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Let’s try to understand a little more based on what I did last time. We can
define the ‘Dirichlet domain’ to be

(1)

H2
D(0, 2π) = {(u, f) ∈ L2(0, 2π)× L2(0, 2π);

∃ vn : [0, 2π] −→ C, twice continuously differentiable

with vn(0) = 0 = vn(2π), vn → u ∈ L2(0, 2π), −d
2vn
dx2

→ f ∈ L2(0, 2π)}.

This has a natural preHilbert structure given by

(2) ((u1, f1), (u2, f2))H2
D

=

∫
u1u2 +

∫
f1f2.

That is, we regard it as a subspace of L2(0, 2π)× L2(0, 2π).
So, apply your understanding of L2 and elementary calculus! It is a preHilbert

space, is it complete? Yes, basically because it is defined as a closure. If (un, fn) is
Cauchy then by completeness of L2, un → u and fn → f in L2(0, 2π). Is the pair

(u, f) ∈ H2
D(0, 2π)? Suppose vn,j → un and − d2

dx2 vn,j → fn in L2(0, 2π) for each n
with vn,j twice continuously differentiable and with vn,j(0) = 0 = vn,j(2π) then for
each n there exists j = j(n) such that

(3) ‖vn,j − un‖2L2 + ‖ − d2vn,j
dx2

− fn‖2 < 2−n.

Then the sequence wn = vn,j(n) is such that (wn,−d
2wn

dx2 ) → (u, f) in L2(0, 2π) ×
L2(0, 2π). Thus in fact H2

D(0, 2π) is a Hilbert space.
Last time I defined an operator K which is an integral operator

(4)

L2(0, 2π) 3 f 7−→ Kf ∈ L2(0, 2π), Kf(x) =

∫ 2π

0

K(x, s)f(s)ds,

K(x, s) = (s− x)H(x− s) +
x

2π
(2π − s) =

{
s− x+ x− xs

2π x ≥ s
x− xs

2π x ≤ s

=⇒ K(x, s) = min(x, s)− xs

2π
≥ 0.

In fact

(5) Kf(x) = −
∫ x

0

∫ t

0

f(s)dsdt+
x

2π

∫ 2π

0

∫ t

0

f(s)dsdt if f ∈ C([0, 2π])

(this is where it came from). So from the Fundamental Theorem of Calculus we
know:-

Proposition 1. If f ∈ C([0, 2π]) then u = Kf is twice continuously differentiable
and is the unique solution of the Dirichlet problem

(6) − d2u

dx2
= f on [0, 2π], u(0) = 0 = u(2π).

Last time I also noted that
1
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Lemma 1. As an operator on L2(0, 2π), K is compact and self-adjoint with the√
π
−1

sin kx/2, k ∈ N, an orthonormal basis of eigenfunctions with corresponding
eigenvalues 4k−2.

Proof. The proof is to note that the kernel K ∈ C([0, 2π]2) and hence

K : L2(0, 2π) −→ C([0, 2π]).

It is self-adjoint since K(x, s) is real and K(s, x) = K(x, s). It follows from Propo-

sition 1 above and the fact that d2

dx2 sin kx/s = k2/4 · sin kx/2 with these functions

satisfying the boundary conditions so K(sin kx/2) = λk sin kx/2, λk = 4/k2. Thus
these are indeed eigenfunctions for K and we know from Fourier series that these
form a complete set of orthogonal functions in L2(0, 2π). Thus in fact K is deter-
mined by these values on the orthonormal basis, so it is compact. �

Proposition 2. If f ∈ L2(0, 2π) then (Kf, f) ∈ H2
D(0, 2π) and the map

(7) L2(0, 2π) 3 f 7−→ (Kf, f) ∈ H2
D(0, 2π)

is an isomorphism, a continuous bijection.

Proof. The first part is really a corollary of the preceding Proposition. Namely, if
f ∈ L2(0, 2π) then we know there exists a sequence fn ∈ C([0, 2π]) such that fn → f
in L2(0, 2π). So consider un = Kfn. By the Proposition this is twice continuously

differentiable, has un(0) = 0 = un(2π) and −d
2un

dx2 = fn. Since fn → f and K is

continuous, un = Kfn → Kf. So by definition of the space, (Kf, f) ∈ H2
D(0, 2π).

Conversely, if (u, f) ∈ H2
D(0, 2π) then f ∈ L2(0, 2π) and we have just shown

that (Kf, f) ∈ H2
D(0, 2π). So it follows that (v, 0) ∈ H2

D(0, 2π) where v = Kf − u.
So we want to show that this implies v = 0. By definition there is a sequence vn as
in (1) with

(8) vn → v, wn = −d
2vn
dx2

→ 0 in L2(0, 2π).

Consider the expansion of vn in the orthonormal basis ek = c sin(kx/2), c = 1/
√
π.

Thus

(9) vn =
∑
k≥1

an,kek, converges in L2(0, 2π).

However, wn ∈ L2(0, 2π) as well and we can see that its Fourier(-Bessel) coefficients
are

(10)

∫ 2π

0

wnek = −
∫ 2π

0

d2vn
dx2

ek =
k2

4

∫ 2π

0

vnek =
k2

4
an,k.

By assumption, wn → 0 in L2(0, 2π), but this means that each of the Fourier-Bessel

coefficents must tend to zero, so k2

4 an,k → 0 for each k and hence an,k → 0 for each

k. Thus in fact vn ⇀ 0 in L2(0, 2π). Since vn → v, the uniqueness of weak limits
implies that v = 0 which is what we wanted to know.

Thus we have shown that (u, f) ∈ H2
D(0, 2π) if and only if u = Kf.

Continuity follows from the definition of the norms and the boundedness of
K. �



NOTES FOR 18.102, 25 APRIL, 2013 3

Notice that K is injective, Kf = 0 implies f = 0 – we computed the eigenvalues
last time as 4/k2. So really we do not need the pair (u, f) to specify an element of
H2
D(0, 2π) since if we know u ∈ L2(0, 2π) and that there exists f ∈ L2(0, 2π) such

that u = Kf and hence (u, f) ∈ H2
D(0, 2π) then there is only one such f.

Notation:- We identify pairs in H2
D(0, 2π) with their first elements and so redefine

it unambiguously as

(11) H2
D(0, 2π) = {u ∈ L2(0, 2π); ∃ f ∈ L2(0, 2π), u = Kf}.

The norm remains the same – it is ‖u‖2
H2

D
= ‖u‖2L2 + ‖f‖2L2 .

Note that the space

(12) {u : [0, 2π] −→ C; u is twice continuously differentiable ,

u(0) = u(2π)} ⊂ H2
D(0, 2π)

since in this case u = Kf if f = −d
2u
dx2 . This is a dense subspace of H2

D(0, 2π).

Proposition 3. The map

(13) D2 : H2
D(0, 2π) 3 u 7−→ f ∈ L2(0, 2π), where u = Kf

is an isomorphism of H2
D to L2(0, 2π).

It is usual to write this isomorphism as D2 = − d2

dx2 even though it is not quite

a second derivative in the usual sense. The space H2
D(0, 2π) is a Sobolev space.

Proposition 4. If u ∈ H2
D(0, 2π) then u is once continuously differentiable on

[0, 2π] (meaning it has a unique representative which is so differentiable) and has
u(0) = u(2π) = 0.

Proof. If one looks at the formula for Kf then it follows that when f ∈ C([02π]),

(14)
d

dx
Kf(x) = −

∫ x

0

f(s)ds+
1

2π

∫ 2π

0

∫ t

0

f(s)dsdt.

This also extends by continuity to a map

(15) K ′ : L2(0, 2π) −→ C([0, 2π]).

Thus, if f ∈ L2(0, 2π) then d
dxKf ∈ C([0, 2π]) and u = Kf is therefore once

differentiable. It also satisfies u(0) = 0 = u(2π). �

An operator such asD2 is often thought of as an ‘unbounded self-adjoint operator
on L2(0, 2π) with domain H2

D(0, 2π) ⊂ L2(0, 2π). In this case it is the inverse of
K : L2(0, 2π) −→ H2

D(0, 2π) which is a bounded, indeed compact, self-adjoint
operator on L2(0, 2π).

What we will proceed to show is that if we take V ∈ C([0, 2π]) a real-valued
potential then the operator

(16) D2 + V : H2
D(0, 2π) −→ L2(0, 2π)

is similarly an unbounded self-adjoint operator.


