18.155 LECTURE 4: 17 SEPTEMBER, 2013

Last week I went through the proof that the Fourier transform
(1) F:SR") 3 ¢— ¢ = /ei"ng(x)dx e S(R™)

is an isomorphism and its basic properties and extension to a bijection on S’(R™)
and on L?(R™). The latter was based in part at least on a plausibility argument for
the injectivity of the map I : L?(R") —s S’(R™). This in turn allows one to define
the L2-based Sobolev spaces

(2) H*(R™) = {u € S'(R™); (1 + [¢*)*/?a € L*(R")}, s € R.

Written out more carefully this last statement says we consider those v € §'(R™)
such that (1 + |£|?)*/24 = I(v) for some v € L?(R™) which makes sense since you
showed in the homework that (1 + |£]?)*/2 is a multiplier on S’(R™).

The most basic properties of H*(R™) are that these spaces decrease as s increases
—since for any s’ < s, (14]€|2)2¢'=%) is a multiplier on L2(R™). They are all Hilbert
spaces where the inner product can be taken to be

(3) (u, v} = (2m)" / (1+ € a(€) @) de.

By Parseval’s identity the constant is chosen so this is consistent with the inner
product on L? for s = 0.

Towards the end I discussed weak and strong derivatives and the Sobolev em-
bedding theorem. Since I went rather quickly let me recall these.

First

Lemma 1. If s=k € N then
(4) H*(R™) = {u € L*>(R™);u has strong derivatives in L? to order k}.
Here a strong partial derivative in L?(R™) means that the limit

. u(z +tej) —u(x)
(5) o t

= v; exists in L*(R™).

As usual we define the notion of having strong derivatives up to order k iteratively
— by demanding that the strong partial derivatives exist and have strong L? partial
derivatives up to order k — 1.

Proof. To prove the forward result it suffices to prove that if u € H*(R™) with k € N
then it has strong partial derivatives and these lie in H*~(R"). The existence
of strong partial derivatives follows from first from the existence of weak partial
derivatives. If u € H¥(R") then u € H*(R") and (1 + |£])& = w € L*(R™). This
implies that 9; = ;4 = (Hg_ﬁw € L? defines v; € L?(R™) and this satisfies
(6) B

(D)@ = 10)(D36) = = [uby0 = n)" [ad = [, € S@).
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I put the bars in here to make the computation easier. So v; is a weak derivative
in L2(R™). As I showed last time this implies that it is a strong derivative as well.
Indeed computing the Fourier transform of the difference quotient gives

u(x +t/e;)\f u(x) et —1

(7) " = ——u(¢)

and using Taylors formula with remainder we showed last time that
eitfj _ 1

) t

pointwise in ¢ and with a uniform bound. In this means by Lebesgues’ domi-
nated convergence that the right side converges to i¢;9; in L? so in fact holds.
If u € H*(R") then v; € H*"1(R") and the result this way holds.

The statement the other way, that if u has strong partial derivatives in L? up
to order k then it is in H¥(R™) is a bit easier. Again induction in k reduces the
problem to showing that if u has strong first derivatives and they are in H*~1(R")
then u € H¥(R™). Change of variable of integration shows that for u € L?(R")

(9) /u(x)w :/wqﬁ(x)d% ¢ € S(R™).

L+ 1" — g +1eh™"

t t

The difference quotient for ¢ does converge in L?(R") — S(R") ¢ H(R") for
instance — so both sides converge and this shows that a strong derivative is a weak
derivative. The inductive hypothesis means that

k—

(10) (L4 [¢%) 7 ¢ € PRT)
for all j and this implies that (1+ [¢]2)24 € L2(R™), i.e. u € HF(R™). O

So, now we have some idea of what the Sobolev spaces of positive integral order
are like. What about the intermediate ones?

Proposition 1. For 0 < s < 1, u € L*(R") is in the space H*(R™) if and only if
the integral

lu(z) — u(y)|®
11 / ————2 dxdy < co.
() Ren |z —y[n T

Proof. The integrand here is a non-negative measureable function so this makes
good sense. So, start with u € H*(R™). This means that u € L? and (1+|zi|?)*/?a €
L?. So, we can use the fact that (14 |£[2)*/? and 1 + |¢|* are bounded by multiples
of each other, so given that « € L? and hence @ € L? this just means that

(12) €50 € L*(R™).
Notice that the integral in is like and integrated difference quotient, it can

be rewritten as
u(z +t) —u(x)?
/n /n s dzdt.

With this in mind we proceed to compute the L? integral using the Fourier trans-
form

13 [ Jue+ o)~ u@)Pde = @0 [ 16— 1Pla(e) s

n
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So the t integral we want to evaluate is

(14) F(g) = / |eit'§ _ 1|2|t‘_n_2sdt.

This is finite for each ¢ since the singularity at the origin is integrable — the first term
vanishes at t = 0 so contributes a [t|> and the integral is bounded by C|t|~"~25+2
which is integrable for s < 1. Near infinity the first term is bounded so it is integrable
there too.

We can also make a rotation in the integral to check that F(§) = f(|¢]) is
constant on spheres. We can also scale the variables, sending £ — r€ and ¢ — t/r
for r positive shows that

(15) F(r§) = r*F(§) = F(§) = Ci¢I*, € >0.
From this it follows that the finiteness of for u € L*(R™) is equivalent to
u € H?(R™). O

Next we can relate the two spaces H**(R").

Lemma 2. For any s € R, S(R™) is dense in H*(R™) and if u € S'(R™) then
u € H*(R"™) if and only if
(16) lu(@)] < Cliglla-« ¥V ¢ € S(R™).

Proof. The density follows from the density of S(R™) in L2. If u € H*(R") then
(1+€2)%/%4 = v € L*(R™) so there exists v,, € S(R™) such that v,, — v in L?(R™).
Then defining w,, € S(R™) by 1, = (1 + |€]?)7%/?v,,(€) we see that

D) u=wllye =@ [@gPYla - oaP = o) [ o= vl 0.

Setting ¢ = ¢

(18) @)= Cn) @) = n) " [ P (L [eR)

Here the last integral should really be interpreted as the distributional pairing.
Then the inequality (and Riesz’ Representation Theorem) tells us that v =
(1 + [€]2)%/0 does exist in L? so that holds and hence u € H*(R™). The
converse is easier. ]

For Sobolev spaces of negative integral order we get a corresponding ‘dual’ char-
acterization to that above.

Lemma 3. Ifu € S'(R") then u € H~F(R"), with k € N, if and only if there exist
Uy € L2(R™) for all 0 < |a| < k such that

(19) u= Y Du.

0<a|<k
Le. it is a sum of up to k fold derivatives of L? functions.

Proof. We know that « € H~*(R") if and only if @ = (1 + |¢|>)*/?v with v € L%
This can also be written

(20) a=(L+ ¢, o' = 1+ €))7, ve L(R),
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This however means precisely that v/ = 1 where w € H*(R™). Multiplying out the
factor in we see that for some constants c,

(21) u= Y D%, s = (caDw) € L*(R").
0<|or| <k
O
This can be refined in various. Using the fact that the three functions
(22) (L+[EPF 14 > g and 1+ > |g)*
|a|=k j=1

are bounded above and below by constant multiples of each other, the second two
can be inserted in place of the first in (20)). This allows the condition v € H=*(R™)
to be shown to be equivalent to either of

u=1ugy + Z D%uy, ue € L*(R™) or

lor|=k
(23) n
u =1y + Zvaj, ve € L*(R™).
j=1

As an exercise towards ‘elliptic regularity’ which we discuss later you should
check that similarly for the positive integral case
(24)

For u € 8'(R"), u € H*(R") <= u € L*(R") and Dju € L*(R") j =1,...,n.

Now we can prove Schwartz’ structure theorem.

Theorem 1. Any u € §'(R™) can be written in the form of a finite sum

(25) u= Z 2DPugy g, uap € L*(R™)
le|+IBI<N

or, for a possibly different N, with the un g bounded continuous functions.

Detour on isotropic Sobolev spaces — I will add some notes a bit later.



