BRIEF SOLUTIONS TO FINAL EXAM FOR 18.102, SPRING 2013

No books, papers, notes or electronic devices permitted. Attempt all 6 questions to obtain full marks.

All Hilbert spaces should be taken to be separable and non-trivial.
[The version you got in the exam did not have the non-triviality condition!]

Problem 1

Let $A_{j} \subset \mathbb{R}$ be a sequence of subsets with the property that the characteristic function, χ_{j} of A_{j}, is integrable for each j. Show that the characteristic function of $\mathbb{R} \backslash A$, where $A=\bigcup_{j} A_{j}$ is locally integrable.

Solution: The maximum and minimum of two real integrable functions is integrable, so

$$
\chi_{A \cup B}=\max \left(\chi_{A}, \chi_{B}\right), \chi_{A \cap B}=\min \left(\chi_{A}, \chi_{B}\right)
$$

are integrable if $\chi_{A} A$ and χ_{B} are integrable. Iterating this it follows that for any $R>0$,

$$
\chi_{B_{N}}, B_{N}=[-R, R] \cap\left(\bigcup_{j=1}^{N} A_{j}\right)
$$

is integrable. As $N \rightarrow \infty$ this sequence is monotonic increasing with integral bounded by $2 N$ so by monotone convergence the limit, χ_{R}, exists, which shows that the characteristic function of $[-R, R] \cap A$ is in \mathcal{L}^{1}. It follows that the characteristic function of $\mathbb{R} \backslash A$ is locally integrable since $\chi_{\mathbb{R} \backslash A}=1-\chi_{R}$.

Problem 2

If H is a Hilbert space let $l^{2}(H)$ be the space of sequences $h: \mathbb{N} \longrightarrow H$ such that $\sum_{j}\|u(j)\|_{H}^{2}<\infty$. Show that this is a Hilbert space and that there is a bounded linear bijection $l^{2}(H) \longrightarrow H$ if and only if H is not finite dimensional.

Solution: If $\left\{e_{i}\right\}$ is an orthonormal basis of H - either finite or countable then $u=\sum_{i}\left(u, e_{i}\right) e_{i}$ is the corresponding convergent Fourier-Bessel series for any element, $u \in H$. If $\left\{u_{j}\right\}$ is an element of $l^{2}(H)$ it follows that

$$
\left\|\left\{u_{j}\right\}\right\|^{2}=\sum_{j=1}^{\infty} \sum_{i}\left|\left(u_{j}, e_{i}\right)\right|^{2}<\infty .
$$

Thus if $\phi: \mathbb{N} \times\{1, \ldots, n\} \longrightarrow H$ or $\phi: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ are bijections, depending on whether H as dimension $n>0$ or ∞, then

$$
\begin{equation*}
\Phi:\left\{u_{j}\right\} \longrightarrow\left\{c_{I}\right\} \in l^{2}, c_{I}=\left(u_{j}, e_{i}\right) \text { if } I=\phi(j, i) \tag{1}
\end{equation*}
$$

is a linear bijection, with linearity following from the fact that $\left(u_{j}, e_{i}\right)$ is linear in $\left\{u_{j}\right\}$. Since absolutely summable sequences can be reordered,

$$
\left\|\left\{u_{j}\right\}\right\|^{2}=\underset{1}{\|}\left(\left(\left\{u_{j}\right\}\right) \|_{l^{2}}^{2}\right.
$$

it follows that the left side defines a Hilbert norm on $l^{2}(H)$ which is complete and that as a Hilbert space, $l^{2}(H)$ is always isomorphic to l^{2}. If H is infinite dimensional then H is also isomorphic to l^{2} and hence to $l^{2}(H)$. If H is finite dimensional then it cannot be isomorphic to the infinite dimensional space $l^{2}(H)$ since dimension is invariant under linear bijections.

Problem 3

Let A be a Hilbert-Schmidt operator on a separable Hilbert space H, which means that for some orthonormal basis $\left\{e_{i}\right\}$

$$
\begin{equation*}
\sum_{i}\left\|A e_{i}\right\|^{2}<\infty \tag{2}
\end{equation*}
$$

Using Bessel's identity to expand $\left\|A e_{i}\right\|^{2}$ with respect to another orthonormal basis $\left\{f_{j}\right\}$ show that $\sum_{j}\left\|A^{*} f_{j}\right\|^{2}=\sum_{i}\left\|A e_{i}\right\|^{2}$. Conclude that the sum in (2) is independent of the othornormal basis used to define it and that the Hilbert-Schmidt operators form a Hilbert space.

Solution: Using Bessel's (or Parseval's) identity with respect to some orthonormal basis f_{j},

$$
\left\|A e_{i}\right\|^{2}=\sum_{j}\left|\left(A e_{i}, f_{j}\right)\right|^{2}=\sum_{j}\left|\left(e_{i}, A^{*} f_{j}\right)\right|^{2}
$$

Since the absolutely summable series can be rearranged, applying the same identity for the first basis

$$
\|A\|_{\mathrm{HS}}^{2}=\sum_{i}\left\|A e_{i}\right\|^{2}=\sum_{j, i}\left|\left(e_{i}, A^{*} f_{j}\right)\right|^{2}=\sum_{j}\left\|A^{*} f_{j}\right\|^{2}
$$

Applying this identity again to any other basis shows that $\|A\|_{\mathrm{HS}}^{2}$ is independent of the basis. The Hilbert-Schmidt operators form a linear space since $\|c A\|_{\mathrm{HS}}^{2}=$ $|c|^{2}\|A\|_{\mathrm{HS}}^{2}$ and $\|A+B\|_{\mathrm{HS}}^{2} \leq 2\|A\|_{\mathrm{HS}}^{2}+2\|B\|_{\mathrm{HS}}^{2}$. Choosing a basis with first element $v \in H$ of norm 1 ,

$$
\|A v\|^{2} \leq\|A\|_{\mathrm{HS}}^{2} \Longrightarrow\|A\| \leq\|A\|_{\mathrm{HS}} .
$$

Consider the map

$$
T: \mathrm{HS} \ni A \longrightarrow\left\{A e_{i}\right\} \in l^{2}(H) .
$$

which is linear, since it is linear in each component. It is injective, since if A vanishes on a basis it vanishes on the closure of the span of the basis, i.e. on H. Moreover, T is surjective since if $\left\{v_{i}\right\} \in l^{2}(H)$ then

$$
A u=\sum_{i}\left(u, e_{i}\right) v_{i}
$$

converges in H - if H is infinite dimensional then

$$
\left\|\sum_{i=m}^{n}\left(u, e_{i}\right) v_{i}\right\|^{2} \leq \sum_{m}^{n}\left|\left(u, e_{i}\right)\right|^{2} \cdot \sum_{m}^{n}\left\|v_{i}\right\|^{2}
$$

and A is linear and bounded with $\|A\|_{\mathrm{HS}}^{2}=\left\|\left\{v_{j}\right\}\right\|_{l^{2}(H)}^{2}$. Thus the space of HilbertSchmidt operators is a Hilbert space since it is isometrically isomorphic to $l^{2}(H)$, shown to be a Hilbert space above.

Problem 4

Let B_{n} be a sequence of bounded linear operators on a Hilbert space H such that for each u and $v \in H$ the sequence $\left(B_{n} u, v\right)$ converges in \mathbb{C}. Show that there is a uniquely defined bounded operator B on H such that

$$
(B u, v)=\lim _{n \rightarrow \infty}\left(B_{n} u, v\right) \forall u, v \in H .
$$

Solution: By assumption $B_{n} u$ converges weakly in H for each $u \in H$. So (by the uniform boundedness principle) is bounded with limit which can be denoted $B u \in H$. By uniqueness of weak limits $B u$ depends linearly on u and by the uniform boundedness principle $\left\|B_{n}\right\|$ has an upper bound C and hence $\|B u\| \leq C\|u\|$ is a bounded operator. It is uniquely determined since the defining condition implies that $B_{n} u$ converges weakly to $B u$ for all u.

Problem 5

Suppose $P \subset H$ is a closed linear subspace of a Hilbert space, with $\pi_{P}: H \longrightarrow P$ the orthogonal projection onto P. If H is separable and A is a compact self-adjoint operator on H, show that there is a complete orthonormal basis of H each element of which satisfies $\pi_{P} A \pi_{P} e_{i}=t_{i} e_{i}$ for some $t_{i} \in \mathbb{R}$.

Solution: By definition the orthogonal projection onto P is the unique bounded self-adjoint operator π_{P} with $\pi_{P}^{2}=\pi_{P}$ and range P. Thus $\left(\pi_{P} A \pi_{P}\right)^{*}=\pi_{P} A^{*} \pi_{P}$ is also self-adjoint and as the compact operators form an ideal is compact. Thus, by the Spectral Theorem, there exists an orthonormal basis of eigenfunctions of $\pi_{P} A \pi_{P}$ as desired, with all eigenvalues real.

Problem 6

Let $e_{j}=c_{j} C^{j} e^{-x^{2} / 2}, c_{j}>0$, where $j=1,2, \ldots$, and $C=-\frac{d}{d x}+x$ is the creation operator, be the orthonormal basis of $L^{2}(\mathbb{R})$ consisting of the eigenfunctions of the harmonic oscillator discussed in class. You may assume completeness in $L^{2}(\mathbb{R})$ and use the facts established in class that $-\frac{d^{2} e_{j}}{d x^{2}}+x^{2} e_{j}=(2 j+1) e_{j}$, that $c_{j}=2^{-j / 2}(j!)^{-\frac{1}{2}} \pi^{-\frac{1}{4}}$ and that $e_{j}=p_{j}(x) e_{0}$ for a polynomial of degree j. Compute $C e_{j}$ and $A e_{j}$ in terms of the basis and hence arrive at a formula for $d e_{j} / d x$. Use this to show that the sequence $j^{-\frac{1}{2} \frac{d e_{j}}{d x}}$ is bounded in $L^{2}(\mathbb{R})$. Conclude that if

$$
\begin{equation*}
H_{\mathrm{iso}}^{1}=\left\{u \in L^{2}(\mathbb{R}) ; \sum_{j \geq 1} j\left|\left(u, e_{j}\right)\right|^{2}<\infty\right\} \tag{3}
\end{equation*}
$$

then there is a uniquely defined operator $D: H_{\text {iso }}^{1} \longrightarrow L^{2}(\mathbb{R})$ such that $D e_{j}=\frac{d e_{j}}{d x}$ for each j.

Solution: By definition $H_{\text {iso }}^{1} \subset L^{2}(\mathbb{R})$ so if $u \in H_{\text {iso }}^{1}$ then

$$
\|u\|_{\text {iso }}^{2}=\sum_{j \geq 1}(j+1)\left|\left(u, e_{j}\right)\right|^{2}<\infty
$$

This is a Hilbert norm on $H_{\text {iso }}^{1}$ since it is equivalent to the condition

$$
T u=\left\{(j+1)^{\frac{1}{2}}\left(u, e_{j}\right)\right\} \in l^{2}
$$

which shows that H_{iso}^{1} is linear and then T is an isometric isomorphism to l^{2} so $H_{\text {iso }}^{1}$ is a Hilbert space.

Using the identities for the creation and annihilation operators,

$$
C e_{j}=(2 j+1)^{\frac{1}{2}} e_{j+1}, A e_{j}=(2 j)^{\frac{1}{2}} e_{j-1}, j \geq 1, A e_{0}=0 .
$$

Thus for the eigenfunctions, which are all in the Schwartz space,

$$
\frac{d}{d x} e_{j}=\frac{1}{2}(A-C)=\frac{1}{2}(2 j)^{\frac{1}{2}} e_{j-1}-\frac{1}{2}(2 j+1)^{\frac{1}{2}} e_{j+1}, e_{j-1}=0 .
$$

So we may define

$$
D u=\sum_{j \geq 0}\left(u, e_{j}\right)\left(\frac{1}{2}(2 j)^{\frac{1}{2}} e_{j-1}-\frac{1}{2}(2 j+1)^{\frac{1}{2}} e_{j+1}\right)
$$

for $u \in H_{\text {iso }}^{1}$ since $\frac{1}{2}(2 j)^{\frac{1}{2}}\left(u, e_{j}\right)$ and $\frac{1}{2}(2 j+1)^{\frac{1}{2}}\left(u, e_{j}\right)$ are in l^{2} with norms bounded by $\|u\|_{\text {iso }}$ and D is therefore a bounded linear operator, using the linearity of (u, e_{j}) and $\|D\| \leq 2$.

