SECOND TEST IN 18.102, 18 APRIL, 2013 SOLUTIONS (SOMEWHAT BRIEF)

RICHARD MELROSE

Question 1

Show that, in a separable Hilbert space, a weakly convergent sequence $\{v_n\}$, is (strongly) convergent if and only if

(1)
$$\|v\|_H = \lim_{n \to \infty} \|v_n\|_H$$

where v is the weak limit.

Solution. If $v_n \to v$ then by the continuity of the norm, $||v_n|| \to ||v||$. Conversely, suppose $v_n \rightharpoonup v$ and $||v_n|| \to ||v||$. For any weakly convergent sequence in a separable Hilbert space $||v|| \le \liminf ||v_n||$ so given $\epsilon > 0$, $||v|| \le ||v_n|| + \epsilon$ for large n. Since $v_n + v \rightharpoonup 2v$ the parallelogram law gives

$$||v - v_n||^2 = 2||v||^2 + 2||v_n||^2 - ||v + v_n||^2 \le 2||v||^2 + 2||v_n||^2 - 4||v||^2 + \epsilon$$

for large n, so $v \to v_n$.

Question 2

Let $e_k, k \in \mathbb{N}$, be an orthonormal basis in a separable Hilbert space, H. Show that there is a uniquely defined bounded linear operator $T: H \longrightarrow H$, satisfying

(2)
$$Te_j = e_{j-1} \; \forall \; j \ge 2, \; Te_1 = 0$$

and that T + B has one-dimensional null space if B is bounded and ||B|| < 1.

Solution: Define $Tv = \sum_{j\geq 2} \langle v, e_j \rangle e_{j-1}$ for all $v \in H$. The (2) holds, T is linear and $||Tv|| \leq ||v||$ by Bessel's inequality. Similarly we define $Sv = \sum_{j\geq 1} \langle v, e_j \rangle e_{j+1}$ and

note that $||S|| \leq 1$, TS = Id. If $B : H \longrightarrow H$ is a bounded linear operator with ||B|| < 1 we look for a solution of (T+B)v = 0 in the form $v = e_1 + Sw$ which is non-zero since $\langle e_1, Sw \rangle = 0$. Thus

$$(T+B)(e_1+Sw) = Te_1 + TSw + Be_1 + BSw = 0$$
 iff $(Id+BS)w = -Be_1$.

Since $||BS|| \leq ||B|| ||S||$ we know from Neumann series that Id +BS is invertible, so such a w exists and hence T + B has null space of dimension at least one. However, the argument can be reversed to see that the only elements in the null space are of the $c(e_1 + Sw)$ for the $w = -(\mathrm{Id} + BS)^{-1}Be_1$ constructed above.

RICHARD MELROSE

Show that a continuous function $K : [0,1] \longrightarrow L^2(0,2\pi)$ has the property that the Fourier series of $K(x) \in L^2(0,2\pi)$, for $x \in [0,1]$, converges uniformly in the sense that if $K_n(x)$ is the sum of the Fourier series over $|k| \leq n$ then $K_n : [0,1] \longrightarrow L^2(0,2\pi)$ is also continuous and

(3)
$$\sup_{x \in [0,1]} \|K(x) - K_n(x)\|_{L^2(0,2\pi)} \to 0.$$

Solution: Since K is a compact metric space, the image of [0, 1] under a continuous map into the metric space $L^2(0, 2\pi)$ is a compact set. The equi-small tails property of compact sets implies that if P_n is the projection onto the span of the terms e_k , $|k| \leq n$, in the Fourier basis then given $\epsilon > 0$ there exists n such that

 $\|(\mathrm{Id} - P_n)K(x)\|_{L^2} \le \epsilon \ \forall \ x \in [0, 1].$

Now, $K_n(x) = P_n K(x) = \sum_{|k| \le n} \langle K(x), e_k \rangle e_k$ is continuous on $[0, 1] \times [0, 2\pi]$, since

the coefficients $\langle K(x), e_k \rangle$ are continuous in x (the inner product being continuous on L^2) and

$$\sup_{x \in [0,1]} \|K(x) - K_n(x)\|_{L^2} = \|(\mathrm{Id} - P_n)K(x)\|_{L^2} < \epsilon$$

for large n show the convergence to 0.

Department of Mathematics, Massachusetts Institute of Technology $E\text{-}mail\ address:\ \texttt{rbmgmath.mit.edu}$