part of (6.24) follows. �

One important consequence of this is a result going back to Nirenberg and
Walker (although expressed in different language).

Corollary 2. If P is an elliptic N×N matrix constant coefficient differential
operator which is homogeneous of degree m, with n > m, the the map (6.23) is an
isomorphism for w ∈ (0, n−m).

In particular this applies to the Laplacian in dimensions n > 2 and to the
constant coefficient Dirac operators discussed above in dimensions n > 1. In these
cases it is also straightforward to compute the index and to identify the surjective
set. Namely, for a constant coefficient Dirac operator

(6.26) D(P ) = iN0 ∪ i(n−m+ N0) .

Figure goes here.

6. Scattering structure

Let me briefly review how the main result of Section 5 was arrived at. To deal
with a constant coefficient Dirac operator we first radially compactified Rn to a
ball, then peeled off a multiplicative factor Z0 from the operator showed that the
remaining operator was Fredholm by identifing a neighbourhood of the boundary
with part of R× Sn−1 using the exponential map to exploit the results of Section 1
near infinity. Here we will use a similar, but different, procedure to treat a different
class of operators which are Fredholm on the standard Sobolev spaces.

Although we will only apply this in the case of a ball, coming from Rn, I cannot
resist carrying out the discussed for a general compact manifolds — since I think
the generality clarifies what is going on. Starting from a compact manifold with
boundary, M, the first step is essentially the reverse of the radial compactification
of Rn.

Near any point on the boundary, p ∈ ∂M, we can introduce ‘admissible’ co-
ordinates, x, y1, . . . , yn−1 where {x = 0‖ is the local form of the boundary and
y1, . . . , yn−1 are tangential coordinates; we normalize y1 = · · · = yn−1 = 0 at p. By
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y

x

M

Figure 1. Boundary coordinate patch

reversing the radial compactification of Rn I mean we can introduce a diffeomor-
phism of a neighbourhood of p to a conic set in Rn :

(6.27) zn = 1/x , zj = yj/x , j = 1, . . . , n− 1 .

Clearly the ‘square’ |y| < ε, 0 < x < ε is mapped onto the truncated conic set

(6.28) zn ≥ 1/ε , |z′| < ε|zn| , z′ = (z1, . . . , zn−1) .

Definition 7. We define spacesHs
sc(M) for any compact manifold with bound-

ary M by the requirements

(6.29) u ∈ Hs
sc(M)⇐⇒ u ∈ Hs

loc(M \ ∂M) and R∗j (ϕju) ∈ Hs(Rn)

for ϕj ∈ C∞(M), 0 ≤ ϕi ≤ 1,
∑
ϕi = 1 in a neighbourhood of the boundary and

where each ϕj is supported in a coordinate patch (6), (6.28) with R given by (6.27).

Of course such a definition would not make much sense if it depended on the
choice of the partition of unity near the boundary {ϕi‖ or the choice of coordinate.
So really (7) should be preceded by such an invariance statement. The key to this
is the following observation.

Proposition 23. If we set Vsc(M) = xVb(M) for any compact manifold with
boundary then for any ψ ∈ C∞(M) supported in a coordinate patch (6), and any
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C∞ vector field V on M

(6.30) ψV ∈ Vsc(M)⇐⇒ ψV =
n∑
j=1

µj(R−1)∗(Dzj
) , µj ∈ C∞(M) .

Proof. The main step is to compute the form of Dzj
in terms of the coordinate

obtained by inverting (6.27). Clearly

(6.31) Dzn
= x2Dx , Dzj

= xDyj
− yix2Dx , j < n .

Now, as discussed in Section 3, xDx and Dyj
locally span Vb(M), so x2Dx, xDyj

locally span Vsc(M). Thus (6.31) shows that in the singular coordinates (6.27),
Vsc(M) is spanned by the Dz`

, which is exactly what (6.30) claims. �

Next let’s check what happens to Euclidean measure under R, actually we did
this before:

(SS.9) |dz| = |dx|
xn+1

νy .

Thus we can first identify what (6.29) means in the case of s = 0.

Lemma 31. For s = 0, Definition (7) unambiguously defines

(6.32) H0
sc(M) =

{
u ∈ L2

loc(M) ;
∫
|u|2 νM

xn+1
<∞

}
where νM is a positive smooth density on M (smooth up to the boundary of course)
and x ∈ C∞(M) is a boundary defining function.

Proof. This is just what (6.29) and (SS.9) mean. �

Combining this with Proposition 23 we can see directly what (6.29) means for
kinN.

Lemma 32. If (6.29) holds for s = k ∈ N for any one such partition of unity
then u ∈ H0

sc(M) in the sense of (6.32) and

(6.33) V1 . . . Vju ∈ H0
sc(M) ∀ Vi ∈ Vsc(M) if j ≤ k ,

and conversely.

Proof. For clarity we can proceed by induction on k and replace (6.33) by the
statements that u ∈ Hk−1

sc (M) and V u ∈ Hk−1
sc (M) ∀V ∈ Vsc(M). In the interior

this is clear and follows immediately from Proposition 23 provided we carry along
the inductive statement that

(6.34) C∞(M) acts by multiplication on Hk
sc(M) .

�

As usual we can pass to general s ∈ R by treating the cases 0 < s < 1 first and
then using the action of the vector fields.

Proposition 24. For 0 < s < 1 the condition (6.29) (for any one partition of
unity) is equivalent to requiring u ∈ H0

sc(M) and

(6.35)
∫∫

M×M

|u(p)− u(p′)|2

ρn+2s
sc

νM
xn+1

ν′M
(x′)n+1

<∞

where ρsc(p, p′) = χχ′p(p, p′) +
∑
j ϕjϕ

′
j〈z − z′〉.
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Proof. Use local coordinates. �

Then for s ≥ 1 if k is the integral part of s, so 0 ≤ s− k < 1, k ∈ N,

(6.36) u ∈ Hs
sc(M)⇐⇒ V1, . . . , Vju ∈ Hs−k

sc (M) , Vi ∈ Vsc(M) , j ≤ k

and for s < 0 if k ∈ N is chosen so that 0 ≤ k + s < 1, then

(6.37)

u ∈ Hs
sc(M)⇔ ∃ Vj ∈ Hs+k

sc (M) , j = 1, . . . ,N ,

uj ∈ Hs−k
sc (M) , Vj,i(M) , 1 ≤ i ≤ `j ≤ k s.t.

u = u0 +
N∑
j=1

Vj,i · · ·Vj,`juj .

All this complexity is just because we are preceding in such a ‘low-tech’ fashion.
The important point is that these Sobolev spaces are determined by the choice of
‘structure vector fields’, V ∈ Vsc(M). I leave it as an important exercise to check
that

Lemma 33. For the ball, or half-sphere,

γ∗RH
s
sc(Sn,1) = Hs(Rn) .

Thus on Euclidean space we have done nothing. However, my claim is that
we understand things better by doing this! The idea is that we should Fourier
analysis on Rn to analyse differential operators which are made up out of Vsc(M)
on any compact manifold with boundary M, and this includes Sn,1 as the radial
compactification of Rn. Thus set

(6.38) Diffmsc(M) =
{
P : C∞(M) −→ C∞(M); ∃ f ∈ C∞(M) and

Vi,j ∈ Vsc(M) s.t. P = f +
∑

i,1≤j≤m

Vi,1 . . . Vi,j
}
.

In local coordinates this is just a differential operator and it is smooth up to the
boundary. Since only scattering vector fields are allowed in the definition such an
operator is quite degenerate at the boundary. It always looks like

(6.39) P =
∑

k+|α|≤m

ak,α(x, y)(x2Dx)k(xDy)α,

with smooth coefficients in terms of local coordinates (6).
Now, if we freeze the coefficients at a point, p, on the boundary of M we get a

polynomial

(6.40) σsc(P )(p) =
∑

k+|α|≤m

ak,α(p)τkηα.

Note that this is not in general homogeneous since the lower order terms are re-
tained. Despite this one gets essentially the same polynomial at each point, inde-
pendent of the admissible coordinates chosen, as will be shown below. Let’s just
assume this for the moment so that the condition in the following result makes
sense.



8. BLOW UP 85

Theorem 10. If P ∈ Diffmsc(M ; E) acts between vector bundles over M, is
elliptic in the interior and each of the polynomials (matrices) (6.40) is elliptic and
has no real zeros then

(6.41) P : Hs+m
sc (M,E1) −→ Hs

sc(M ;E2) is Fredholm

for each s ∈ R and conversely.

7. Manifolds with corners

8. Blow up

Last time at the end I gave the following definition and theorem.

Definition 8. We define weighted (non-standard) Sobolev spaces for (m,w) ∈
R2 on Rn by

(6.42) H̃m,w(Rn) = {u ∈Mm
loc(Rn);F ∗

(
(1− χ)r−wu

)
∈ Hm

ti (R× Sn−1)}
where χ ∈ C∞c (Rn), χ(y) = 1 in |y| < 1 and

(6.43) F : R× Sn−1 3 (t, θ) −→ (et, etθ) ∈ Rn \ {0}.

Theorem 11. If P =
n∑
i=1

ΓiDi, Γi ∈ M(N,C), is an elliptic, constant coeffi-

cient, homogeneous differential operator of first order then

(6.44) P : H̃m,w(Rn) −→ H̃m−1,w+1(Rn) ∀ (m,w) ∈ R2

is continuous and is Fredholm for w ∈ R \ D̃ where D̃ is discrete.
If P is a Dirac operators, which is to say explicitly here that the coefficients are

‘Pauli matrices’ in the sense that

(6.45) Γ∗i = Γi, Γ2
i = IdN×N , ∀ i, ΓiΓj + ΓjΓi = 0, i 6= j,

then

(6.46) D̃ = −N0 ∪ (n− 2 + N0)

and if n > 2 then for w ∈ (0, n− 2) the operator P in (6.44) is an isomorphism.

I also proved the following result from which this is derived

Lemma 34. In polar coordinates on Rn in which Rn \ {0} ' (0,∞) × Sn−1,
y = rθ,

(6.47) Dyj
=





CHAPTER 7

Electromagnetism

0.6Q; Revised: 6-8-2007; Run: February 7, 2008

1. Maxwell’s equations

Maxwell’s equations in a vacuum take the standard form

(7.1)
div E = ρ div B = 0

curl E = −∂B
∂t

curl B =
∂E
∂t

+ J

where E is the electric and B the magnetic field strength, both are 3-vectors de-
pending on position z ∈ R3 and time t ∈ R. The external quantities are ρ, the
charge density which is a scalar, and J, the current density which is a vector.

We will be interested here in stationary solutions for which E and B are inde-
pendent of time and with J = 0, since this also represents motion in the standard
description. Thus we arrive at

(7.2)
div E = ρ div B = 0
curl E = 0 curl B = 0.

The simplest interesting solutions represent charged particles, say with the
charge at the origin, ρ = cδ0(z), and with no magnetic field, B = 0. By identifying
E with a 1-form, instead of a vector field on R3,

(7.3) E = (E1, E2, E3) =⇒ e = E1dz1 + E2dz2 + E3dz3

we may identify curl E with the 2-form de,

(7.4) de =(
∂E2

∂z1
− ∂E1

∂z2

)
dz1∧dz2 +

(
∂E3

∂z2
− ∂E2

∂z3

)
dz2∧dz3 +

(
∂E1

∂z3
− ∂E3

∂z1

)
dz3∧dz1.

Thus (7.2) implies that e is a closed 1-form, satisfying

(7.5)
∂E1

∂z1
+
∂E2

∂z2
+
∂E3

∂z3
= cδ0(z).

By the Poincaré Lemma, a closed 1-form on R3 is exact, e = dp, with p deter-
mined up to an additive constant. If e is smooth (which it cannot be, because of
(7.5)), then

(7.6) p(z)− p(z′) =
∫ 1

0

γ∗e along γ : [0, 1] −→ R3, γ(0) = z′, γ(1) = z.

It is reasonable to look for a particular p and 1-form e which satisfy (7.5) and are
smooth outside the origin. Then (7.6) gives a potential which is well defined, up
to an additive constant, outside 0, once z′ is fixed, since de = 0 implies that the

87
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integral of γ∗e along a closed curve vanishes. This depends on the fact that R3\{0}
is simply connected.

So, modulo confirmation of these simple statements, it suffices to look for p ∈
C∞(R3\{0}) satisfying e = dp and (7.5), so

(7.7) ∆p = −
(
∂2p

∂z2
1

+
∂2p

∂z2
2

+
∂2p

∂z2
3

)
= −cδ0(z).

Then E is recovered from e = dp.
The operator ‘div’ can also be understood in terms of de Rham d together with

the Hodge star ∗. If we take R3 to have the standard orientation and Euclidean
metric dz2

1 + dz2
2 + dz2

3 , the Hodge star operator is given on 1-forms by

(7.8) ∗ dz1 = dz2 ∧ dz3, ∗dz2 = dz3 ∧ dz1, ∗dz3 = dz1 ∧ dz2.

Thus ∗e is a 2-form,

(7.9) ∗ e = E1 dz2 ∧ dz3 + E2 dz3 ∧ dz1 + E3 dz1 ∧ dz2

=⇒ d ∗ e =
(
∂E1

∂z1
+
∂E2

∂z2
+
∂E3

∂z3

)
dz1 ∧ dz2 ∧ dz3 = (div E) dz1 ∧ dz2 ∧ dz3.

The stationary Maxwell’s equations on e become

(7.10) d ∗ e = ρ dz1 ∧ dz2 ∧ dz3, de = 0.

There is essential symmetry in (7.1) except for the appearance of the “source”
terms, ρ and J. To reduce (7.1) to two equations, analogous to (7.10) but in 4-
dimensional (Minkowski) space requires B to be identified with a 2-form on R3,
rather than a 1-form. Thus, set

(7.11) β = B1 dz2 ∧ dz3 +B2 dz3 ∧ dz1 +B3 dz1 ∧ dz2.

Then

(7.12) dβ = div B dz1 ∧ dz2 ∧ dz3

as follows from (7.9) and the second equation in (7.1) implies β is closed.
Thus e and β are respectively a closed 1-form and a closed 2-form on R3. If we

return to the general time-dependent setting then we may define a 2-form on R4 by

(7.13) λ = e ∧ dt+ β

where e and β are pulled back by the projection π : R4 → R3. Computing directly,

(7.14) dλ = d′e ∧ dt+ d′β +
∂β

∂t
∧ dt

where d′ is now the differential on R3. Thus

(7.15) dλ = 0⇔ d′e+
∂β

∂t
= 0, d′β = 0

recovers two of Maxwell’s equations. On the other hand we can define a 4-dimensional
analogue of the Hodge star but corresponding to the Minkowski metric, not the Eu-
clidean one. Using the natural analogue of the 3-dimensional Euclidean Hodge by
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formally inserting an i into the t-component, gives

(7.16)



∗4dz1 ∧ dz2 = idz3 ∧ dt
∗4dz1 ∧ dz3 = idt ∧ dz2

∗4dz1 ∧ dt = −idz2 ∧ dz3

∗4dz2 ∧ dz3 = idz1 ∧ dt
∗4dz2 ∧ dt = −idz3 ∧ dz1

∗4dz3 ∧ dt = −idz1 ∧ dz2.

The other two of Maxwell’s equations then become

(7.17) d ∗4 λ = d(−i ∗ e+ i(∗β) ∧ dt) = −i(ρ dz1 ∧ dz2 ∧ dz3 + j ∧ dt)
where j is the 1-form associated to J as in (7.3). For our purposes this is really
just to confirm that it is best to think of B as the 2-form β rather than try to make
it into a 1-form. There are other good reasons for this, related to behaviour under
linear coodinate changes.

Returning to the stationary setting, note that (7.7) has a ‘preferred’ solution

(7.18) p =
1

4π|z|
.

This is in fact the only solution which vanishes at infinity.

Proposition 25. The only tempered solutions of (7.7) are of the form

(7.19) p =
1

4π|z|
+ q, ∆q = 0, q a polynomial.

Proof. The only solutions are of the form (7.19) where q ∈ S ′(R3) is harmonic.
Thus q̂ ∈ S ′(R3) satisfies |ξ|2q̂ = 0, which implies that q is a polynomial. �

2. Hodge Theory

The Hodge ∗ operator discussed briefly above in the case of R3 (and Minkowski
4-space) makes sense in any oriented real vector space, V, with a Euclidean inner
product—that is, on a finite dimensional real Hilbert space. Namely, if e1, . . . , en
is an oriented orthonormal basis then

(7.20) ∗ (ei1 ∧ · · · ∧ eik) = sgn(i∗)eik+1 ∧ · · · ein
extends by linearity to

(7.21) ∗ :
∧k

V −→
∧n−k

V .

Proposition 26. The linear map (7.21) is independent of the oriented or-
thonormal basis used to define it and so depends only on the choice of inner product
and orientation of V. Moreover,

(7.22) ∗2 = (−1)k(n−k), on
∧k

V .

Proof. Note that sgn(i∗), the sign of the permutation defined by {i1, . . . , in}
is fixed by

(7.23) ei1 ∧ · · · ∧ ein = sgn(i∗)e1 ∧ · · · ∧ en.

Thus, on the basis ei1 ∧ . . . ∧ ein of
∧k

V given by strictly increasing sequences
i1 < i2 < · · · < ik in {1, . . . , n},
(7.24) e∗ ∧ ∗e∗ = sgn(i∗)2e1 ∧ · · · ∧ en = e1 ∧ · · · ∧ en.
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The standard inner product on
∧k

V is chosen so that this basis is orthonormal.
Then (7.24) can be rewritten

(7.25) eI ∧ ∗eJ = 〈eI , eJ〉e1 ∧ · · · ∧ en.
This in turn fixes ∗ uniquely since the pairing given by

(7.26)
∧k

V ×
∧k−1

V 3 (u, v) 7→ (u ∧ v)/e1∧···∧en

is non-degenerate, as can be checked on these bases.
Thus it follows from (7.25) that ∗ depends only on the choice of inner product

and orientation as claimed, provided it is shown that the inner product on
∧k

V
only depends on that of V. This is a standard fact following from the embedding

(7.27)
∧k

V ↪→ V ⊗k

as the totally antisymmetric part, the fact that V ⊗k has a natural inner product
and the fact that this induces one on

∧k
V after normalization (depending on the

convention used in (7.27). These details are omitted. �

Since ∗ is uniquely determined in this way, it necessarily depends smoothly on
the data, in particular the inner product. On an oriented Riemannian manifold the
induced inner product on T ∗pM varies smoothly with p (by assumption) so

(7.28) ∗ :
∧k
pM −→

∧n−k
p M,

∧k
pM =

∧k
p(T ∗pM)

varies smoothly and so defines a smooth bundle map

(7.29) ∗ ∈ C∞(M ;
∧k

M,
∧n−k

M).

An oriented Riemannian manifold carries a natural volume form ν ∈ C∞(M,
∧n

M),
and this allows (7.25) to be written in integral form:

(7.30)
∫
M

〈α, β〉 ν =
∫
M

α ∧ ∗β ∀α, β ∈ C∞(M,
∧k

M).

Lemma 35. On an oriented, (compact) Riemannian manifold the adjoint of d
with respect to the Riemannian inner product and volume form is

(7.31) d∗ = δ = (−1)k+n(n−k+1) ∗ d ∗ on
∧k

M.

Proof. By definition,

(7.32) d : C∞(M,
∧k

M) −→ C∞(M,
∧k+1

M)

=⇒ δ : C∞(M,
∧k+1

M) −→ C∞(M,
∧k

M),∫
M

〈dα, α′〉 ν =
∫
M

〈α, δα′〉 ν ∀α ∈ C∞(M,
∧k

M), α′ ∈ C∞(M,
∧k+1

M).

Applying (7.30) and using Stokes’ theorem, (and compactness of either M or the
support of at least one of α, α′),∫

M

〈δα, α′〉 ν =
∫
M

dα ∧ ∗α′

=
∫
M

d(α ∧ ∗α′) + (−1)k+1

∫
M

α ∧ d ∗ α′ = 0 + (−1)k+1

∫
M

〈α, ∗−1d ∗ α′〉 ν.

Taking into account (7.22) to compute ∗−1 on n− k forms shows that

(7.33) δα′ = (−1)k+1+n(n−k) ∗ d ∗ on (k + 1)-forms
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which is just (7.31) on k-forms. �

Notice that changing the orientation simply changes the sign of ∗ on all forms.
Thus (7.31) does not depend on the orientation and as a local formula is valid even
if M is not orientable — since the existence of δ = d∗ does not require M to be
orientable.

Theorem 12 (Hodge/Weyl). On any compact Riemannian manifold there is
a canonical isomorphism

(7.34) Hk
dR(M) ∼= Hk

Ho(M) =
{
u ∈ L2(M ;

∧k
M); (d+ δ)u = 0

}
where the left-hand side is either the C∞ or the distributional de Rham cohomology

(7.35)
{
u ∈ C∞(M ;

∧k
M); du = 0

}/
d C∞(M ;

∧k
M)

∼=
{
u ∈ C−∞(M ;

∧k
M); du = 0

}/
d C−∞(M ;

∧k
M).

Proof. The critical point of course is that

(7.36) d+ δ ∈ Diff1(M ;
∧∗

M) is elliptic.

We know that the symbol of d at a point ζ ∈ T ∗pM is the map

(7.37)
∧k

M 3 α 7→ iζ ∧ α.
We are only interested in ζ 6= 0 and by homogeneity it is enough to consider |ζ| = 1.
Let e1 = ζ, e2, . . . , en be an orthonormal basis of T ∗pM , then from (7.31) with a
fixed sign throughout:

(7.38) σ(δ, ζ)α = ± ∗ (iζ ∧ ·) ∗ α.
Take α = eI , ∗α = ±eI′ where I ∪ I ′ = {1, . . . , n}. Thus

(7.39) σ(δ, ζ)α =
{ 0 1 6∈ I
±iαI\{1} 1 ∈ I .

In particular, σ(d+ δ) is an isomorphism since it satisfies

(7.40) σ(d+ δ)2 = |ζ|2

as follows from (7.37) and (7.39) or directly from the fact that

(7.41) (d+ δ)2 = d2 + dδ + δd+ δ2 = dδ + δd

again using (7.37) and (7.39).
Once we know that d+δ is elliptic we conclude from the discussion of Fredholm

properties above that the distributional null space

(7.42)
{
u ∈ C−∞(M,

∧∗
M); (d+ δ)u = 0

}
⊂ C∞(M,

∧∗
M)

is finite dimensional. From this it follows that

(7.43)
Hk

Ho ={u ∈ C−∞(M,
∧k

M); (d+ δ)u = 0}

={u ∈ C∞(M,
∧k

M); du = δu = 0}

and that the null space in (7.42) is simply the direct sum of these spaces over k.
Indeed, from (7.42) the integration by parts in

0 =
∫
〈du, (d+ δ)u〉 ν = ‖du‖2L2 +

∫
〈u, δ2u〉 ν = ‖du‖2L2
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is justified.
Thus we can consider d+ δ as a Fredholm operator in three forms

(7.44)

d+ δ :C−∞(M,
∧∗

M) −→ C−∞(M,
∧∗

M),

d+ δ :H1(M,
∧∗

M) −→ H1(M,
∧∗

M),

d+ δ :C∞(M,
∧∗

M) −→ C∞(M,
∧∗

M)

and obtain the three direct sum decompositions

(7.45)

C−∞(M,
∧∗

M) = H∗Ho ⊕ (d+ δ)C−∞(M,
∧∗

M),

L2(M,
∧∗

M) = H∗Ho ⊕ (d+ δ)L2(M,
∧∗

M),

C∞(M,
∧∗

M) = H∗Ho ⊕ (d+ δ)C∞(M,
∧∗

M).

The same complement occurs in all three cases in view of (7.43).
From (7.43) directly, all the “harmonic” forms in Hk

Ho(M) are closed and so
there is a natural map

(7.46) Hk
Ho(M) −→ Hk

dR(M) −→ Hk
dR,C−∞(M)

where the two de Rham spaces are those in (7.35), not yet shown to be equal.
We proceed to show that the maps in (7.46) are isomorphisms. First to

show injectivity, suppose u ∈ Hk
Ho(M) is mapped to zero in either space. This

means u = dv where v is either C∞ or distributional, so it suffices to suppose
v ∈ C−∞(M,

∧k−1
M). Since u is smooth the integration by parts in the distribu-

tional pairing

‖u‖2L2 =
∫
M

〈u, dv〉 ν =
∫
M

〈δu, v〉 ν = 0

is justified, so u = 0 and the maps are injective.
To see surjectivity, use the Hodge decomposition (7.45). If u′ ∈ C−∞(M,

∧k
M)

or C∞(M,
∧k

M), we find

(7.47) u′ = u0 + (d+ δ)v

where correspondingly, v ∈ C−∞(M,
∧∗

M) or C∞(M,
∧∗

M) and u0 ∈ Hk
Ho(M). If

u′ is closed, du′ = 0, then dδv = 0 follows from applying d to (7.47) and hence (d+
δ)δv = 0, since δ2 = 0. Thus δv ∈ H∗Ho(M) and in particular, δv ∈ C∞(M,

∧∗
M).

Then the integration by parts in

‖δv‖2L2 =
∫
〈δv, δv〉 ν =

∫
〈v, (d+ δ)δv〉 ν = 0

is justified, so δv = 0. Then (7.47) shows that any closed form, smooth or distribu-
tional, is cohomologous in the same sense to u0 ∈ Hk

Ho(M). Thus the natural maps
(7.46) are isomorphisms and the Theorem is proved. �

Thus, on a compact Riemannian manifold (whether orientable or not), each de
Rham class has a unique harmonic representative.

3. Coulomb potential

4. Dirac strings

Addenda to Chapter 7



CHAPTER 8

Monopoles

0.6Q; Revised: 6-8-2007; Run: February 7, 2008

1. Gauge theory

2. Bogomolny equations

(1) Compact operators, spectral theorem
(2) Families of Fredholm operators(*)
(3) Non-compact self-adjoint operators, spectral theorem
(4) Spectral theory of the Laplacian on a compact manifold
(5) Pseudodifferential operators(*)
(6) Invertibility of the Laplacian on Euclidean space
(7) Lie groups(‡), bundles and gauge invariance
(8) Bogomolny equations on R3

(9) Gauge fixing
(10) Charge and monopoles
(11) Monopole moduli spaces

* I will drop these if it looks as though time will become an issue.
†,‡ I will provide a brief and elementary discussion of manifolds and Lie groups if
that is found to be necessary.
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