18.155 LECTURE 4: 17 SEPTEMBER, 2013

Last week I went through the proof that the Fourier transform

(1)
$$\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \ni \phi \longmapsto \hat{\phi} = \int e^{i \bullet \cdot x} \phi(x) dx \in \mathcal{S}(\mathbb{R}^n)$$

is an isomorphism and its basic properties and extension to a bijection on $\mathcal{S}'(\mathbb{R}^n)$ and on $L^2(\mathbb{R}^n)$. The latter was based in part at least on a plausibility argument for the injectivity of the map $I: L^2(\mathbb{R}^n) \longrightarrow \mathcal{S}'(\mathbb{R}^n)$. This in turn allows one to define the L^2 -based Sobolev spaces

(2)
$$H^{s}(\mathbb{R}^{n}) = \{ u \in \mathcal{S}'(\mathbb{R}^{n}); (1+|\xi|^{2})^{s/2} \hat{u} \in L^{2}(\mathbb{R}^{n}) \}, \ s \in \mathbb{R}.$$

Written out more carefully this last statement says we consider those $u \in \mathcal{S}'(\mathbb{R}^n)$ such that $(1 + |\xi|^2)^{s/2} \hat{u} = I(v)$ for some $v \in L^2(\mathbb{R}^n)$ which makes sense since you showed in the homework that $(1 + |\xi|^2)^{s/2}$ is a multiplier on $\mathcal{S}'(\mathbb{R}^n)$.

The most basic properties of $H^s(\mathbb{R}^n)$ are that these spaces *decrease* as *s* increases – since for any $s' \leq s$, $(1+|\xi|^2)^{\frac{1}{2}(s'-s)}$ is a multiplier on $L^2(\mathbb{R}^n)$. They are all Hilbert spaces where the inner product can be taken to be

(3)
$$\langle u, v \rangle_s = (2\pi)^{-n} \int (1+|\xi|^2)^s \hat{u}(\xi) \overline{\hat{v}(\xi)} d\xi$$

By Parseval's identity the constant is chosen so this is consistent with the inner product on L^2 for s = 0.

Towards the end I discussed weak and strong derivatives and the Sobolev embedding theorem. Since I went rather quickly let me recall these.

First

Lemma 1. If $s = k \in \mathbb{N}$ then

(4)
$$H^k(\mathbb{R}^n) = \{ u \in L^2(\mathbb{R}^n); u \text{ has strong derivatives in } L^2 \text{ to order } k \}.$$

Here a strong partial derivative in $L^2(\mathbb{R}^n)$ means that the limit

(5)
$$\lim_{t \to 0} \frac{u(x+te_j) - u(x)}{t} = v_j \text{ exists in } L^2(\mathbb{R}^n).$$

As usual we define the notion of having strong derivatives up to order k iteratively – by demanding that the strong partial derivatives exist and have strong L^2 partial derivatives up to order k - 1.

Proof. To prove the forward result it suffices to prove that if $u \in H^k(\mathbb{R}^n)$ with $k \in \mathbb{N}$ then it has strong partial derivatives and these lie in $H^{k-1}(\mathbb{R}^n)$. The existence of strong partial derivatives follows from first from the existence of weak partial derivatives. If $u \in H^k(\mathbb{R}^n)$ then $u \in H^1(\mathbb{R}^n)$ and $(1 + |\xi|)\hat{u} = w \in L^2(\mathbb{R}^n)$. This implies that $\hat{v}_j = \xi_j \hat{u} = \frac{\xi_j}{(1+|\xi|)} w \in L^2$ defines $v_j \in L^2(\mathbb{R}^n)$ and this satisfies (6)

$$(D_j I(u))(\overline{\phi}) = I(u)(\overline{D_j \phi}) = -\int u D_j \phi = (2\pi)^{-n} \int \hat{u} \overline{\xi_j \phi} = \int v_j \overline{\phi} \,\forall \,\phi \in \mathcal{S}(\mathbb{R}^n).$$

I put the bars in here to make the computation easier. So v_j is a weak derivative in $L^2(\mathbb{R}^n)$. As I showed last time this implies that it is a strong derivative as well. Indeed computing the Fourier transform of the difference quotient gives

(7)
$$\frac{u(x+te_j)-u(x)}{t} = \frac{e^{it\xi_j}-1}{t}\hat{u}(\xi)$$

and using Taylors formula with remainder we showed last time that

(8)
$$\frac{e^{it\xi_j} - 1}{t} (1 + |\xi|)^{-1} \longrightarrow i\xi_j (1 + |\xi|)^{-1}$$

pointwise in ξ and with a uniform bound. In (7) this means by Lebesgues' dominated convergence that the right side converges to $i\xi_j\hat{v}_j$ in L^2 so in fact (5) holds. If $u \in H^k(\mathbb{R}^n)$ then $v_j \in H^{k-1}(\mathbb{R}^n)$ and the result this way holds.

The statement the other way, that if u has strong partial derivatives in L^2 up to order k then it is in $H^k(\mathbb{R}^n)$ is a bit easier. Again induction in k reduces the problem to showing that if u has strong first derivatives and they are in $H^{k-1}(\mathbb{R}^n)$ then $u \in H^k(\mathbb{R}^n)$. Change of variable of integration shows that for $u \in L^2(\mathbb{R}^n)$

(9)
$$\int u(x)\frac{\phi(x-t)-\phi(x)}{t} = \int \frac{u(x-t)-u(x)}{t}\phi(x)dx, \ \phi \in \mathcal{S}(\mathbb{R}^n).$$

The difference quotient for ϕ does converge in $L^2(\mathbb{R}^n) - \mathcal{S}(\mathbb{R}^n) \subset H^1(\mathbb{R}^n)$ for instance – so both sides converge and this shows that a strong derivative is a weak derivative. The inductive hypothesis means that

(10)
$$(1+|\xi|^2)^{\frac{k-1}{2}}\xi_j \hat{u} \in L^2(\mathbb{R}^n)$$

for all j and this implies that $(1+|\xi|^2)^{\frac{k}{2}}\hat{u} \in L^2(\mathbb{R}^n)$, i.e. $u \in H^k(\mathbb{R}^n)$.

So, now we have some idea of what the Sobolev spaces of positive integral order are like. What about the intermediate ones?

Proposition 1. For 0 < s < 1, $u \in L^2(\mathbb{R}^n)$ is in the space $H^s(\mathbb{R}^n)$ if and only if the integral

(11)
$$\int_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n + 2s}} dx dy < \infty.$$

Proof. The integrand here is a non-negative measureable function so this makes good sense. So, start with $u \in H^s(\mathbb{R}^n)$. This means that $u \in L^2$ and $(1+|xi|^2)^{s/2}\hat{u} \in L^2$. So, we can use the fact that $(1+|\xi|^2)^{s/2}$ and $1+|\xi|^s$ are bounded by multiples of each other, so given that $u \in L^2$ and hence $\hat{u} \in L^2$ this just means that

(12)
$$|\xi|^s \hat{u} \in L^2(\mathbb{R}^n).$$

Notice that the integral in (11) is like and integrated difference quotient, it can be rewritten as

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x+t) - u(x)|^2}{|t|^{n+2s}} dx dt$$

With this in mind we proceed to compute the L^2 integral using the Fourier transform

(13)
$$\int_{\mathbb{R}^n} |u(x+t) - u(x)|^2 dx = (2\pi)^{-n} \int_{\mathbb{R}^n} |e^{it\xi} - 1|^2 |\hat{u}(\xi)|^2 d\xi.$$

So the t integral we want to evaluate is

(14)
$$F(\xi) = \int |e^{it \cdot \xi} - 1|^2 |t|^{-n-2s} dt.$$

This is finite for each ξ since the singularity at the origin is integrable – the first term vanishes at t = 0 so contributes a $|t|^2$ and the integral is bounded by $C|t|^{-n-2s+2}$ which is integrable for s < 1. Near infinity the first term is bounded so it is integrable there too.

We can also make a rotation in the integral to check that $F(\xi) = f(|\xi|)$ is constant on spheres. We can also scale the variables, sending $\xi \mapsto r\xi$ and $t \to t/r$ for r positive shows that

(15)
$$F(r\xi) = r^{2s}F(\xi) \Longrightarrow F(\xi) = C|\xi|^{2s}, \ C > 0.$$

From this it follows that the finiteness of (11) for $u \in L^2(\mathbb{R}^n)$ is equivalent to $u \in H^s(\mathbb{R}^n)$.

Next we can relate the two spaces $H^{\pm s}(\mathbb{R}^n)$.

Lemma 2. For any $s \in \mathbb{R}$, $S(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$ and if $u \in S'(\mathbb{R}^n)$ then $u \in H^s(\mathbb{R}^n)$ if and only if

(16)
$$|u(\phi)| \le C \|\phi\|_{H^{-s}} \ \forall \ \phi \in \mathcal{S}(\mathbb{R}^n).$$

Proof. The density follows from the density of $\mathcal{S}(\mathbb{R}^n)$ in L^2 . If $u \in H^s(\mathbb{R}^n)$ then $(1+|\xi|^2)^{s/2}\hat{u} = v \in L^2(\mathbb{R}^n)$ so there exists $v_n \in \mathcal{S}(\mathbb{R}^n)$ such that $v_n \to v$ in $L^2(\mathbb{R}^n)$. Then defining $w_n \in \mathcal{S}(\mathbb{R}^n)$ by $\hat{w}_n = (1+|\xi|^2)^{-s/2}v_n(\xi)$ we see that

(17)
$$||u - w_n||_{H^s}^2 = (2\pi)^{-n} \int (1 + |\xi|^2)^s |\hat{u} - \hat{w}_n|^2 = (2\pi)^{-n} \int |v - v_n|^2 \to 0.$$

Setting $\psi = \overline{\phi}$

(18)
$$u(\overline{\psi}) = (2\pi)^{-n} \hat{u}(\overline{\psi}) = (2\pi)^{-n} \int (1+|\xi|^2)^{s/2} \hat{u} \cdot (1+|\xi|^2)^{-s/2} \overline{\psi}$$

Here the last integral should really be interpreted as the distributional pairing. Then the inequality (16) (and Riesz' Representation Theorem) tells us that $v = (1 + |\xi|^2)^{s/2} \hat{u}$ does exist in L^2 so that (18) holds and hence $u \in H^s(\mathbb{R}^n)$. The converse is easier.

For Sobolev spaces of negative integral order we get a corresponding 'dual' characterization to that above.

Lemma 3. If $u \in \mathcal{S}'(\mathbb{R}^n)$ then $u \in H^{-k}(\mathbb{R}^n)$, with $k \in \mathbb{N}$, if and only if there exist $u_{\alpha} \in L^2(\mathbb{R}^n)$ for all $0 \leq |\alpha| \leq k$ such that

(19)
$$u = \sum_{0 \le |\alpha| \le k} D^{\alpha} u_{\alpha}.$$

I.e. it is a sum of up to k fold derivatives of L^2 functions.

Proof. We know that $u \in H^{-k}(\mathbb{R}^n)$ if and only if $\hat{u} = (1 + |\xi|^2)^{k/2}v$ with $v \in L^2$. This can also be written

(20)
$$\hat{u} = (1+|\xi|^2)^k v', \ v' = (1+|\xi||^2)^{-k/2} v, \ v \in L^2(\mathbb{R}^n).$$

This however means precisely that $v' = \hat{w}$ where $w \in H^k(\mathbb{R}^n)$. Multiplying out the factor in (20) we see that for some constants c_{α} ,

(21)
$$u = \sum_{0 \le |\alpha| \le k} D^{\alpha} u_{\alpha}, \ u_{\alpha} = (c_{\alpha} D^{\alpha} w) \in L^{2}(\mathbb{R}^{n}).$$

This can be refined in various. Using the fact that the three functions

(22)
$$(1+|\xi|^2)^k, \ 1+\sum_{|\alpha|=k} |\xi^{\alpha}|^2 \text{ and } 1+\sum_{j=1}^n |\xi_j|^{2k}$$

are bounded above and below by constant multiples of each other, the second two can be inserted in place of the first in (20). This allows the condition $u \in H^{-k}(\mathbb{R}^n)$ to be shown to be equivalent to either of

(23)
$$u = u_0 + \sum_{|\alpha|=k} D^{\alpha} u_{\alpha}, \ u_{\bullet} \in L^2(\mathbb{R}^n) \text{ or}$$
$$u = v_0 + \sum_{j=1}^n D_j^k v_j, \ v_{\bullet} \in L^2(\mathbb{R}^n).$$

As an exercise towards 'elliptic regularity' which we discuss later you should check that similarly for the positive integral case

(24)

For
$$u \in \mathcal{S}'(\mathbb{R}^n)$$
, $u \in H^k(\mathbb{R}^n) \iff u \in L^2(\mathbb{R}^n)$ and $D_j^k u \in L^2(\mathbb{R}^n)$ $j = 1, ..., n$.

Now we can prove Schwartz' structure theorem.

Theorem 1. Any $u \in S'(\mathbb{R}^n)$ can be written in the form of a finite sum

(25)
$$u = \sum_{|\alpha|+|\beta| \le N} x^{\alpha} D^{\beta} u_{\alpha,\beta}, \ u_{\alpha,\beta} \in L^{2}(\mathbb{R}^{n})$$

or, for a possibly different N, with the $u_{\alpha,\beta}$ bounded continuous functions.

Detour on isotropic Sobolev spaces - I will add some notes a bit later.