NOTES FOR 18.102, 25 APRIL, 2013

Let's try to understand a little more based on what I did last time. We can define the 'Dirichlet domain' to be

$$H_D^2(0,2\pi) = \{(u,f) \in L^2(0,2\pi) \times L^2(0,2\pi);\$$

(1) $\exists v_n : [0, 2\pi] \longrightarrow \mathbb{C}$, twice continuously differentiable

with
$$v_n(0) = 0 = v_n(2\pi), v_n \to u \in L^2(0, 2\pi), -\frac{d^2v_n}{dx^2} \to f \in L^2(0, 2\pi)\}.$$

This has a natural preHilbert structure given by

(2)
$$((u_1, f_1), (u_2, f_2))_{H^2_D} = \int u_1 \overline{u}_2 + \int f_1 \overline{f_2}.$$

That is, we regard it as a subspace of $L^2(0, 2\pi) \times L^2(0, 2\pi)$.

So, apply your understanding of L^2 and elementary calculus! It is a preHilbert space, is it complete? Yes, basically because it is defined as a closure. If (u_n, f_n) is Cauchy then by completeness of L^2 , $u_n \to u$ and $f_n \to f$ in $L^2(0, 2\pi)$. Is the pair $(u, f) \in H^2_D(0, 2\pi)$? Suppose $v_{n,j} \to u_n$ and $-\frac{d^2}{dx^2}v_{n,j} \to f_n$ in $L^2(0, 2\pi)$ for each nwith $v_{n,j}$ twice continuously differentiable and with $v_{n,j}(0) = 0 = v_{n,j}(2\pi)$ then for each n there exists j = j(n) such that

(3)
$$\|v_{n,j} - u_n\|_{L^2}^2 + \| - \frac{d^2 v_{n,j}}{dx^2} - f_n \|^2 < 2^{-n}.$$

Then the sequence $w_n = v_{n,j(n)}$ is such that $(w_n, -\frac{d^2w_n}{dx^2}) \to (u, f)$ in $L^2(0, 2\pi) \times L^2(0, 2\pi)$. Thus in fact $H^2_D(0, 2\pi)$ is a Hilbert space.

Last time I defined an operator K which is an integral operator

$$L^{2}(0,2\pi) \ni f \longmapsto Kf \in L^{2}(0,2\pi), \ Kf(x) = \int_{0}^{2\pi} K(x,s)f(s)ds,$$
(4)
$$K(x,s) = (s-x)H(x-s) + \frac{x}{2\pi}(2\pi-s) = \begin{cases} s-x+x-\frac{xs}{2\pi} & x \ge s\\ x-\frac{xs}{2\pi} & x \le s \end{cases}$$

$$\implies K(x,s) = \min(x,s) - \frac{xs}{2\pi} \ge 0.$$

In fact

(5)
$$Kf(x) = -\int_0^x \int_0^t f(s)dsdt + \frac{x}{2\pi} \int_0^{2\pi} \int_0^t f(s)dsdt \text{ if } f \in \mathcal{C}([0, 2\pi])$$

(this is where it came from). So from the Fundamental Theorem of Calculus we know:-

Proposition 1. If $f \in C([0, 2\pi])$ then u = Kf is twice continuously differentiable and is the unique solution of the Dirichlet problem

(6)
$$-\frac{d^2u}{dx^2} = f \text{ on } [0, 2\pi], \ u(0) = 0 = u(2\pi).$$

Last time I also noted that

Lemma 1. As an operator on $L^2(0, 2\pi)$, K is compact and self-adjoint with the $\sqrt{\pi}^{-1} \sin kx/2$, $k \in \mathbb{N}$, an orthonormal basis of eigenfunctions with corresponding eigenvalues $4k^{-2}$.

Proof. The proof is to note that the kernel $K \in \mathcal{C}([0, 2\pi]^2)$ and hence

 $K: L^2(0, 2\pi) \longrightarrow \mathcal{C}([0, 2\pi]).$

It is self-adjoint since K(x, s) is real and K(s, x) = K(x, s). It follows from Proposition 1 above and the fact that $\frac{d^2}{dx^2} \sin kx/s = k^2/4 \cdot \sin kx/2$ with these functions satisfying the boundary conditions so $K(\sin kx/2) = \lambda_k \sin kx/2$, $\lambda_k = 4/k^2$. Thus these are indeed eigenfunctions for K and we know from Fourier series that these form a complete set of orthogonal functions in $L^2(0, 2\pi)$. Thus in fact K is determined by these values on the orthonormal basis, so it is compact.

Proposition 2. If $f \in L^2(0, 2\pi)$ then $(Kf, f) \in H^2_D(0, 2\pi)$ and the map

(7)
$$L^2(0,2\pi) \ni f \longmapsto (Kf,f) \in H^2_D(0,2\pi)$$

is an isomorphism, a continuous bijection.

Proof. The first part is really a corollary of the preceding Proposition. Namely, if $f \in L^2(0, 2\pi)$ then we know there exists a sequence $f_n \in \mathcal{C}([0, 2\pi])$ such that $f_n \to f$ in $L^2(0, 2\pi)$. So consider $u_n = Kf_n$. By the Proposition this is twice continuously differentiable, has $u_n(0) = 0 = u_n(2\pi)$ and $-\frac{d^2u_n}{dx^2} = f_n$. Since $f_n \to f$ and K is continuous, $u_n = Kf_n \to Kf$. So by definition of the space, $(Kf, f) \in H^2_D(0, 2\pi)$.

Conversely, if $(u, f) \in H^2_D(0, 2\pi)$ then $f \in L^2(0, 2\pi)$ and we have just shown that $(Kf, f) \in H^2_D(0, 2\pi)$. So it follows that $(v, 0) \in H^2_D(0, 2\pi)$ where v = Kf - u. So we want to show that this implies v = 0. By definition there is a sequence v_n as in (1) with

(8)
$$v_n \to v, \ w_n = -\frac{d^2 v_n}{dx^2} \to 0 \text{ in } L^2(0, 2\pi).$$

Consider the expansion of v_n in the orthonormal basis $e_k = c \sin(kx/2), c = 1/\sqrt{\pi}$. Thus

(9)
$$v_n = \sum_{k \ge 1} a_{n,k} e_k, \text{ converges in } L^2(0, 2\pi).$$

However, $w_n \in L^2(0, 2\pi)$ as well and we can see that its Fourier(-Bessel) coefficients are

(10)
$$\int_0^{2\pi} w_n e_k = -\int_0^{2\pi} \frac{d^2 v_n}{dx^2} e_k = \frac{k^2}{4} \int_0^{2\pi} v_n e_k = \frac{k^2}{4} a_{n,k}.$$

By assumption, $w_n \to 0$ in $L^2(0, 2\pi)$, but this means that each of the Fourier-Bessel coefficients must tend to zero, so $\frac{k^2}{4}a_{n,k} \to 0$ for each k and hence $a_{n,k} \to 0$ for each k. Thus in fact $v_n \to 0$ in $L^2(0, 2\pi)$. Since $v_n \to v$, the uniqueness of weak limits implies that v = 0 which is what we wanted to know.

Thus we have shown that $(u, f) \in H^2_D(0, 2\pi)$ if and only if u = Kf.

Continuity follows from the definition of the norms and the boundedness of K.

Notice that K is injective, Kf = 0 implies f = 0 – we computed the eigenvalues last time as $4/k^2$. So really we do not need the pair (u, f) to specify an element of $H_D^2(0, 2\pi)$ since if we know $u \in L^2(0, 2\pi)$ and that there exists $f \in L^2(0, 2\pi)$ such that u = Kf and hence $(u, f) \in H_D^2(0, 2\pi)$ then there is only one such f.

Notation:- We identify pairs in $H_D^2(0, 2\pi)$ with their first elements and so redefine it unambiguously as

(11)
$$H_D^2(0,2\pi) = \{ u \in L^2(0,2\pi); \exists f \in L^2(0,2\pi), u = Kf \}.$$

The norm remains the same – it is $||u||_{H_D^2}^2 = ||u||_{L^2}^2 + ||f||_{L^2}^2$. Note that the space

(12) $\{u: [0, 2\pi] \longrightarrow \mathbb{C}; u \text{ is twice continuously differentiable }, \}$

$$u(0) = u(2\pi)\} \subset H_D^2(0, 2\pi)$$

since in this case u = Kf if $f = -\frac{d^2u}{dx^2}$. This is a *dense* subspace of $H_D^2(0, 2\pi)$.

Proposition 3. The map

(13)
$$D^2: H^2_D(0, 2\pi) \ni u \longmapsto f \in L^2(0, 2\pi), \text{ where } u = Kf$$

is an isomorphism of H_D^2 to $L^2(0, 2\pi)$.

It is usual to write this isomorphism as $D^2 = -\frac{d^2}{dx^2}$ even though it is not quite a second derivative in the usual sense. The space $H_D^2(0, 2\pi)$ is a Sobolev space.

Proposition 4. If $u \in H^2_D(0, 2\pi)$ then u is once continuously differentiable on $[0, 2\pi]$ (meaning it has a unique representative which is so differentiable) and has $u(0) = u(2\pi) = 0$.

Proof. If one looks at the formula for Kf then it follows that when $f \in \mathcal{C}([02\pi])$,

(14)
$$\frac{d}{dx}Kf(x) = -\int_0^x f(s)ds + \frac{1}{2\pi}\int_0^{2\pi}\int_0^t f(s)dsdt.$$

This also extends by continuity to a map

(15)
$$K': L^2(0, 2\pi) \longrightarrow \mathcal{C}([0, 2\pi]).$$

Thus, if $f \in L^2(0, 2\pi)$ then $\frac{d}{dx}Kf \in \mathcal{C}([0, 2\pi])$ and u = Kf is therefore once differentiable. It also satisfies $u(0) = 0 = u(2\pi)$.

An operator such as D^2 is often thought of as an 'unbounded self-adjoint operator on $L^2(0, 2\pi)$ with domain $H^2_D(0, 2\pi) \subset L^2(0, 2\pi)$. In this case it is the inverse of $K : L^2(0, 2\pi) \longrightarrow H^2_D(0, 2\pi)$ which is a bounded, indeed compact, self-adjoint operator on $L^2(0, 2\pi)$.

What we will proceed to show is that if we take $V \in \mathcal{C}([0, 2\pi])$ a real-valued potential then the operator

(16)
$$D^2 + V : H_D^2(0, 2\pi) \longrightarrow L^2(0, 2\pi)$$

is similarly an unbounded self-adjoint operator.