PROBLEM SET 4 FOR 18.102, SPRING 2013 DUE FRIDAY 15 MARCH (SO 4AM, 16 MARCH$)$.

RICHARD MELROSE

Problem 4.1
Let H be a normed space (over \mathbb{C}) in which the norm satisfies the parallelogram law:

$$
\begin{equation*}
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) \forall u, v \in H \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
(u, v)=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}+i\|u+i v\|^{2}-i\|u-i v\|^{2}\right) \tag{2}
\end{equation*}
$$

is a positive-definite Hermitian form which induces the given norm.

Problem 4.2

Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a basis $\left\{v_{i}\right\}_{i=1}^{n}$, meaning that any element of H can be written

$$
\begin{equation*}
v=\sum_{i} c_{i} v_{i} \tag{3}
\end{equation*}
$$

and there is no dependence relation between the v_{i} 's - the presentation of $v=0$ in the form (3) is unique. Show that H has an orthonormal basis, $\left\{e_{i}\right\}_{i=1}^{n}$ satisfying $\left(e_{i}, e_{j}\right)=\delta_{i j}(=1$ if $i=j$ and 0 otherwise). Check that for the orthonormal basis the coefficients in (3) are $c_{i}=\left(v, e_{i}\right)$ and that the map

$$
\begin{equation*}
T: H \ni v \longmapsto\left(\left(v, e_{1}\right),\left(v, e_{2}\right), \ldots,\left(v, e_{n}\right)\right) \in \mathbb{C}^{n} \tag{4}
\end{equation*}
$$

is a linear isomorphism with the properties

$$
\begin{equation*}
(u, v)=\sum_{i}(T u)_{i} \overline{(T v)_{i}},\|u\|_{H}=\|T u\|_{\mathbb{C}^{n}} \forall u, v \in H \tag{5}
\end{equation*}
$$

Why is a finite dimensional preHilbert space a Hilbert space?

Problem 4.3

Let $e_{i}, i \in \mathbb{N}$, be an orthonormal sequence in a separable Hilbert space H. Suppose that for each element u in a dense subset $D \subset H$

$$
\begin{equation*}
\sum_{i}\left|\left(u, e_{i}\right)\right|^{2}=\|u\|^{2} . \tag{6}
\end{equation*}
$$

Conclude that e_{i} is an orthonormal basis, i.e. is complete.

Consider the sequence space

$$
\begin{equation*}
h^{2,1}=\left\{c: \mathbb{N} \ni j \longmapsto c_{j} \in \mathbb{C} ; \sum_{j}\left(1+j^{2}\right)\left|c_{j}\right|^{2}<\infty\right\} \tag{7}
\end{equation*}
$$

(1) Show that

$$
\begin{equation*}
h^{2,1} \times h^{2,1} \ni(c, d) \longmapsto\langle c, d\rangle=\sum_{j}\left(1+j^{2}\right) c_{j} \overline{d_{j}} \tag{8}
\end{equation*}
$$

is an Hermitian inner form which turns $h^{2,1}$ into a Hilbert space.
(2) Denoting the norm on this space by $\|\cdot\|_{2,1}$ and the norm on l^{2} by $\|\cdot\|_{2}$, show that

$$
\begin{equation*}
h^{2,1} \subset l^{2},\|c\|_{2} \leq\|c\|_{2,1} \forall c \in h^{2,1} \tag{9}
\end{equation*}
$$

Problem 4.5
Suppose that H_{1} and H_{2} are two different Hilbert spaces and $A: H_{1} \longrightarrow H_{2}$ is a bounded linear operator. Show that there is a unique bounded linear operator (the adjoint) $A^{*}: H_{2} \longrightarrow H_{1}$ with the property

$$
\begin{equation*}
\left\langle A u_{1}, u_{2}\right\rangle_{H_{2}}=\left\langle u_{1}, A^{*} u_{2}\right\rangle_{H_{1}} \forall u_{1} \in H_{1}, u_{2} \in H_{2} . \tag{10}
\end{equation*}
$$

Problem 4.6 - Extra
Recall (from Rudin's book for instance) that if $F:[a, b] \longrightarrow[A, B]$ is an increasing continuously differentiable map, in the strong sense that $F^{\prime}(x)>0$, between finite intervals then for any continuous function $f:[A, B] \longrightarrow \mathbb{C}$, (Rudin shows it for Riemann integrable functions)

$$
\begin{equation*}
\int_{A}^{B} f(y) d y=\int_{a}^{b} f(F(x)) F^{\prime}(x) d x \tag{11}
\end{equation*}
$$

Prove the same identity for every $f \in \mathcal{L}^{1}((A, B))$, which in particular requires the right side to make sense.

$$
\text { Problem } 4.7 \text { - Extra }
$$

A subset $E \subset \mathbb{R}$ is said to be of finite measure (resp. measurable) if the characteristic function

$$
\chi_{E}(x)= \begin{cases}1 & \text { if } x \in E \tag{12}\\ 0 & \text { if } x \notin E\end{cases}
$$

is in $\mathcal{L}^{1}(\mathbb{R})$ (resp. $\chi_{[-R, R]} \chi_{E} \in \mathcal{L}^{1}(\mathbb{R})$ for every R). The measure is

$$
\mu(E)=\lim _{N \rightarrow \infty} \int \chi_{[-N, N]} \chi_{E}
$$

- so the measure of a measurable set might be infinite. Show that if $E_{i}, i \in \mathbb{N}$ is a countable collection of measurable sets then $E=\sum_{i} E_{i}$ is measurable and that

$$
\begin{gather*}
\mu(E) \leq \sum_{i} \mu\left(E_{i}\right) \tag{13}\\
\mu(E)=\sum_{i} \mu\left(E_{i}\right) \text { if } E_{i} \cap E_{j}=\emptyset \text { for } i \neq j
\end{gather*}
$$

Department of Mathematics, Massachusetts Institute of Technology
E-mail address: rbm@math.mit.edu

