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PROBLEM SET 2, 18.155
SKETCHED SOLUTIONS

Let C(R™) € S(R™) be the subspace of compactly supported
smooth functions — those that vanish for |x| > R for some R
(depending on the element of course). Show that this is a dense
inclusion.

Solution: In class we constructed ¢ € C°(R"™) with ¢(z) =1
in |z| < 5 and ¢(x) = 0in |z| > 1. Given ¢ € S(R") and n € N.

Uale) = 6(5- () € C2(R)

vanishes in |z| > 2n and is equal to ¢ in |z| < n. The difference
and its derivatives satisfy

(1) 1D =) = [D*(1=6(5- )] < 37 Con 1+ fal) Xz

(2)

(3)

18]t

Here I have expanded out the product, estimated the finite num-
ber of derivatives of ¢ involved by constants and the derivatives
of 1 by multiples of (1+ |x|)~* and noted that all terms vanish
in |z| < n. It follows that v, — 1 in the norms of S(R™) and
hence in this as a metric space.

Prove that S(R") is a Montel space which means that it has
an analogue of the Heine-Borel property. Namely, (you have to
show that) if D C S(R™) is closed and ‘bounded’ in the sense
that for each N there exists Cy such that ||¢||y < Cy for all
¢ € D, then D is compact.

Solution: Use Ascoli-Arzela or the characterization of pre-
compact sets in L?(R") (equicontinuous-in-the means and equi-
small at infinity). In either case the boundednedd with respect
to a ‘higher norm’ implies the precompactness of D with respect
to a given norm. There are countably many norms so from a
sequence in D one can extract successive subsequences Cauchy
with respect to successive (increasing) norms, and then pass to
a diagonal sequence in D which is Cauchy in S(R") and hence
converges. So D is compact.

A) Show (as in remind yourself and the grader) that if u :
R"™ — C is measurable and
(1+[a])™Vu € L'(R")
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for some N then I(u)(¢) = [u¢, for ¢ € S(R"™) defines an
element I(u) € S'(R").

B) Now, refute the idea that these are the ‘most general’ func-
tions which define distributions — this is a dangerously

vague statement anyway and I'm sure you would not say
such a thing. NAMELY observe that

u(z) = exp(i exp())

defines an element of S’(R) and hence conclude that, in a
sense you should make clear, so does

(3) exp(z) exp(i exp(z))
but that this does NOT satisfy above.

Solution. As a function

exp(x) exp(iexp(z)) = Dyu(x).

Since u(z) is bounded and continuous, it defines a distribution
and its distributional derivative is defined by

N
) ) ) N
(DoI(0)(6) = - [ u(x)D.6 = Jim ( [ expla)exni exp<x>>¢+z[u<x>¢<x>]N)-
o0 -N
The second term here tends to zero as N — oo since w is
bounded. So in the sense that the limiting integral

N
5 epl)epliep()(e) = [ expl)esliexp(a))o
defines a distribution then this function ‘is’ a distribution. Note
however that this integral is not absolutely convergent.
(4) (Riesz’ regularization extended by Gel'fand and Shilov)
A) Using a problem above, show that for = € C, Rez > —1,
the function

r* =exp(zlogz) x>0
0 <0

defines an element, we denote as 2% € S§'(R).
Solution: The function x* for Rez > —1 is locally inte-
grable and if N > Rez + 1, (1 + |z])Na7 is in L'

B) Carry out the integration by parts necessary to check the
formula for the distributional derivative

d
(7) %xi = zz2~ ' if Rez > 0.
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Solution: By definition

d do . < _do . /°° do
_dx$+(¢) = /0 @i o= —lim 2% = lim ( i k= +96 gb(d))

510 Js

If Rez > 0 the second term vanishes in the limit showing

(7)-
C) Writing this formula as

d
(9) xl = (17 + 1)_1d—:c1+1, Ret > —1
T

observe that the right side makes sense for Rem > —2
provided 7 # —1 and this can be used to define 27, for this
range of 7.
Solution: Right!
D) Iterate this argument to show that one can define x% for
z € C\ —N this way.
For ¢ € S(R), what is the value of the limit

lim (2 + 1)a7 (6)?

Solution: One gets

dk
= (k)7 (4 1)_1ﬂxfk, Rer > —k —1
x
and this is consistent with the previous definition inductive
definition when Re 7 > —k. Note that the nicest way to see
this is to use the meromorphy of the function

(10) | wota

What you are actually showing here is that this function,
defined by the integral for Re z > —1, actually has a mero-
morphic extension to the complex plain with poles only at
the points z € —N.

You can compute all the ‘residues’ but the one at z = —1
follows directly by evaluation

2——

lim (z + 1)/ ¢ = lim (2 + 1)/ o)
1 0 z——1 1

+ 1im1(z + 1)/0 z*(p(x) — ¢(0)) + liml(z + 1)¢(0)/0 z”°.

z—— z——
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The first two integrand converge absolutely in L' as z —
—1 (because of an extra factor of x in the second case) so
the limit is 1.

(5) The Dirac delta ‘function’ § € §’'(R") defined by

(11) 0(¢) = 9(0) V ¢ € S(R")
is amongst the most important distributions (it is a measure).

A) Find explicit formulae for the derivatives 0“9 evaluated on
test functions
Solution: 9%0(¢) = (—1)l§(0%¢) = (—1)1*192¢(0).

B) Compute the Fourier transform of 828. Since 6(¢) = 8(¢),
0(¢) = 6(0) = [¢s0d = I(1) = 1 as we now say. The
derivatives then follow from the general formula that

Do = €74, Dog = £%(= I(£°).
C) Show that
(12) 0“6 € H™lol=n/2¢(R")
for € > 0 but not for e = 0.
Solution: This is the statement that (14 |¢[)/27lel=c¢o ¢
L? if and only if € > 0.
Hints:

(1) Use a bump function, conventionally called x, as constructed in
Lecture 3 which is equal to 1 in |#| < § and vanishes in 2| > 1
and then show that x(7)é(r) — ¢(z) in S(R™).

(2) You may apply the Ascoli-Arzela theorem if you check that a
set bounded with respect to the norm || - ||; is equicontinuous
on R™!

(3) The function in (3]) is a multiple of the derivative of the bounded
function u in (3)).



