PROBLEM SET 6, 18.155 DUE FRIDAY 25 OCTOBER, 2013

Let H be a separable Hilbert space throughout. Recall that the bounded operators on H form a Banach *-algebra: if $A, B \in \mathcal{B}(H)$ then $||A^*|| = ||A||$, $AB \in \mathcal{B}(H)$ and $||AB|| \leq ||A|| ||B||$. Let $\mathcal{K}(H) \subset \mathcal{B}(H)$ be the closed subspace of compact operators and $GL(H) \subset \mathcal{B}(H)$ be the subset of invertible operators, those with two-sided bounded inverses.

You may to use the Uniform Boundedness Principle!

- (1) Show that the open ball $B(\mathrm{Id},1) = \{B \in \mathcal{B}(H); ||B \mathrm{Id}|| < 1\} \subset \mathrm{GL}(H)$.
- (2) Show that in the unitary group, those $U \in GL(H)$ with two-sided inverse U^* , multiplication is continuous in both the norm and the strong topologies, i.e. if $U_n \to U$ and $V_n \to V$ in U(H) then $U_n V_n \to UV$ in the same sense.
- (3) Show that the map $\{A \in \mathcal{B}(H); A^* = A, ||A|| < 1\} \longrightarrow \exp(iA)$ may be defined by convergence of the Taylor series of the exponential function around 0 and that its image contains a neighbourhood of $\mathrm{Id} \in \mathrm{U}(H)$ in the norm topology. [You could try the Taylor series for log].
- (4) Show that $T \in \mathcal{B}(H)$ has rank at most one (range of dimension at most one) if and only if TKT = cT for some $c \in \mathbb{C}$ for each $K \in \mathcal{K}(H)$.
- (5) Suppose that $V: \mathcal{K}(H) \longrightarrow \mathcal{K}(H)$ is an isomorphism (of Banach spaces) such that $V(K_1K_2) = V(K_1)V(K_2)$ and $V(K^*) = V(K)^*$. Show that there exists $U \in U(H)$ such that $V(K) = UKU^*$.

Hint: For the last problem you might want to show that a rank one operator which is self-adjoint and satisfies $S^2 = S$ is of the form $v \mapsto \langle v, u \rangle u$ for some element $u \in H$ of norm one (and conversely). The image under V is another such. Fixing this, look at the rank one operators which satisfy TS = T – show that these form a linear space which can be identified with H. The image of this linear space is another version of the same thing. This gives a linear map from H to H and you can use the * property to show it is norm-preserving and hence continuous. Then extend to finite rank operators and by density to $\mathcal{K}(H)$. You have shown that the 'automorphism group of \mathcal{K} is the

projective unitary group $\mathrm{U}(H)/\mathrm{U}(1)\,\mathrm{Id}$ ' (since if you check you can see that the multiples of the identity act trivially).