QUESTIONS 18.102 FINAL, SPRING 2013

I expect to choose 6 of these questions on the final. Note that some are rather straightforward and some are less so, I will choose some of each. Before the day of the exam, you can ask me for hints.

All Hilbert spaces should be taken to be separable and non-trivial, i.e. containing an element other than 0 .

Problem 1

Let $H_{i}, i=1,2$ be two Hilbert spaces with inner products $(\cdot, \cdot)_{i}$ and suppose that $I: H_{1} \longrightarrow H_{2}$ is a continuous linear map between them. Suppose that

- the range of I is dense in H_{2}
- I is injective.
- if $v_{n} \rightharpoonup v$ (converges weakly) in H_{1} then $I\left(v_{n}\right) \rightarrow I(v)$ in H_{2}.

Show that
(1) there is a continuous linear map $Q: H_{2} \longrightarrow H_{1}$ such that $(u, I(f))_{2}=$ $(Q u, f)_{1} \forall f \in H_{1}$.
(2) as a map from H_{1} to itself, $Q \circ I$ is bounded and self-adjoint.
(3) as a map on $H_{1}, Q \circ I$ is compact.
(4) as a map on $H_{2}, I \circ Q$ has the same eigenvalues as $Q \circ I$ on H_{1}.

Problem 2

Let $A_{j} \subset \mathbb{R}$ be a sequence of subsets with the property that the characteristic function, χ_{j} of A_{j}, is integrable for each j. Show that the characteristic function of $\mathbb{R} \backslash A$, where $A=\bigcup_{j} A_{j}$ is locally integrable.

Problem 3

If H is a Hilbert space let $l^{2}(H)$ be the space of sequences $h: \mathbb{N} \longrightarrow H$ such that $\sum_{j}\|u(j)\|_{H}^{2}<\infty$. Show that this is a Hilbert space and that there is a bounded linear bijection $l^{2}(H) \longrightarrow H$ if and only if H is not finite dimensional.

Problem 4

Let A be a Hilbert-Schmidt operator on a separable Hilbert space H, which means that for some orthonormal basis $\left\{e_{i}\right\}$

$$
\begin{equation*}
\sum_{i}\left\|A e_{i}\right\|^{2}<\infty \tag{1}
\end{equation*}
$$

Using Bessel's identity to expand $\left\|A e_{i}\right\|^{2}$ with respect to another orthonormal basis $\left\{f_{j}\right\}$ show that $\sum_{j}\left\|A^{*} f_{j}\right\|^{2}=\sum_{i}\left\|A e_{i}\right\|^{2}$. Conclude that the sum in (1) is independent of the othornormal basis used to define it and that the Hilbert-Schmidt operators form a Hilbert space.

Problem 5

Let $a:[0,2 \pi] \longrightarrow L^{2}(0,2 \pi)$ be a continuous map. Show that

$$
A f(x)=\int_{0}^{2 \pi} a(x) f, f \in L^{2}(0,2 \pi)
$$

defines a compact operator from $L^{2}(0,2 \pi)$ to $\mathcal{C}([0,2 \pi])$ (i.e. the image of a bounded set is equicontinuous). Conversely show that if $A: L^{2}(0,2 \pi) \longrightarrow \mathcal{C}([0,2 \pi])$ is given as a compact (in particular bounded) operator for the supremum norm on $\mathcal{C}([0,2 \pi])$ then there exists such a map a.

Problem 6

Let $u_{n}:[0,2 \pi] \longrightarrow \mathbb{C}$ be a sequence of continuously differentiable functions which is uniformly bounded, with bounded derivatives i.e. $\sup _{n} \sup _{x \in[0,2 \pi]}\left|u_{n}(x)\right|<\infty$ and $\sup _{n} \sup _{x \in[0,2 \pi]}\left|u_{n}^{\prime}(x)\right|<\infty$. Show that u_{n} has a subsequence which converges in $L^{2}([0,2 \pi])$.

Problem 7

Suppose that $f \in \mathcal{L}^{1}(0,2 \pi)$ is such that the constants $c_{k}=\int_{(0,2 \pi)} f(x) e^{-i k x}, k \in$ \mathbb{Z}, satisfy $\sum_{k \in \mathbb{Z}}\left|c_{k}\right|^{2}<\infty$. Show that $f \in L^{2}(0,2 \pi)$.

Problem 8

Carefully justify each step in the following proof of the uniform boundedness principle (see Alan D. Sokal, 'A really simple elementary proof of the uniform boundedness theorem', Arxiv math:1005.1585).

Theorem: If a sequence, or more generally a collection \mathcal{T}, of bounded operators $T: V \longrightarrow W$, where V is a Banach space and W is a normed space, is such that for each $v \in V, \sup _{T \in \mathcal{T}}\|T(v)\|_{W}<\infty$ then $\sup _{T \in \mathcal{T}}\|T\|<\infty$.

Proof:
(1) Suppose to the contrary that $\sup _{T \in \mathcal{T}}\|T\|=\infty$.
(2) Choose a sequence T_{k} in \mathcal{T} such that $\left\|T_{k}\right\| \geq 4^{k}$.
(3) Observe that for a bounded operator, S, between two normed spaces

$$
\max \left[\left\|S\left(v+v^{\prime}\right)\right\|,\left\|S\left(v-v^{\prime}\right)\right\|\right] \geq \frac{1}{2}\left[\left\|S\left(v+v^{\prime}\right)\right\|+\left\|S\left(v-v^{\prime}\right)\right\|\right] \geq\left\|S v^{\prime}\right\|
$$

(4) Deduce that

$$
\sup _{u \in B(v, r)}\|S u\| \geq\|S\| r \forall v \in V \text { and } r>0
$$

(5) Set $v_{0}=0$ and note that for $k \geq 1$, proceeding inductively, points $v_{k} \in V$ can be chosen such that $\left\|v_{k}-v_{k-1}\right\| \leq 3^{-k}$ and $\left\|T_{k} v_{k}\right\| \geq \frac{2}{3} 3^{-k}\left\|T_{k}\right\|$.
(6) The sequence $\left\{v_{k}\right\}_{k=1}^{\infty}$ is Cauchy, hence converges to some $v \in V$.
(7) Since $\left\|v-v_{k}\right\| \leq \frac{1}{2} 3^{-k},\left\|T_{k} v\right\| \geq \frac{1}{6} 3^{-k}\left\|T_{k}\right\| \geq \frac{1}{6}(4 / 3)^{k} \rightarrow \infty$.
(8) Hence $\sup _{T \in \mathcal{T}}\|T\|<\infty$.

Problem 9

Let B_{n} be a sequence of bounded linear operators on a Hilbert space H such that for each u and $v \in H$ the sequence $\left(B_{n} u, v\right)$ converges in \mathbb{C}. Show that there is a uniquely defined bounded operator B on H such that

$$
(B u, v)=\lim _{n \rightarrow \infty}\left(B_{n} u, v\right) \forall u, v \in H .
$$

Problem 10

Let $T: H_{1} \longrightarrow H_{2}$ be a continuous linear map between two Hilbert spaces and suppose that T is both surjective and injective.
(1) Let $A_{2} \in \mathcal{K}\left(H_{2}\right)$ be a compact linear operator on H_{2}, show that there is a compact linear operator $A_{1} \in \mathcal{K}\left(H_{1}\right)$ such that

$$
A_{2} T=T A_{1} .
$$

(2) If A_{2} is self-adjoint (as well as being compact) and H_{1} is infinite dimensional, show that A_{1} has an infinite number of linearly independent eigenvectors.

Problem 11

Suppose $P \subset H$ is a closed linear subspace of a Hilbert space, with $\pi_{P}: H \longrightarrow P$ the orthogonal projection onto P. If H is separable and A is a compact self-adjoint operator on H, show that there is a complete orthonormal basis of H each element of which satisfies $\pi_{P} A \pi_{P} e_{i}=t_{i} e_{i}$ for some $t_{i} \in \mathbb{R}$.

Problem 12

Let $e_{j}=c_{j} C^{j} e^{-x^{2} / 2}, c_{j}>0$, where $j=1,2, \ldots$, and $C=-\frac{d}{d x}+x$ is the creation operator, be the orthonormal basis of $L^{2}(\mathbb{R})$ consisting of the eigenfunctions of the harmonic oscillator discussed in class. You may assume completeness in $L^{2}(\mathbb{R})$ and use the facts established in class that $-\frac{d^{2} e_{j}}{d x^{2}}+x^{2} e_{j}=(2 j+1) e_{j}$, that $c_{j}=2^{-j / 2}(j!)^{-\frac{1}{2}} \pi^{-\frac{1}{4}}$ and that $e_{j}=p_{j}(x) e_{0}$ for a polynomial of degree j. Compute $C e_{j}$ and $A e_{j}$ in terms of the basis and hence arrive at a formula for $d e_{j} / d x$. Use this to show that the sequence $j^{-\frac{1}{2} \frac{d e_{j}}{d x}}$ is bounded in $L^{2}(\mathbb{R})$. Conclude that if

$$
\begin{equation*}
H_{\mathrm{iso}}^{1}=\left\{u \in L^{2}(\mathbb{R}) ; \sum_{j \geq 1} j\left|\left(u, e_{j}\right)\right|^{2}<\infty\right\} \tag{2}
\end{equation*}
$$

then there is a uniquely defined operator $D: H_{\mathrm{iso}}^{1} \longrightarrow L^{2}(\mathbb{R})$ such that $D e_{j}=\frac{d e_{j}}{d x}$ for each j.

Problem 13

Let A be a compact self-adjoint operator on a separable Hilbert space and suppose that for any orthonormal basis

$$
\sum_{i}\left|\left(A e_{i}, e_{i}\right)\right|<\infty
$$

Show that the eigenvalues of A, if infinite in number, form a sequence in l^{1}.

Problem 14

Consider the subspace $H \subset \mathcal{C}[0,2 \pi]$ consisting of those continuous functions on $[0,2 \pi]$ which satisfy

$$
\begin{equation*}
u(x)=\int_{0}^{x} U(x), \forall x \in[0,2 \pi] \tag{3}
\end{equation*}
$$

for some $U \in L^{2}(0,2 \pi)$ (depending on u of course). Show that the function U is determined by u (given that it exists), that

$$
\begin{equation*}
\|u\|_{H}^{2}=\int_{(0,2 \pi)}|U|^{2} \tag{4}
\end{equation*}
$$

turns H into a Hilbert space.

Problem 15

Let $e_{j}=c_{j} C^{j} e^{-x^{2} / 2}, c_{j}>0$, where $C=-\frac{d}{d x}+x$ is the creation operator, be the orthonormal basis of $L^{2}(\mathbb{R})$ consisting of the eigenfunctions of the harmonic oscillator discussed in class. Define an operator on $L^{2}(\mathbb{R})$ by

$$
A u=\sum_{j=0}^{\infty}(2 j+1)^{-\frac{1}{2}}\left(u, e_{j}\right)_{L^{2}} e_{j} .
$$

(1) Show that A is compact as an operator on $L^{2}(\mathbb{R})$.
(2) Suppose that $V \in \mathcal{C}_{\infty}^{0}(\mathbb{R})$ is a bounded, real-valued, continuous function on \mathbb{R}. Show that $L^{2}(\mathbb{R})$ has an orthonormal basis consisting of eigenfunctions of $K=A V A$, where V is acting by multiplication on $L^{2}(\mathbb{R})$.

Problem 16

Suppose that $f \in \mathcal{L}^{1}(0,2 \pi)$ is such that the constants

$$
c_{k}=\int_{(0,2 \pi)} f(x) e^{-i k x}, k \in \mathbb{Z}
$$

satisfy

$$
\sum_{k \in \mathbb{Z}}\left|c_{k}\right|^{2}<\infty
$$

Show that $f \in \mathcal{L}^{2}(0,2 \pi)$.

Problem 17

Consider the space of those complex-valued functions on $[0,1]$ for which there is a constant C (depending on the function) such that

$$
\begin{equation*}
|u(x)-u(y)| \leq C|x-y|^{\frac{1}{2}} \forall x, y \in[0,1] . \tag{5}
\end{equation*}
$$

Show that this is a Banach space with norm

$$
\begin{equation*}
\|u\|_{\frac{1}{2}}=\sup _{[0,1]}|u(x)|+\inf _{(5) \text { holds }} C . \tag{6}
\end{equation*}
$$

Problem 18

Let $B: L^{2}(\mathbb{R}) \times L^{2}(\mathbb{R}) \longrightarrow \mathbb{C}$ be a bilinear form (meaning it is linear in each factor when the other is held fixed) such that there is a constant $C>0$ and

$$
|B(u, v)| \leq C\|u\|_{L^{2}}\|v\|_{L^{2}} \forall u, v \in L^{2}(\mathbb{R})
$$

Show that there is a bounded linear operator $T: L^{2}(\mathbb{R}) \longrightarrow L^{2}(\mathbb{R})$ such that

$$
\int_{\mathbb{R}} T(u)(x) v(x)=B(u, v) \forall u, v \in L^{2}(\mathbb{R}) .
$$

