PROBLEM SET 8, 18.155

DUE FRIDAY 8 NOVEMBER, 2013

Recall part of the spectral theorem for a bounded self-adjoint operator A that I did not prove in class. Namely the functional calculus extends from continuous functions on $[-\|A\|,\|A\|]$ so that $\chi(A) \in \mathcal{B}(H)$ is defined for the characteristic function χ of any closed interval $[a, b]$, that $\chi(A)$ is a self-adjoint projection which commutes with A, it commutes with any bounded operator that commutes with A and

$$
\begin{equation*}
\operatorname{spec}(\chi(A) A) \subset[a, b], \operatorname{spec}((\operatorname{Id}-\chi(A)) A) \cap(a, b)=\emptyset \tag{1}
\end{equation*}
$$

(1) Show that if $U=A+i B$ is the decomposition of a unitary operator on a separable Hilbert space into its self-adjoint and anti-self-adjoint parts then $z \in \operatorname{spec}(U)$ implies $\operatorname{Re}(z) \in \operatorname{spec}(A)$ and $\operatorname{Im}(z) \in \operatorname{spec}(B)$.
(2) Using a spectral projection as above, or otherwise (there are other methods), show that the unitary group on a separable Hilbert space is connected.
(3) Show that if L is an unbounded self-adjoint operator (with domain $D \subset H$ as defined in the preceding problem set) which is such that $(L+i)^{-1} \in \mathcal{K}(H)$ then H has an orthonormal basis consisting of eigenvectors of L, elements of D such that $L e_{j}=\lambda_{j} e_{j}$.
(4) If $P(D)$ is a real elliptic polynomial of positive degree on \mathbb{R}^{n} show that $P(D): H^{m}\left(\mathbb{T}^{n}\right) \longrightarrow L^{2}\left(\mathbb{T}^{n}\right)$ satisfies the conditions of the preceding problem. Here I am identifying the torus as the quotient $\mathbb{T}^{n}=\mathbb{R}^{n} / 2 \pi \mathbb{Z}^{n}$, so functions on the torus are functions on \mathbb{R}^{n} which are 2π-periodic in each variable.
(5) Show that the eigenvalues appearing in the previous problem are the values $P(k)$ for $k \in \mathbb{Z}^{n}$.

