PROBLEM SET 2, 18.155 SKETCHED SOLUTIONS

(1) Let $\mathcal{C}_{c}^{\infty}(\mathbb{R}^{n}) \subset \mathcal{S}(\mathbb{R}^{n})$ be the subspace of compactly supported smooth functions – those that vanish for |x| > R for some R (depending on the element of course). Show that this is a dense inclusion.

Solution: In class we constructed $\phi \in \mathcal{C}_c^{\infty}(\mathbb{R}^n)$ with $\phi(x) = 1$ in $|x| \leq \frac{1}{2}$ and $\phi(x) = 0$ in |x| > 1. Given $\psi \in \mathcal{S}(\mathbb{R}^n)$ and $n \in \mathbb{N}$.

$$\psi_n(x) = \phi(\frac{x}{2n})\psi(x) \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^n)$$

vanishes in |x| > 2n and is equal to ψ in |x| < n. The difference and its derivatives satisfy

(1)
$$|D^{\alpha}(\psi - \psi_n)| = |D^{\alpha}(1 - \phi(\frac{x}{2n})\psi| \le \sum_{|\beta| \le |\alpha|} C_{\beta} n^{-|\beta|} (1 + |x|)^{-k} \chi_{|x| \ge n}.$$

Here I have expanded out the product, estimated the finite number of derivatives of ϕ involved by constants and the derivatives of ψ by multiples of $(1 + |x|)^{-k}$ and noted that all terms vanish in |x| < n. It follows that $\psi_n \to \psi$ in the norms of $\mathcal{S}(\mathbb{R}^n)$ and hence in this as a metric space.

(2) Prove that $\mathcal{S}(\mathbb{R}^n)$ is a *Montel space* which means that it has an analogue of the Heine-Borel property. Namely, (you have to show that) if $D \subset \mathcal{S}(\mathbb{R}^n)$ is closed and 'bounded' in the sense that for each N there exists C_N such that $\|\phi\|_N \leq C_N$ for all $\phi \in D$, then D is compact.

Solution: Use Ascoli-Arzela or the characterization of precompact sets in $L^2(\mathbb{R}^n)$ (equicontinuous-in-the means and equismall at infinity). In either case the boundednedd with respect to a 'higher norm' implies the precompactness of D with respect to a given norm. There are countably many norms so from a sequence in D one can extract successive subsequences Cauchy with respect to successive (increasing) norms, and then pass to a diagonal sequence in D which is Cauchy in $\mathcal{S}(\mathbb{R}^n)$ and hence converges. So D is compact.

(3) A) Show (as in remind yourself and the grader) that if u: $\mathbb{R}^n \longrightarrow \mathbb{C}$ is measurable and

(2)
$$(1+|x|)^{-N}u \in L^1(\mathbb{R}^n)$$

for some N then $I(u)(\phi) = \int u\phi$, for $\phi \in \mathcal{S}(\mathbb{R}^n)$ defines an element $I(u) \in \mathcal{S}'(\mathbb{R}^n)$.

B) Now, refute the idea that these are the 'most general' functions which define distributions – this is a dangerously vague statement anyway and I'm sure you would not say such a thing. NAMELY observe that

$$u(x) = \exp(i\exp(x))$$

defines an element of $\mathcal{S}'(\mathbb{R})$ and hence conclude that, in a sense you should make clear, so does

(3)
$$\exp(x)\exp(i\exp(x))$$

but that this does NOT satisfy (2) above. Solution. As a function

$$\exp(x)\exp(i\exp(x)) = D_x u(x).$$

Since u(x) is bounded and continuous, it defines a distribution and its distributional derivative is defined by

$$(D_x I(u))(\phi) = -\int u(x) D_x \phi = \lim_{N \to \infty} \left(\int_{-N}^N \exp(x) \exp(i \exp(x)) \phi + i \left[u(x) \phi(x) \right]_{-N}^N \right).$$

The second term here tends to zero as $N \to \infty$ since u is bounded. So in the sense that the *limiting* integral

(5)
$$\exp(\cdot)\exp(i\exp(\cdot))(\phi) = \int_{-N}^{N}\exp(x)\exp(i\exp(x))\phi$$

defines a distribution then this function 'is' a distribution. Note however that this integral is not absolutely convergent.

- (4) (Riesz' regularization extended by Gel'fand and Shilov)
 - A) Using a problem above, show that for $z \in \mathbb{C}$, $\operatorname{Re} z > -1$, the function

(6)
$$\begin{cases} x^z = \exp(z \log x) & x > 0\\ 0 & x \le 0 \end{cases}$$

defines an element, we denote as $x_+^z \in \mathcal{S}'(\mathbb{R})$. Solution: The function x^z for $\operatorname{Re} z > -1$ is locally integrable and if $N > \operatorname{Re} z + 1$, $(1 + |x|)^{-N} x_+^z$ is in L^1 .

B) Carry out the integration by parts necessary to check the formula for the distributional derivative

(7)
$$\frac{d}{dx}x_{+}^{z} = zx_{+}^{z-1} \text{ if } \operatorname{Re} z > 0.$$

Solution: By definition

$$\frac{d}{dx}x_{+}^{z}(\phi) = -\int_{0}^{\infty}x_{+}^{z}\frac{d\phi}{dx} = -\lim_{\delta \downarrow 0}\int_{\delta}^{\infty}x_{+}^{z}\frac{d\phi}{dx} = \lim_{\delta \downarrow 0}\left(\int_{\delta}^{\infty}zx_{+}^{z}\frac{d\phi}{dx} + \delta^{z}\phi(\delta)\right)$$

If $\operatorname{Re} z > 0$ the second term vanishes in the limit showing (7).

C) Writing this formula as

(9)
$$x_{+}^{\tau} = (\tau+1)^{-1} \frac{d}{dx} x_{+}^{\tau+1}, \operatorname{Re} \tau > -1$$

observe that the right side makes sense for $\operatorname{Re} \tau > -2$ provided $\tau \neq -1$ and this can be used to define x_{+}^{τ} for this range of τ . Solution: Right!

D) Iterate this argument to show that one can define x_+^z for $z \in \mathbb{C} \setminus -\mathbb{N}$ this way.

For $\phi \in \mathcal{S}(\mathbb{R})$, what is the value of the limit

$$\lim_{z \to -1} (z+1) x_{+}^{z}(\phi)?$$

Solution: One gets

$$x_{+}^{\tau} = (\tau+k)^{-1} \cdots (\tau+1)^{-1} \frac{d^k}{dx^k} x_{+}^{\tau+k}, \text{ Re } \tau > -k-1$$

and this is consistent with the previous definition inductive definition when $\operatorname{Re} \tau > -k$. Note that the nicest way to see this is to use the meromorphy of the function

(10)
$$\int_0^\infty x^z \phi(x).$$

What you are actually showing here is that this function, defined by the integral for Re z > -1, actually has a meromorphic extension to the complex plain with poles only at the points $z \in -\mathbb{N}$.

You can compute all the 'residues' but the one at z = -1 follows directly by evaluation

$$\lim_{z \to -1} (z+1) \int_0^\infty x^z \phi = \lim_{z \to -1} (z+1) \int_1^\infty x^z \phi + \lim_{z \to -1} (z+1) \int_0^1 x^z (\phi(x) - \phi(0)) + \lim_{z \to -1} (z+1) \phi(0) \int_0^1 x^z dx dx$$

The first two integrand converge absolutely in L^1 as $z \to -1$ (because of an extra factor of x in the second case) so the limit is 1.

(5) The Dirac delta 'function' $\delta \in \mathcal{S}'(\mathbb{R}^n)$ defined by

(11)
$$\delta(\phi) = \phi(0) \ \forall \ \phi \in \mathcal{S}(\mathbb{R}^n)$$

is amongst the most important distributions (it is a measure).

- A) Find explicit formulae for the derivatives $\partial^{\alpha}\delta$ evaluated on test functions
 - Solution: $\partial^{\alpha}\delta(\phi) = (-1)^{|\alpha|}\delta(\partial^{\alpha}\phi) = (-1)^{|\alpha|}\partial^{\alpha}\phi(0).$
- B) Compute the Fourier transform of $\partial^{\alpha}\delta$. Since $\hat{\delta}(\phi) = \delta(\hat{\phi})$, $\hat{\delta}(\phi) = \hat{\phi}(0) = \int \phi$ so $\hat{\delta} = I(1) = 1$ as we now say. The derivatives then follow from the general formula that

$$\widehat{D^{\alpha}u} = \xi^{\alpha}\hat{u}, \ \widehat{D^{\alpha}\delta} = \xi^{\alpha} (= I(\xi^{\alpha}).$$

C) Show that

$$\partial^{\alpha}\delta \in H^{-|\alpha|-n/2-\epsilon}(\mathbb{R}^n)$$

for $\epsilon > 0$ but not for $\epsilon = 0$.

Solution: This is the statement that $(1+|\xi|)^{-n/2-|\alpha|-\epsilon}\xi^{\alpha} \in L^2$ if and only if $\epsilon > 0$.

Hints:

(12)

- (1) Use a bump function, conventionally called χ , as constructed in Lecture 3 which is equal to 1 in $|x| < \frac{1}{2}$ and vanishes in |x| > 1 and then show that $\chi(\frac{x}{k})\phi(x) \to \phi(x)$ in $\mathcal{S}(\mathbb{R}^n)$.
- (2) You may apply the Ascoli-Arzela theorem if you check that a set bounded with respect to the norm $\|\cdot\|_1$ is equicontinuous on \mathbb{R}^n !
- (3) The function in (3) is a multiple of the derivative of the bounded function u in (3).