QUESTIONS 18.102 FINAL, SPRING 2013

I expect to choose 6 of these questions on the final. Note that some are rather straightforward and some are less so, I will choose some of each. Before the day of the exam, you can ask me for hints.

All Hilbert spaces should be taken to be separable and non-trivial, i.e. containing an element other than 0.

Problem 1

Let H_i , i = 1, 2 be two Hilbert spaces with inner products $(\cdot, \cdot)_i$ and suppose that $I: H_1 \longrightarrow H_2$ is a continuous linear map between them. Suppose that

- the range of I is dense in H_2
- *I* is injective.

• if $v_n \rightarrow v$ (converges weakly) in H_1 then $I(v_n) \rightarrow I(v)$ in H_2 .

Show that

- (1) there is a continuous linear map $Q : H_2 \longrightarrow H_1$ such that $(u, I(f))_2 = (Qu, f)_1 \forall f \in H_1$.
- (2) as a map from H_1 to itself, $Q \circ I$ is bounded and self-adjoint.
- (3) as a map on H_1 , $Q \circ I$ is compact.
- (4) as a map on H_2 , $I \circ Q$ has the same eigenvalues as $Q \circ I$ on H_1 .

Problem 2

Let $A_j \subset \mathbb{R}$ be a sequence of subsets with the property that the characteristic function, χ_j of A_j , is integrable for each j. Show that the characteristic function of $\mathbb{R} \setminus A$, where $A = \bigcup_j A_j$ is locally integrable.

Problem 3

If H is a Hilbert space let $l^2(H)$ be the space of sequences $h : \mathbb{N} \longrightarrow H$ such that $\sum_j \|u(j)\|_H^2 < \infty$. Show that this is a Hilbert space and that there is a bounded linear bijection $l^2(H) \longrightarrow H$ if and only if H is not finite dimensional.

Problem 4

Let A be a Hilbert-Schmidt operator on a separable Hilbert space H, which means that for some orthonormal basis $\{e_i\}$

(1)
$$\sum_{i} \|Ae_i\|^2 < \infty.$$

Using Bessel's identity to expand $||Ae_i||^2$ with respect to another orthonormal basis $\{f_j\}$ show that $\sum_j ||A^*f_j||^2 = \sum_i ||Ae_i||^2$. Conclude that the sum in (1) is independent of the othornormal basis used to define it and that the Hilbert-Schmidt operators form a Hilbert space.

18.102 FINAL EXAM 2011

Problem 5

Let $a: [0, 2\pi] \longrightarrow L^2(0, 2\pi)$ be a continuous map. Show that

$$Af(x) = \int_0^{2\pi} a(x)f, \ f \in L^2(0, 2\pi)$$

defines a compact operator from $L^2(0, 2\pi)$ to $\mathcal{C}([0, 2\pi])$ (i.e. the image of a bounded set is equicontinuous). Conversely show that if $A: L^2(0, 2\pi) \longrightarrow \mathcal{C}([0, 2\pi])$ is given as a compact (in particular bounded) operator for the supremum norm on $\mathcal{C}([0, 2\pi])$ then there exists such a map a.

Problem 6

Let $u_n: [0, 2\pi] \longrightarrow \mathbb{C}$ be a sequence of continuously differentiable functions which is uniformly bounded, with bounded derivatives i.e. $\sup_n \sup_{x \in [0,2\pi]} |u_n(x)| < \infty$ and $\sup_n \sup_{x \in [0,2\pi]} |u'_n(x)| < \infty$. Show that u_n has a subsequence which converges in $L^2([0, 2\pi])$.

PROBLEM 7

Suppose that $f \in \mathcal{L}^1(0, 2\pi)$ is such that the constants $c_k = \int_{(0, 2\pi)} f(x) e^{-ikx}$, $k \in$ \mathbb{Z} , satisfy $\sum_{k \in \mathbb{Z}} |c_k|^2 < \infty$. Show that $f \in L^2(0, 2\pi)$.

PROBLEM 8

Carefully justify each step in the following proof of the uniform boundedness principle (see Alan D. Sokal, 'A really simple elementary proof of the uniform boundedness theorem', Arxiv math:1005.1585).

Theorem: If a sequence, or more generally a collection \mathcal{T} , of bounded operators $T: V \longrightarrow W$, where V is a Banach space and W is a normed space, is such that for each $v \in V$, $\sup_{T \in \mathcal{T}} ||T(v)||_W < \infty$ then $\sup_{T \in \mathcal{T}} ||T|| < \infty$.

Proof:

- (1) Suppose to the contrary that $\sup_{T \in \mathcal{T}} ||T|| = \infty$.
- (2) Choose a sequence T_k in \mathcal{T} such that $||T_k|| \ge 4^k$.
- (3) Observe that for a bounded operator, S, between two normed spaces

$$\max\left[\|S(v+v')\|, \|S(v-v')\|\right] \ge \frac{1}{2} \left[\|S(v+v')\| + \|S(v-v')\|\right] \ge \|Sv'\|$$

(4) Deduce that

$$\sup_{e \in B(v,r)} \|Su\| \ge \|S\| r \forall v \in V \text{ and } r > 0.$$

- (5) Set $v_0 = 0$ and note that for $k \ge 1$, proceeding inductively, points $v_k \in V$ (c) Set $v_0 = v$ and note that for $k \ge 1$, proceeding inductively, points v_k can be chosen such that $||v_k - v_{k-1}|| \le 3^{-k}$ and $||T_k v_k|| \ge \frac{2}{3}3^{-k}||T_k||$. (6) The sequence $\{v_k\}_{k=1}^{\infty}$ is Cauchy, hence converges to some $v \in V$. (7) Since $||v - v_k|| \le \frac{1}{2}3^{-k}$, $||T_k v|| \ge \frac{1}{6}3^{-k}||T_k|| \ge \frac{1}{6}(4/3)^k \to \infty$. (8) Hence $\sup_{T \in \mathcal{T}} ||T|| < \infty$.

Problem 9

Let B_n be a sequence of bounded linear operators on a Hilbert space H such that for each u and $v \in H$ the sequence $(B_n u, v)$ converges in \mathbb{C} . Show that there is a uniquely defined bounded operator B on H such that

$$(Bu, v) = \lim_{n \to \infty} (B_n u, v) \ \forall \ u, v \in H.$$

Problem 10

Let $T: H_1 \longrightarrow H_2$ be a continuous linear map between two Hilbert spaces and suppose that T is both surjective and injective.

(1) Let $A_2 \in \mathcal{K}(H_2)$ be a compact linear operator on H_2 , show that there is a compact linear operator $A_1 \in \mathcal{K}(H_1)$ such that

$$A_2T = TA_1.$$

(2) If A_2 is self-adjoint (as well as being compact) and H_1 is infinite dimensional, show that A_1 has an infinite number of linearly independent eigenvectors.

Problem 11

Suppose $P \subset H$ is a closed linear subspace of a Hilbert space, with $\pi_P : H \longrightarrow P$ the orthogonal projection onto P. If H is separable and A is a compact self-adjoint operator on H, show that there is a complete orthonormal basis of H each element of which satisfies $\pi_P A \pi_P e_i = t_i e_i$ for some $t_i \in \mathbb{R}$.

Problem 12

Let $e_j = c_j C^j e^{-x^2/2}$, $c_j > 0$, where j = 1, 2, ..., and $C = -\frac{d}{dx} + x$ is the creation operator, be the orthonormal basis of $L^2(\mathbb{R})$ consisting of the eigenfunctions of the harmonic oscillator discussed in class. You may assume completeness in $L^2(\mathbb{R})$ and use the facts established in class that $-\frac{d^2 e_j}{dx^2} + x^2 e_j = (2j+1)e_j$, that $c_j = 2^{-j/2}(j!)^{-\frac{1}{2}}\pi^{-\frac{1}{4}}$ and that $e_j = p_j(x)e_0$ for a polynomial of degree j. Compute Ce_j and Ae_j in terms of the basis and hence arrive at a formula for de_j/dx . Use this to show that the sequence $j^{-\frac{1}{2}}\frac{de_j}{dx}$ is bounded in $L^2(\mathbb{R})$. Conclude that if

(2)
$$H^{1}_{iso} = \{ u \in L^{2}(\mathbb{R}); \sum_{j \ge 1} j | (u, e_{j}) |^{2} < \infty \}$$

then there is a uniquely defined operator $D: H^1_{iso} \longrightarrow L^2(\mathbb{R})$ such that $De_j = \frac{de_j}{dx}$ for each j.

Problem 13

Let A be a compact self-adjoint operator on a separable Hilbert space and suppose that for *any* orthonormal basis

$$\sum_i |(Ae_i, e_i)| < \infty$$

Show that the eigenvalues of A, if infinite in number, form a sequence in l^1 .

Problem 14

Consider the subspace $H \subset C[0, 2\pi]$ consisting of those continuous functions on $[0, 2\pi]$ which satisfy

(3)
$$u(x) = \int_0^x U(x), \ \forall \ x \in [0, 2\pi]$$

for some $U \in L^2(0, 2\pi)$ (depending on u of course). Show that the function U is determined by u (given that it exists), that

(4)
$$||u||_{H}^{2} = \int_{(0,2\pi)} |U|^{2}$$

turns H into a Hilbert space.

Problem 15

Let $e_j = c_j C^j e^{-x^2/2}$, $c_j > 0$, where $C = -\frac{d}{dx} + x$ is the creation operator, be the orthonormal basis of $L^2(\mathbb{R})$ consisting of the eigenfunctions of the harmonic oscillator discussed in class. Define an operator on $L^2(\mathbb{R})$ by

$$Au = \sum_{j=0}^{\infty} (2j+1)^{-\frac{1}{2}} (u, e_j)_{L^2} e_j.$$

- (1) Show that A is compact as an operator on $L^2(\mathbb{R})$.
- (2) Suppose that $V \in \mathcal{C}_{\infty}^{0}(\mathbb{R})$ is a bounded, real-valued, continuous function on \mathbb{R} . Show that $L^{2}(\mathbb{R})$ has an orthonormal basis consisting of eigenfunctions of K = AVA, where V is acting by multiplication on $L^{2}(\mathbb{R})$.

Problem 16

Suppose that $f \in \mathcal{L}^1(0, 2\pi)$ is such that the constants

$$c_k = \int_{(0,2\pi)} f(x)e^{-ikx}, \ k \in \mathbb{Z},$$

satisfy

$$\sum_{k\in\mathbb{Z}}|c_k|^2<\infty$$

Show that $f \in \mathcal{L}^2(0, 2\pi)$.

Problem 17

Consider the space of those complex-valued functions on [0, 1] for which there is a constant C (depending on the function) such that

(5)
$$|u(x) - u(y)| \le C|x - y|^{\frac{1}{2}} \quad \forall x, y \in [0, 1].$$

Show that this is a Banach space with norm

(6)
$$\|u\|_{\frac{1}{2}} = \sup_{[0,1]} |u(x)| + \inf_{(5) \text{ holds}} C$$

4

Problem 18

Let $B: L^2(\mathbb{R}) \times L^2(\mathbb{R}) \longrightarrow \mathbb{C}$ be a bilinear form (meaning it is linear in each factor when the other is held fixed) such that there is a constant C > 0 and

$$|B(u,v)| \le C ||u||_{L^2} ||v||_{L^2} \ \forall \ u, v \in L^2(\mathbb{R}).$$

Show that there is a bounded linear operator $T: L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$ such that $\int d^2 f(x) dx = f(x) dx$

$$\int_{\mathbb{R}} T(u)(x)v(x) = B(u,v) \ \forall \ u,v \in L^{2}(\mathbb{R})$$