
PROBLEM SET 2, 18.155
SKETCHED SOLUTIONS

(1) Let C∞c (Rn) ⊂ S(Rn) be the subspace of compactly supported
smooth functions – those that vanish for |x| > R for some R
(depending on the element of course). Show that this is a dense
inclusion.

Solution: In class we constructed φ ∈ C∞c (Rn) with φ(x) = 1
in |x| ≤ 1

2
and φ(x) = 0 in |x| > 1. Given ψ ∈ S(Rn) and n ∈ N.

ψn(x) = φ(
x

2n
)ψ(x) ∈ C∞c (Rn)

vanishes in |x| > 2n and is equal to ψ in |x| < n. The difference
and its derivatives satisfy

(1) |Dα(ψ−ψn)| = |Dα(1−φ(
x

2n
)ψ| ≤

∑
|β|≤|α|

Cβn
−|β|(1+ |x|)−kχ|x|≥n.

Here I have expanded out the product, estimated the finite num-
ber of derivatives of φ involved by constants and the derivatives
of ψ by multiples of (1 + |x|)−k and noted that all terms vanish
in |x| < n. It follows that ψn → ψ in the norms of S(Rn) and
hence in this as a metric space.

(2) Prove that S(Rn) is a Montel space which means that it has
an analogue of the Heine-Borel property. Namely, (you have to
show that) if D ⊂ S(Rn) is closed and ‘bounded’ in the sense
that for each N there exists CN such that ‖φ‖N ≤ CN for all
φ ∈ D, then D is compact.

Solution: Use Ascoli-Arzela or the characterization of pre-
compact sets in L2(Rn) (equicontinuous-in-the means and equi-
small at infinity). In either case the boundednedd with respect
to a ‘higher norm’ implies the precompactness of D with respect
to a given norm. There are countably many norms so from a
sequence in D one can extract successive subsequences Cauchy
with respect to successive (increasing) norms, and then pass to
a diagonal sequence in D which is Cauchy in S(Rn) and hence
converges. So D is compact.

(3) A) Show (as in remind yourself and the grader) that if u :
Rn −→ C is measurable and

(2) (1 + |x|)−Nu ∈ L1(Rn)
1
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for some N then I(u)(φ) =
∫
uφ, for φ ∈ S(Rn) defines an

element I(u) ∈ S ′(Rn).
B) Now, refute the idea that these are the ‘most general’ func-

tions which define distributions – this is a dangerously
vague statement anyway and I’m sure you would not say
such a thing. NAMELY observe that

u(x) = exp(i exp(x))

defines an element of S ′(R) and hence conclude that, in a
sense you should make clear, so does

(3) exp(x) exp(i exp(x))

but that this does NOT satisfy (2) above.
Solution. As a function

exp(x) exp(i exp(x)) = Dxu(x).

Since u(x) is bounded and continuous, it defines a distribution
and its distributional derivative is defined by

(4)

(DxI(u))(φ) = −
∫
u(x)Dxφ = lim

N→∞

(∫ N

−N
exp(x) exp(i exp(x))φ+ i

[
u(x)φ(x)

]N
−N

)
.

The second term here tends to zero as N → ∞ since u is
bounded. So in the sense that the limiting integral

(5) exp(·) exp(i exp(·))(φ) =

∫ N

−N
exp(x) exp(i exp(x))φ

defines a distribution then this function ‘is’ a distribution. Note
however that this integral is not absolutely convergent.

(4) (Riesz’ regularization extended by Gel’fand and Shilov)
A) Using a problem above, show that for z ∈ C, Re z > −1,

the function

(6)

{
xz = exp(z log x) x > 0

0 x ≤ 0

defines an element, we denote as xz+ ∈ S ′(R).
Solution: The function xz for Re z > −1 is locally inte-
grable and if N > Re z + 1, (1 + |x|)−Nxz+ is in L1.

B) Carry out the integration by parts necessary to check the
formula for the distributional derivative

(7)
d

dx
xz+ = zxz−1+ if Re z > 0.
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Solution: By definition
(8)
d

dx
xz+(φ) = −

∫ ∞
0

xz+
dφ

dx
= − lim

δ↓0

∫ ∞
δ

xz+
dφ

dx
= lim

δ↓0

(∫ ∞
δ

zxz+
dφ

dx
+ δzφ(δ)

)
If Re z > 0 the second term vanishes in the limit showing
(7).

C) Writing this formula as

(9) xτ+ = (τ + 1)−1
d

dx
xτ+1
+ , Re τ > −1

observe that the right side makes sense for Re τ > −2
provided τ 6= −1 and this can be used to define xτ+ for this
range of τ.
Solution: Right!

D) Iterate this argument to show that one can define xz+ for
z ∈ C \ −N this way.

For φ ∈ S(R), what is the value of the limit

lim
z→−1

(z + 1)xz+(φ)?

Solution: One gets

xτ+ = (τ + k)−1 · · · (τ + 1)−1
dk

dxk
xτ+k+ , Re τ > −k − 1

and this is consistent with the previous definition inductive
definition when Re τ > −k. Note that the nicest way to see
this is to use the meromorphy of the function

(10)

∫ ∞
0

xzφ(x).

What you are actually showing here is that this function,
defined by the integral for Re z > −1, actually has a mero-
morphic extension to the complex plain with poles only at
the points z ∈ −N.
You can compute all the ‘residues’ but the one at z = −1
follows directly by evaluation

lim
z→−1

(z + 1)

∫ ∞
0

xzφ = lim
z→−1

(z + 1)

∫ ∞
1

xzφ

+ lim
z→−1

(z + 1)

∫ 1

0

xz(φ(x)− φ(0)) + lim
z→−1

(z + 1)φ(0)

∫ 1

0

xz.
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The first two integrand converge absolutely in L1 as z →
−1 (because of an extra factor of x in the second case) so
the limit is 1.

(5) The Dirac delta ‘function’ δ ∈ S ′(Rn) defined by

(11) δ(φ) = φ(0) ∀ φ ∈ S(Rn)

is amongst the most important distributions (it is a measure).
A) Find explicit formulae for the derivatives ∂αδ evaluated on

test functions
Solution: ∂αδ(φ) = (−1)|α|δ(∂αφ) = (−1)|α|∂αφ(0).

B) Compute the Fourier transform of ∂αδ. Since δ̂(φ) = δ(φ̂),

δ̂(φ) = φ̂(0) =
∫
φ so δ̂ = I(1) = 1 as we now say. The

derivatives then follow from the general formula that

D̂αu = ξαû, D̂αδ = ξα(= I(ξα).

C) Show that

(12) ∂αδ ∈ H−|α|−n/2−ε(Rn)

for ε > 0 but not for ε = 0.
Solution: This is the statement that (1 + |ξ|)−n/2−|α|−εξα ∈
L2 if and only if ε > 0.

Hints:

(1) Use a bump function, conventionally called χ, as constructed in
Lecture 3 which is equal to 1 in |x| < 1

2
and vanishes in |x| > 1

and then show that χ(x
k
)φ(x)→ φ(x) in S(Rn).

(2) You may apply the Ascoli-Arzela theorem if you check that a
set bounded with respect to the norm ‖ · ‖1 is equicontinuous
on Rn!

(3) The function in (3) is a multiple of the derivative of the bounded
function u in (3).


