PROBLEM SET 2, 18.155 SKETCHED SOLUTIONS

(1) Let $\mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}\left(\mathbb{R}^{n}\right)$ be the subspace of compactly supported smooth functions - those that vanish for $|x|>R$ for some R (depending on the element of course). Show that this is a dense inclusion.

Solution: In class we constructed $\phi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\phi(x)=1$ in $|x| \leq \frac{1}{2}$ and $\phi(x)=0$ in $|x|>1$. Given $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $n \in \mathbb{N}$.

$$
\psi_{n}(x)=\phi\left(\frac{x}{2 n}\right) \psi(x) \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)
$$

vanishes in $|x|>2 n$ and is equal to ψ in $|x|<n$. The difference and its derivatives satisfy

$$
\begin{equation*}
\left|D^{\alpha}\left(\psi-\psi_{n}\right)\right|=\left\lvert\, D^{\alpha}\left(\left.1-\phi\left(\frac{x}{2 n}\right) \psi \right\rvert\, \leq \sum_{|\beta| \leq|\alpha|} C_{\beta} n^{-|\beta|}(1+|x|)^{-k} \chi_{|x| \geq n}\right.\right. \tag{1}
\end{equation*}
$$

Here I have expanded out the product, estimated the finite number of derivatives of ϕ involved by constants and the derivatives of ψ by multiples of $(1+|x|)^{-k}$ and noted that all terms vanish in $|x|<n$. It follows that $\psi_{n} \rightarrow \psi$ in the norms of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and hence in this as a metric space.
(2) Prove that $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is a Montel space which means that it has an analogue of the Heine-Borel property. Namely, (you have to show that) if $D \subset \mathcal{S}\left(\mathbb{R}^{n}\right)$ is closed and 'bounded' in the sense that for each N there exists C_{N} such that $\|\phi\|_{N} \leq C_{N}$ for all $\phi \in D$, then D is compact.

Solution: Use Ascoli-Arzela or the characterization of precompact sets in $L^{2}\left(\mathbb{R}^{n}\right)$ (equicontinuous-in-the means and equismall at infinity). In either case the boundednedd with respect to a 'higher norm' implies the precompactness of D with respect to a given norm. There are countably many norms so from a sequence in D one can extract successive subsequences Cauchy with respect to successive (increasing) norms, and then pass to a diagonal sequence in D which is Cauchy in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and hence converges. So D is compact.
(3) A) Show (as in remind yourself and the grader) that if u : $\mathbb{R}^{n} \longrightarrow \mathbb{C}$ is measurable and

$$
\begin{gather*}
(1+|x|)^{-N} u \tag{2}\\
u
\end{gather*}
$$

for some N then $I(u)(\phi)=\int u \phi$, for $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ defines an element $I(u) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
B) Now, refute the idea that these are the 'most general' functions which define distributions - this is a dangerously vague statement anyway and I'm sure you would not say such a thing. NAMELY observe that

$$
u(x)=\exp (i \exp (x))
$$

defines an element of $\mathcal{S}^{\prime}(\mathbb{R})$ and hence conclude that, in a sense you should make clear, so does

$$
\exp (x) \exp (i \exp (x))
$$

but that this does NOT satisfy (2) above.
Solution. As a function

$$
\exp (x) \exp (i \exp (x))=D_{x} u(x) .
$$

Since $u(x)$ is bounded and continuous, it defines a distribution and its distributional derivative is defined by
$\left(D_{x} I(u)\right)(\phi)=-\int u(x) D_{x} \phi=\lim _{N \rightarrow \infty}\left(\int_{-N}^{N} \exp (x) \exp (i \exp (x)) \phi+i[u(x) \phi(x)]_{-N}^{N}\right)$.
The second term here tends to zero as $N \rightarrow \infty$ since u is bounded. So in the sense that the limiting integral

$$
\begin{equation*}
\exp (\cdot) \exp (i \exp (\cdot))(\phi)=\int_{-N}^{N} \exp (x) \exp (i \exp (x)) \phi \tag{5}
\end{equation*}
$$

defines a distribution then this function 'is' a distribution. Note however that this integral is not absolutely convergent.
(4) (Riesz' regularization extended by Gel'fand and Shilov)
A) Using a problem above, show that for $z \in \mathbb{C}, \operatorname{Re} z>-1$, the function

$$
\begin{cases}x^{z}=\exp (z \log x) & x>0 \tag{6}\\ 0 & x \leq 0\end{cases}
$$

defines an element, we denote as $x_{+}^{z} \in \mathcal{S}^{\prime}(\mathbb{R})$.
Solution: The function x^{z} for $\operatorname{Re} z>-1$ is locally integrable and if $N>\operatorname{Re} z+1,(1+|x|)^{-N} x_{+}^{z}$ is in L^{1}.
B) Carry out the integration by parts necessary to check the formula for the distributional derivative

$$
\begin{equation*}
\frac{d}{d x} x_{+}^{z}=z x_{+}^{z-1} \text { if } \operatorname{Re} z>0 \tag{7}
\end{equation*}
$$

Solution: By definition

$$
\begin{equation*}
\frac{d}{d x} x_{+}^{z}(\phi)=-\int_{0}^{\infty} x_{+}^{z} \frac{d \phi}{d x}=-\lim _{\delta \downarrow 0} \int_{\delta}^{\infty} x_{+}^{z} \frac{d \phi}{d x}=\lim _{\delta \downarrow 0}\left(\int_{\delta}^{\infty} z x_{+}^{z} \frac{d \phi}{d x}+\delta^{z} \phi(\delta)\right) \tag{8}
\end{equation*}
$$

If $\operatorname{Re} z>0$ the second term vanishes in the limit showing (7).
C) Writing this formula as

$$
\begin{equation*}
x_{+}^{\tau}=(\tau+1)^{-1} \frac{d}{d x} x_{+}^{\tau+1}, \operatorname{Re} \tau>-1 \tag{9}
\end{equation*}
$$

observe that the right side makes sense for $\operatorname{Re} \tau>-2$ provided $\tau \neq-1$ and this can be used to define x_{+}^{τ} for this range of τ.
Solution: Right!
D) Iterate this argument to show that one can define x_{+}^{z} for $z \in \mathbb{C} \backslash-\mathbb{N}$ this way.

For $\phi \in \mathcal{S}(\mathbb{R})$, what is the value of the limit

$$
\lim _{z \rightarrow-1}(z+1) x_{+}^{z}(\phi) ?
$$

Solution: One gets

$$
x_{+}^{\tau}=(\tau+k)^{-1} \cdots(\tau+1)^{-1} \frac{d^{k}}{d x^{k}} x_{+}^{\tau+k}, \operatorname{Re} \tau>-k-1
$$

and this is consistent with the previous definition inductive definition when $\operatorname{Re} \tau>-k$. Note that the nicest way to see this is to use the meromorphy of the function

$$
\int_{0}^{\infty} x^{z} \phi(x)
$$

What you are actually showing here is that this function, defined by the integral for $\operatorname{Re} z>-1$, actually has a meromorphic extension to the complex plain with poles only at the points $z \in-\mathbb{N}$.
You can compute all the 'residues' but the one at $z=-1$ follows directly by evaluation

$$
\begin{aligned}
\lim _{z \rightarrow-1}(z & +1) \int_{0}^{\infty} x^{z} \phi=\lim _{z \rightarrow-1}(z+1) \int_{1}^{\infty} x^{z} \phi \\
& +\lim _{z \rightarrow-1}(z+1) \int_{0}^{1} x^{z}(\phi(x)-\phi(0))+\lim _{z \rightarrow-1}(z+1) \phi(0) \int_{0}^{1} x^{z}
\end{aligned}
$$

The first two integrand converge absolutely in L^{1} as $z \rightarrow$ -1 (because of an extra factor of x in the second case) so the limit is 1 .
(5) The Dirac delta 'function' $\delta \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ defined by

$$
\begin{equation*}
\delta(\phi)=\phi(0) \forall \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{11}
\end{equation*}
$$

is amongst the most important distributions (it is a measure).
A) Find explicit formulae for the derivatives $\partial^{\alpha} \delta$ evaluated on test functions
Solution: $\partial^{\alpha} \delta(\phi)=(-1)^{|\alpha|} \delta\left(\partial^{\alpha} \phi\right)=(-1)^{|\alpha|} \partial^{\alpha} \phi(0)$.
B) Compute the Fourier transform of $\partial^{\alpha} \delta$. Since $\hat{\delta}(\phi)=\delta(\hat{\phi})$, $\hat{\delta}(\phi)=\hat{\phi}(0)=\int \phi$ so $\hat{\delta}=I(1)=1$ as we now say. The derivatives then follow from the general formula that

$$
\widehat{D^{\alpha} u}=\xi^{\alpha} \hat{u}, \widehat{D^{\alpha} \delta}=\xi^{\alpha}\left(=I\left(\xi^{\alpha}\right)\right.
$$

C) Show that

$$
\begin{equation*}
\partial^{\alpha} \delta \in H^{-|\alpha|-n / 2-\epsilon}\left(\mathbb{R}^{n}\right) \tag{12}
\end{equation*}
$$

for $\epsilon>0$ but not for $\epsilon=0$.
Solution: This is the statement that $(1+|\xi|)^{-n / 2-|\alpha|-\epsilon} \xi^{\alpha} \in$ L^{2} if and only if $\epsilon>0$.
Hints:
(1) Use a bump function, conventionally called χ, as constructed in Lecture 3 which is equal to 1 in $|x|<\frac{1}{2}$ and vanishes in $|x|>1$ and then show that $\chi\left(\frac{x}{k}\right) \phi(x) \rightarrow \phi(x)$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
(2) You may apply the Ascoli-Arzela theorem if you check that a set bounded with respect to the norm $\|\cdot\|_{1}$ is equicontinuous on \mathbb{R}^{n} !
(3) The function in (3) is a multiple of the derivative of the bounded function u in (3).

