NOTES FOR 18.102, 25 APRIL, 2013

Let's try to understand a little more based on what I did last time. We can define the 'Dirichlet domain' to be

$$
\begin{gather*}
H_{D}^{2}(0,2 \pi)=\left\{(u, f) \in L^{2}(0,2 \pi) \times L^{2}(0,2 \pi)\right. \\
\exists v_{n}:[0,2 \pi] \longrightarrow \mathbb{C}, \text { twice continuously differentiable } \tag{1}
\end{gather*}
$$

$$
\text { with } \left.v_{n}(0)=0=v_{n}(2 \pi), v_{n} \rightarrow u \in L^{2}(0,2 \pi),-\frac{d^{2} v_{n}}{d x^{2}} \rightarrow f \in L^{2}(0,2 \pi)\right\}
$$

This has a natural preHilbert structure given by

$$
\begin{equation*}
\left(\left(u_{1}, f_{1}\right),\left(u_{2}, f_{2}\right)\right)_{H_{D}^{2}}=\int u_{1} \bar{u}_{2}+\int f_{1} \overline{f_{2}} \tag{2}
\end{equation*}
$$

That is, we regard it as a subspace of $L^{2}(0,2 \pi) \times L^{2}(0,2 \pi)$.
So, apply your understanding of L^{2} and elementary calculus! It is a preHilbert space, is it complete? Yes, basically because it is defined as a closure. If $\left(u_{n}, f_{n}\right)$ is Cauchy then by completeness of $L^{2}, u_{n} \rightarrow u$ and $f_{n} \rightarrow f$ in $L^{2}(0,2 \pi)$. Is the pair $(u, f) \in H_{D}^{2}(0,2 \pi)$? Suppose $v_{n, j} \rightarrow u_{n}$ and $-\frac{d^{2}}{d x^{2}} v_{n, j} \rightarrow f_{n}$ in $L^{2}(0,2 \pi)$ for each n with $v_{n, j}$ twice continuously differentiable and with $v_{n, j}(0)=0=v_{n, j}(2 \pi)$ then for each n there exists $j=j(n)$ such that

$$
\begin{equation*}
\left\|v_{n, j}-u_{n}\right\|_{L^{2}}^{2}+\left\|-\frac{d^{2} v_{n, j}}{d x^{2}}-f_{n}\right\|^{2}<2^{-n} \tag{3}
\end{equation*}
$$

Then the sequence $w_{n}=v_{n, j(n)}$ is such that $\left(w_{n},-\frac{d^{2} w_{n}}{d x^{2}}\right) \rightarrow(u, f)$ in $L^{2}(0,2 \pi) \times$ $L^{2}(0,2 \pi)$. Thus in fact $H_{D}^{2}(0,2 \pi)$ is a Hilbert space.

Last time I defined an operator K which is an integral operator

$$
\begin{gather*}
L^{2}(0,2 \pi) \ni f \longmapsto K f \in L^{2}(0,2 \pi), K f(x)=\int_{0}^{2 \pi} K(x, s) f(s) d s \\
K(x, s)=(s-x) H(x-s)+\frac{x}{2 \pi}(2 \pi-s)= \begin{cases}s-x+x-\frac{x s}{2 \pi} & x \geq s \\
x-\frac{x s}{2 \pi} & x \leq s\end{cases} \tag{4}\\
\Longrightarrow K(x, s)=\min (x, s)-\frac{x s}{2 \pi} \geq 0 .
\end{gather*}
$$

In fact

$$
\begin{equation*}
K f(x)=-\int_{0}^{x} \int_{0}^{t} f(s) d s d t+\frac{x}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{t} f(s) d s d t \text { if } f \in \mathcal{C}([0,2 \pi]) \tag{5}
\end{equation*}
$$

(this is where it came from). So from the Fundamental Theorem of Calculus we know:-

Proposition 1. If $f \in \mathcal{C}([0,2 \pi])$ then $u=K f$ is twice continuously differentiable and is the unique solution of the Dirichlet problem

$$
\begin{equation*}
-\frac{d^{2} u}{d x^{2}}=f \text { on }[0,2 \pi], u(0)=0=u(2 \pi) \tag{6}
\end{equation*}
$$

Last time I also noted that

Lemma 1. As an operator on $L^{2}(0,2 \pi), K$ is compact and self-adjoint with the $\sqrt{\pi}{ }^{-1} \sin k x / 2, k \in \mathbb{N}$, an orthonormal basis of eigenfunctions with corresponding eigenvalues $4 k^{-2}$.

Proof. The proof is to note that the kernel $K \in \mathcal{C}\left([0,2 \pi]^{2}\right)$ and hence

$$
K: L^{2}(0,2 \pi) \longrightarrow \mathcal{C}([0,2 \pi])
$$

It is self-adjoint since $K(x, s)$ is real and $K(s, x)=K(x, s)$. It follows from Proposition 1 above and the fact that $\frac{d^{2}}{d x^{2}} \sin k x / s=k^{2} / 4 \cdot \sin k x / 2$ with these functions satisfying the boundary conditions so $K(\sin k x / 2)=\lambda_{k} \sin k x / 2, \lambda_{k}=4 / k^{2}$. Thus these are indeed eigenfunctions for K and we know from Fourier series that these form a complete set of orthogonal functions in $L^{2}(0,2 \pi)$. Thus in fact K is determined by these values on the orthonormal basis, so it is compact.

Proposition 2. If $f \in L^{2}(0,2 \pi)$ then $(K f, f) \in H_{D}^{2}(0,2 \pi)$ and the map

$$
\begin{equation*}
L^{2}(0,2 \pi) \ni f \longmapsto(K f, f) \in H_{D}^{2}(0,2 \pi) \tag{7}
\end{equation*}
$$

is an isomorphism, a continuous bijection.
Proof. The first part is really a corollary of the preceding Proposition. Namely, if $f \in L^{2}(0,2 \pi)$ then we know there exists a sequence $f_{n} \in \mathcal{C}([0,2 \pi])$ such that $f_{n} \rightarrow f$ in $L^{2}(0,2 \pi)$. So consider $u_{n}=K f_{n}$. By the Proposition this is twice continuously differentiable, has $u_{n}(0)=0=u_{n}(2 \pi)$ and $-\frac{d^{2} u_{n}}{d x^{2}}=f_{n}$. Since $f_{n} \rightarrow f$ and K is continuous, $u_{n}=K f_{n} \rightarrow K f$. So by definition of the space, $(K f, f) \in H_{D}^{2}(0,2 \pi)$.

Conversely, if $(u, f) \in H_{D}^{2}(0,2 \pi)$ then $f \in L^{2}(0,2 \pi)$ and we have just shown that $(K f, f) \in H_{D}^{2}(0,2 \pi)$. So it follows that $(v, 0) \in H_{D}^{2}(0,2 \pi)$ where $v=K f-u$. So we want to show that this implies $v=0$. By definition there is a sequence v_{n} as in (1) with

$$
\begin{equation*}
v_{n} \rightarrow v, w_{n}=-\frac{d^{2} v_{n}}{d x^{2}} \rightarrow 0 \text { in } L^{2}(0,2 \pi) \tag{8}
\end{equation*}
$$

Consider the expansion of v_{n} in the orthonormal basis $e_{k}=c \sin (k x / 2), c=1 / \sqrt{\pi}$. Thus

$$
\begin{equation*}
v_{n}=\sum_{k \geq 1} a_{n, k} e_{k}, \text { converges in } L^{2}(0,2 \pi) \tag{9}
\end{equation*}
$$

However, $w_{n} \in L^{2}(0,2 \pi)$ as well and we can see that its Fourier(-Bessel) coefficients are

$$
\begin{equation*}
\int_{0}^{2 \pi} w_{n} e_{k}=-\int_{0}^{2 \pi} \frac{d^{2} v_{n}}{d x^{2}} e_{k}=\frac{k^{2}}{4} \int_{0}^{2 \pi} v_{n} e_{k}=\frac{k^{2}}{4} a_{n, k} \tag{10}
\end{equation*}
$$

By assumption, $w_{n} \rightarrow 0$ in $L^{2}(0,2 \pi)$, but this means that each of the Fourier-Bessel coefficents must tend to zero, so $\frac{k^{2}}{4} a_{n, k} \rightarrow 0$ for each k and hence $a_{n, k} \rightarrow 0$ for each k. Thus in fact $v_{n} \rightharpoonup 0$ in $L^{2}(0,2 \pi)$. Since $v_{n} \rightarrow v$, the uniqueness of weak limits implies that $v=0$ which is what we wanted to know.

Thus we have shown that $(u, f) \in H_{D}^{2}(0,2 \pi)$ if and only if $u=K f$.
Continuity follows from the definition of the norms and the boundedness of K.

Notice that K is injective, $K f=0$ implies $f=0$ - we computed the eigenvalues last time as $4 / k^{2}$. So really we do not need the pair (u, f) to specify an element of $H_{D}^{2}(0,2 \pi)$ since if we know $u \in L^{2}(0,2 \pi)$ and that there exists $f \in L^{2}(0,2 \pi)$ such that $u=K f$ and hence $(u, f) \in H_{D}^{2}(0,2 \pi)$ then there is only one such f.

Notation:- We identify pairs in $H_{D}^{2}(0,2 \pi)$ with their first elements and so redefine it unambiguously as

$$
\begin{equation*}
H_{D}^{2}(0,2 \pi)=\left\{u \in L^{2}(0,2 \pi) ; \exists f \in L^{2}(0,2 \pi), u=K f\right\} \tag{11}
\end{equation*}
$$

The norm remains the same - it is $\|u\|_{H_{D}^{2}}^{2}=\|u\|_{L^{2}}^{2}+\|f\|_{L^{2}}^{2}$.
Note that the space

$$
\begin{equation*}
\{u:[0,2 \pi] \longrightarrow \mathbb{C} ; u \text { is twice continuously differentiable } \tag{12}
\end{equation*}
$$

$$
u(0)=u(2 \pi)\} \subset H_{D}^{2}(0,2 \pi)
$$

since in this case $u=K f$ if $f=-\frac{d^{2} u}{d x^{2}}$. This is a dense subspace of $H_{D}^{2}(0,2 \pi)$.
Proposition 3. The map

$$
\begin{equation*}
D^{2}: H_{D}^{2}(0,2 \pi) \ni u \longmapsto f \in L^{2}(0,2 \pi), \text { where } u=K f \tag{13}
\end{equation*}
$$

is an isomorphism of H_{D}^{2} to $L^{2}(0,2 \pi)$.
It is usual to write this isomorphism as $D^{2}=-\frac{d^{2}}{d x^{2}}$ even though it is not quite a second derivative in the usual sense. The space $H_{D}^{2}(0,2 \pi)$ is a Sobolev space.

Proposition 4. If $u \in H_{D}^{2}(0,2 \pi)$ then u is once continuously differentiable on $[0,2 \pi]$ (meaning it has a unique representative which is so differentiable) and has $u(0)=u(2 \pi)=0$.
Proof. If one looks at the formula for $K f$ then it follows that when $f \in \mathcal{C}([02 \pi])$,

$$
\begin{equation*}
\frac{d}{d x} K f(x)=-\int_{0}^{x} f(s) d s+\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{t} f(s) d s d t \tag{14}
\end{equation*}
$$

This also extends by continuity to a map

$$
\begin{equation*}
K^{\prime}: L^{2}(0,2 \pi) \longrightarrow \mathcal{C}([0,2 \pi]) \tag{15}
\end{equation*}
$$

Thus, if $f \in L^{2}(0,2 \pi)$ then $\frac{d}{d x} K f \in \mathcal{C}([0,2 \pi])$ and $u=K f$ is therefore once differentiable. It also satisfies $u(0)=0=u(2 \pi)$.

An operator such as D^{2} is often thought of as an 'unbounded self-adjoint operator on $L^{2}(0,2 \pi)$ with domain $H_{D}^{2}(0,2 \pi) \subset L^{2}(0,2 \pi)$. In this case it is the inverse of $K: L^{2}(0,2 \pi) \longrightarrow H_{D}^{2}(0,2 \pi)$ which is a bounded, indeed compact, self-adjoint operator on $L^{2}(0,2 \pi)$.

What we will proceed to show is that if we take $V \in \mathcal{C}([0,2 \pi])$ a real-valued potential then the operator

$$
\begin{equation*}
D^{2}+V: H_{D}^{2}(0,2 \pi) \longrightarrow L^{2}(0,2 \pi) \tag{16}
\end{equation*}
$$

is similarly an unbounded self-adjoint operator.

