
18.155 LECTURE 4: 17 SEPTEMBER, 2013

Last week I went through the proof that the Fourier transform

(1) F : S(Rn) 3 φ 7−→ φ̂ =

∫
ei•·xφ(x)dx ∈ S(Rn)

is an isomorphism and its basic properties and extension to a bijection on S ′(Rn)
and on L2(Rn). The latter was based in part at least on a plausibility argument for
the injectivity of the map I : L2(Rn) −→ S ′(Rn). This in turn allows one to define
the L2-based Sobolev spaces

(2) Hs(Rn) = {u ∈ S ′(Rn); (1 + |ξ|2)s/2û ∈ L2(Rn)}, s ∈ R.

Written out more carefully this last statement says we consider those u ∈ S ′(Rn)
such that (1 + |ξ|2)s/2û = I(v) for some v ∈ L2(Rn) which makes sense since you
showed in the homework that (1 + |ξ|2)s/2 is a multiplier on S ′(Rn).

The most basic properties of Hs(Rn) are that these spaces decrease as s increases

– since for any s′ ≤ s, (1+|ξ|2)
1
2 (s
′−s) is a multiplier on L2(Rn). They are all Hilbert

spaces where the inner product can be taken to be

(3) 〈u, v〉s = (2π)−n
∫

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ.

By Parseval’s identity the constant is chosen so this is consistent with the inner
product on L2 for s = 0.

Towards the end I discussed weak and strong derivatives and the Sobolev em-
bedding theorem. Since I went rather quickly let me recall these.

First

Lemma 1. If s = k ∈ N then

(4) Hk(Rn) = {u ∈ L2(Rn);u has strong derivatives in L2 to order k}.

Here a strong partial derivative in L2(Rn) means that the limit

(5) lim
t→0

u(x+ tej)− u(x)

t
= vj exists in L2(Rn).

As usual we define the notion of having strong derivatives up to order k iteratively
– by demanding that the strong partial derivatives exist and have strong L2 partial
derivatives up to order k − 1.

Proof. To prove the forward result it suffices to prove that if u ∈ Hk(Rn) with k ∈ N
then it has strong partial derivatives and these lie in Hk−1(Rn). The existence
of strong partial derivatives follows from first from the existence of weak partial
derivatives. If u ∈ Hk(Rn) then u ∈ H1(Rn) and (1 + |ξ|)û = w ∈ L2(Rn). This

implies that v̂j = ξj û =
ξj

(1+|ξ|)w ∈ L
2 defines vj ∈ L2(Rn) and this satisfies

(6)

(DjI(u))(φ) = I(u)(Djφ) = −
∫
uDjφ = (2π)−n

∫
ûξj φ̂ =

∫
vjφ ∀ φ ∈ S(Rn).

1
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I put the bars in here to make the computation easier. So vj is a weak derivative
in L2(Rn). As I showed last time this implies that it is a strong derivative as well.
Indeed computing the Fourier transform of the difference quotient gives

(7)
̂u(x+ tej)− u(x)

t
=
eitξj − 1

t
û(ξ)

and using Taylors formula with remainder we showed last time that

(8)
eitξj − 1

t
(1 + |ξ|)−1 −→ iξj(1 + |ξ|)−1

pointwise in ξ and with a uniform bound. In (7) this means by Lebesgues’ domi-
nated convergence that the right side converges to iξj v̂j in L2 so in fact (5) holds.
If u ∈ Hk(Rn) then vj ∈ Hk−1(Rn) and the result this way holds.

The statement the other way, that if u has strong partial derivatives in L2 up
to order k then it is in Hk(Rn) is a bit easier. Again induction in k reduces the
problem to showing that if u has strong first derivatives and they are in Hk−1(Rn)
then u ∈ Hk(Rn). Change of variable of integration shows that for u ∈ L2(Rn)

(9)

∫
u(x)

φ(x− t)− φ(x)

t
=

∫
u(x− t)− u(x)

t
φ(x)dx, φ ∈ S(Rn).

The difference quotient for φ does converge in L2(Rn) – S(Rn) ⊂ H1(Rn) for
instance – so both sides converge and this shows that a strong derivative is a weak
derivative. The inductive hypothesis means that

(10) (1 + |ξ|2)
k−1
2 ξj û ∈ L2(Rn)

for all j and this implies that (1 + |ξ|2)
k
2 û ∈ L2(Rn), i.e. u ∈ Hk(Rn). �

So, now we have some idea of what the Sobolev spaces of positive integral order
are like. What about the intermediate ones?

Proposition 1. For 0 < s < 1, u ∈ L2(Rn) is in the space Hs(Rn) if and only if
the integral

(11)

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞.

Proof. The integrand here is a non-negative measureable function so this makes
good sense. So, start with u ∈ Hs(Rn). This means that u ∈ L2 and (1+|xi|2)s/2û ∈
L2. So, we can use the fact that (1 + |ξ|2)s/2 and 1 + |ξ|s are bounded by multiples
of each other, so given that u ∈ L2 and hence û ∈ L2 this just means that

(12) |ξ|sû ∈ L2(Rn).

Notice that the integral in (11) is like and integrated difference quotient, it can
be rewritten as ∫

Rn

∫
Rn

|u(x+ t)− u(x)|2

|t|n+2s
dxdt.

With this in mind we proceed to compute the L2 integral using the Fourier trans-
form

(13)

∫
Rn

|u(x+ t)− u(x)|2dx = (2π)−n
∫
Rn

|eitξ − 1|2|û(ξ)|2dξ.
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So the t integral we want to evaluate is

(14) F (ξ) =

∫
|eit·ξ − 1|2|t|−n−2sdt.

This is finite for each ξ since the singularity at the origin is integrable – the first term
vanishes at t = 0 so contributes a |t|2 and the integral is bounded by C|t|−n−2s+2

which is integrable for s < 1.Near infinity the first term is bounded so it is integrable
there too.

We can also make a rotation in the integral to check that F (ξ) = f(|ξ|) is
constant on spheres. We can also scale the variables, sending ξ 7−→ rξ and t→ t/r
for r positive shows that

(15) F (rξ) = r2sF (ξ) =⇒ F (ξ) = C|ξ|2s, C > 0.

From this it follows that the finiteness of (11) for u ∈ L2(Rn) is equivalent to
u ∈ Hs(Rn). �

Next we can relate the two spaces H±s(Rn).

Lemma 2. For any s ∈ R, S(Rn) is dense in Hs(Rn) and if u ∈ S ′(Rn) then
u ∈ Hs(Rn) if and only if

(16) |u(φ)| ≤ C‖φ‖H−s ∀ φ ∈ S(Rn).

Proof. The density follows from the density of S(Rn) in L2. If u ∈ Hs(Rn) then
(1+ |ξ|2)s/2û = v ∈ L2(Rn) so there exists vn ∈ S(Rn) such that vn → v in L2(Rn).
Then defining wn ∈ S(Rn) by ŵn = (1 + |ξ|2)−s/2vn(ξ) we see that

(17) ‖u− wn‖2Hs = (2π)−n
∫

(1 + |ξ|2)s|û− ŵn|2 = (2π)−n
∫
|v − vn|2 → 0.

Setting ψ = φ

(18) u(ψ) = (2π)−nû(ψ̂) = (2π)−n
∫

(1 + |ξ|2)s/2û · (1 + |ξ|2)−s/2ψ̂

Here the last integral should really be interpreted as the distributional pairing.
Then the inequality (16) (and Riesz’ Representation Theorem) tells us that v =
(1 + |ξ|2)s/2û does exist in L2 so that (18) holds and hence u ∈ Hs(Rn). The
converse is easier. �

For Sobolev spaces of negative integral order we get a corresponding ‘dual’ char-
acterization to that above.

Lemma 3. If u ∈ S ′(Rn) then u ∈ H−k(Rn), with k ∈ N, if and only if there exist
uα ∈ L2(Rn) for all 0 ≤ |α| ≤ k such that

(19) u =
∑

0≤|α|≤k

Dαuα.

I.e. it is a sum of up to k fold derivatives of L2 functions.

Proof. We know that u ∈ H−k(Rn) if and only if û = (1 + |ξ|2)k/2v with v ∈ L2.
This can also be written

(20) û = (1 + |ξ|2)kv′, v′ = (1 + |ξ‖2)−k/2v, v ∈ L2(Rn).
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This however means precisely that v′ = ŵ where w ∈ Hk(Rn). Multiplying out the
factor in (20) we see that for some constants cα,

(21) u =
∑

0≤|α|≤k

Dαuα, uα = (cαD
αw) ∈ L2(Rn).

�

This can be refined in various. Using the fact that the three functions

(22) (1 + |ξ|2)k, 1 +
∑
|α|=k

|ξα|2 and 1 +

n∑
j=1

|ξj |2k

are bounded above and below by constant multiples of each other, the second two
can be inserted in place of the first in (20). This allows the condition u ∈ H−k(Rn)
to be shown to be equivalent to either of

(23)

u = u0 +
∑
|α|=k

Dαuα, u• ∈ L2(Rn) or

u = v0 +

n∑
j=1

Dk
j vj , v• ∈ L2(Rn).

As an exercise towards ‘elliptic regularity’ which we discuss later you should
check that similarly for the positive integral case
(24)

For u ∈ S ′(Rn), u ∈ Hk(Rn)⇐⇒ u ∈ L2(Rn) and Dk
j u ∈ L2(Rn) j = 1, . . . , n.

Now we can prove Schwartz’ structure theorem.

Theorem 1. Any u ∈ S ′(Rn) can be written in the form of a finite sum

(25) u =
∑

|α|+|β|≤N

xαDβuα,β , uα,β ∈ L2(Rn)

or, for a possibly different N, with the uα,β bounded continuous functions.

Detour on isotropic Sobolev spaces – I will add some notes a bit later.


