BRIEF SOLUTIONS TO FINAL EXAM FOR 18.102, SPRING 2013

No books, papers, notes or electronic devices permitted. Attempt all 6 questions to obtain full marks.

All Hilbert spaces should be taken to be separable and non-trivial.

[The version you got in the exam did not have the non-triviality condition!]

Problem 1

Let $A_j \subset \mathbb{R}$ be a sequence of subsets with the property that the characteristic function, χ_j of A_j , is integrable for each j. Show that the characteristic function of $\mathbb{R} \setminus A$, where $A = \bigcup_j A_j$ is locally integrable.

Solution: The maximum and minimum of two real integrable functions is integrable, so

 $\chi_{A\cup B} = \max(\chi_A, \chi_B), \ \chi_{A\cap B} = \min(\chi_A, \chi_B)$

are integrable if $\chi_A A$ and χ_B are integrable. Iterating this it follows that for any R > 0,

$$\chi_{B_N}, \ B_N = [-R,R] \cap (\bigcup_{j=1}^N A_j)$$

is integrable. As $N \to \infty$ this sequence is monotonic increasing with integral bounded by 2N so by monotone convergence the limit, χ_R , exists, which shows that the characteristic function of $[-R, R] \cap A$ is in \mathcal{L}^1 . It follows that the characteristic function of $\mathbb{R} \setminus A$ is locally integrable since $\chi_{\mathbb{R}\setminus A} = 1 - \chi_R$.

Problem 2

If *H* is a Hilbert space let $l^2(H)$ be the space of sequences $h : \mathbb{N} \longrightarrow H$ such that $\sum_{j} \|u(j)\|_{H}^2 < \infty$. Show that this is a Hilbert space and that there is a bounded

linear bijection $l^2(H) \longrightarrow H$ if and only if H is not finite dimensional.

Solution: If $\{e_i\}$ is an orthonormal basis of H – either finite or countable – then $u = \sum_{i} (u, e_i) e_i$ is the corresponding convergent Fourier-Bessel series for any

element, $u \in H$. If $\{u_j\}$ is an element of $l^2(H)$ it follows that

$$||\{u_j\}||^2 = \sum_{j=1}^{\infty} \sum_{i} |(u_j, e_i)|^2 < \infty.$$

Thus if $\phi : \mathbb{N} \times \{1, \dots, n\} \longrightarrow H$ or $\phi : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ are bijections, depending on whether H as dimension n > 0 or ∞ , then

(1)
$$\Phi: \{u_j\} \longrightarrow \{c_I\} \in l^2, \ c_I = (u_j, e_i) \text{ if } I = \phi(j, i)$$

is a linear bijection, with linearity following from the fact that (u_j, e_i) is linear in $\{u_j\}$. Since absolutely summable sequences can be reordered,

$$\|\{u_j\}\|^2 = \|\Phi(\{u_j\})\|_{l^2}^2$$

it follows that the left side defines a Hilbert norm on $l^2(H)$ which is complete and that as a Hilbert space, $l^2(H)$ is always isomorphic to l^2 . If H is infinite dimensional then H is also isomorphic to l^2 and hence to $l^2(H)$. If H is finite dimensional then it cannot be isomorphic to the infinite dimensional space $l^2(H)$ since dimension is invariant under linear bijections.

Problem 3

Let A be a Hilbert-Schmidt operator on a separable Hilbert space H, which means that for some orthonormal basis $\{e_i\}$

(2)
$$\sum_{i} \|Ae_i\|^2 < \infty.$$

Using Bessel's identity to expand $||Ae_i||^2$ with respect to another orthonormal basis $\{f_j\}$ show that $\sum_j ||A^*f_j||^2 = \sum_i ||Ae_i||^2$. Conclude that the sum in (2) is independent of the othornormal basis used to define it and that the Hilbert-Schmidt

operators form a Hilbert space.

Solution: Using Bessel's (or Parseval's) identity with respect to some orthonormal basis f_j ,

$$||Ae_i||^2 = \sum_j |(Ae_i, f_j)|^2 = \sum_j |(e_i, A^*f_j)|^2$$

Since the absolutely summable series can be rearranged, applying the same identity for the first basis

$$||A||_{\rm HS}^2 = \sum_i ||Ae_i||^2 = \sum_{j,i} |(e_i, A^*f_j)|^2 = \sum_j ||A^*f_j||^2$$

Applying this identity again to any other basis shows that $||A||_{\text{HS}}^2$ is independent of the basis. The Hilbert-Schmidt operators form a linear space since $||cA||_{\text{HS}}^2 = |c|^2 ||A||_{\text{HS}}^2$ and $||A + B||_{\text{HS}}^2 \leq 2 ||A||_{\text{HS}}^2 + 2 ||B||_{\text{HS}}^2$. Choosing a basis with first element $v \in H$ of norm 1,

$$||Av||^2 \le ||A||_{\mathrm{HS}}^2 \Longrightarrow ||A|| \le ||A||_{\mathrm{HS}}.$$

Consider the map

$$T: \mathrm{HS} \ni A \longrightarrow \{Ae_i\} \in l^2(H).$$

which is linear, since it is linear in each component. It is injective, since if A vanishes on a basis it vanishes on the closure of the span of the basis, i.e. on H. Moreover, T is surjective since if $\{v_i\} \in l^2(H)$ then

$$Au = \sum_{i} (u, e_i) v_i$$

converges in H – if H is infinite dimensional then

$$\|\sum_{i=m}^{n} (u, e_i) v_i\|^2 \le \sum_{m}^{n} |(u, e_i)|^2 \cdot \sum_{m}^{n} \|v_i\|^2.$$

and A is linear and bounded with $||A||_{\text{HS}}^2 = ||\{v_j\}||_{l^2(H)}^2$. Thus the space of Hilbert-Schmidt operators is a Hilbert space since it is isometrically isomorphic to $l^2(H)$, shown to be a Hilbert space above.

Problem 4

Let B_n be a sequence of bounded linear operators on a Hilbert space H such that for each u and $v \in H$ the sequence $(B_n u, v)$ converges in \mathbb{C} . Show that there is a uniquely defined bounded operator B on H such that

$$(Bu, v) = \lim_{n \to \infty} (B_n u, v) \ \forall \ u, v \in H.$$

Solution: By assumption $B_n u$ converges weakly in H for each $u \in H$. So (by the uniform boundedness principle) is bounded with limit which can be denoted $Bu \in H$. By uniqueness of weak limits Bu depends linearly on u and by the uniform boundedness principle $||B_n||$ has an upper bound C and hence $||Bu|| \leq C||u||$ is a bounded operator. It is uniquely determined since the defining condition implies that $B_n u$ converges weakly to Bu for all u.

Problem 5

Suppose $P \subset H$ is a closed linear subspace of a Hilbert space, with $\pi_P : H \longrightarrow P$ the orthogonal projection onto P. If H is separable and A is a compact self-adjoint operator on H, show that there is a complete orthonormal basis of H each element of which satisfies $\pi_P A \pi_P e_i = t_i e_i$ for some $t_i \in \mathbb{R}$.

Solution: By definition the orthogonal projection onto P is the unique bounded self-adjoint operator π_P with $\pi_P^2 = \pi_P$ and range P. Thus $(\pi_P A \pi_P)^* = \pi_P A^* \pi_P$ is also self-adjoint and as the compact operators form an ideal is compact. Thus, by the Spectral Theorem, there exists an orthonormal basis of eigenfunctions of $\pi_P A \pi_P$ as desired, with all eigenvalues real.

Problem 6

Let $e_j = c_j C^j e^{-x^2/2}$, $c_j > 0$, where j = 1, 2, ..., and $C = -\frac{d}{dx} + x$ is the creation operator, be the orthonormal basis of $L^2(\mathbb{R})$ consisting of the eigenfunctions of the harmonic oscillator discussed in class. You may assume completeness in $L^2(\mathbb{R})$ and use the facts established in class that $-\frac{d^2 e_j}{dx^2} + x^2 e_j = (2j+1)e_j$, that $c_j = 2^{-j/2}(j!)^{-\frac{1}{2}}\pi^{-\frac{1}{4}}$ and that $e_j = p_j(x)e_0$ for a polynomial of degree j. Compute Ce_j and Ae_j in terms of the basis and hence arrive at a formula for de_j/dx . Use this to show that the sequence $j^{-\frac{1}{2}}\frac{de_j}{dx}$ is bounded in $L^2(\mathbb{R})$. Conclude that if

(3)
$$H^{1}_{\text{iso}} = \{ u \in L^{2}(\mathbb{R}); \sum_{j \ge 1} j | (u, e_{j}) |^{2} < \infty \}$$

then there is a uniquely defined operator $D: H^1_{iso} \longrightarrow L^2(\mathbb{R})$ such that $De_j = \frac{de_j}{dx}$ for each j.

Solution: By definition $H^1_{iso} \subset L^2(\mathbb{R})$ so if $u \in H^1_{iso}$ then

$$||u||_{\rm iso}^2 = \sum_{j \ge 1} (j+1)|(u,e_j)|^2 < \infty.$$

This is a Hilbert norm on H^1_{iso} since it is equivalent to the condition

$$Tu = \{(j+1)^{\frac{1}{2}}(u,e_j)\} \in l^{\frac{1}{2}}$$

which shows that H_{iso}^1 is linear and then T is an isometric isomorphism to l^2 so H_{iso}^1 is a Hilbert space.

Using the identities for the creation and annihilation operators,

$$Ce_j = (2j+1)^{\frac{1}{2}}e_{j+1}, \ Ae_j = (2j)^{\frac{1}{2}}e_{j-1}, \ j \ge 1, \ Ae_0 = 0.$$

Thus for the eigenfunctions, which are all in the Schwartz space,

$$\frac{d}{dx}e_j = \frac{1}{2}(A-C) = \frac{1}{2}(2j)^{\frac{1}{2}}e_{j-1} - \frac{1}{2}(2j+1)^{\frac{1}{2}}e_{j+1}, \ e_{j-1} = 0.$$

So we may define

$$Du = \sum_{j \ge 0} (u, e_j) \left(\frac{1}{2} (2j)^{\frac{1}{2}} e_{j-1} - \frac{1}{2} (2j+1)^{\frac{1}{2}} e_{j+1} \right)$$

for $u \in H^1_{iso}$ since $\frac{1}{2}(2j)^{\frac{1}{2}}(u, e_j)$ and $\frac{1}{2}(2j+1)^{\frac{1}{2}}(u, e_j)$ are in l^2 with norms bounded by $||u||_{iso}$ and D is therefore a bounded linear operator, using the linearity of (u, e_j) and $||D|| \leq 2$.