18.155 LECTURE 4: 17 SEPTEMBER, 2013

Last week I went through the proof that the Fourier transform

$$
\begin{equation*}
\mathcal{F}: \mathcal{S}\left(\mathbb{R}^{n}\right) \ni \phi \longmapsto \hat{\phi}=\int e^{i \bullet \cdot x} \phi(x) d x \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

is an isomorphism and its basic properties and extension to a bijection on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and on $L^{2}\left(\mathbb{R}^{n}\right)$. The latter was based in part at least on a plausibility argument for the injectivity of the map $I: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. This in turn allows one to define the L^{2}-based Sobolev spaces

$$
\begin{equation*}
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) ;\left(1+|\xi|^{2}\right)^{s / 2} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}, s \in \mathbb{R} \tag{2}
\end{equation*}
$$

Written out more carefully this last statement says we consider those $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ such that $\left(1+|\xi|^{2}\right)^{s / 2} \hat{u}=I(v)$ for some $v \in L^{2}\left(\mathbb{R}^{n}\right)$ which makes sense since you showed in the homework that $\left(1+|\xi|^{2}\right)^{s / 2}$ is a multiplier on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

The most basic properties of $H^{s}\left(\mathbb{R}^{n}\right)$ are that these spaces decrease as s increases - since for any $s^{\prime} \leq s,\left(1+|\xi|^{2}\right)^{\frac{1}{2}\left(s^{\prime}-s\right)}$ is a multiplier on $L^{2}\left(\mathbb{R}^{n}\right)$. They are all Hilbert spaces where the inner product can be taken to be

$$
\begin{equation*}
\langle u, v\rangle_{s}=(2 \pi)^{-n} \int\left(1+|\xi|^{2}\right)^{s} \hat{u}(\xi) \overline{\hat{v}(\xi)} d \xi \tag{3}
\end{equation*}
$$

By Parseval's identity the constant is chosen so this is consistent with the inner product on L^{2} for $s=0$.

Towards the end I discussed weak and strong derivatives and the Sobolev embedding theorem. Since I went rather quickly let me recall these.

First
Lemma 1. If $s=k \in \mathbb{N}$ then

$$
\begin{equation*}
H^{k}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right) ; u \text { has strong derivatives in } L^{2} \text { to order } k\right\} \tag{4}
\end{equation*}
$$

Here a strong partial derivative in $L^{2}\left(\mathbb{R}^{n}\right)$ means that the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{u\left(x+t e_{j}\right)-u(x)}{t}=v_{j} \text { exists in } L^{2}\left(\mathbb{R}^{n}\right) \tag{5}
\end{equation*}
$$

As usual we define the notion of having strong derivatives up to order k iteratively - by demanding that the strong partial derivatives exist and have strong L^{2} partial derivatives up to order $k-1$.

Proof. To prove the forward result it suffices to prove that if $u \in H^{k}\left(\mathbb{R}^{n}\right)$ with $k \in \mathbb{N}$ then it has strong partial derivatives and these lie in $H^{k-1}\left(\mathbb{R}^{n}\right)$. The existence of strong partial derivatives follows from first from the existence of weak partial derivatives. If $u \in H^{k}\left(\mathbb{R}^{n}\right)$ then $u \in H^{1}\left(\mathbb{R}^{n}\right)$ and $(1+|\xi|) \hat{u}=w \in L^{2}\left(\mathbb{R}^{n}\right)$. This implies that $\hat{v}_{j}=\xi_{j} \hat{u}=\frac{\xi_{j}}{(1+|\xi|)} w \in L^{2}$ defines $v_{j} \in L^{2}\left(\mathbb{R}^{n}\right)$ and this satisfies

$$
\begin{equation*}
\left(D_{j} I(u)\right)(\bar{\phi})=I(u)\left(\overline{D_{j} \phi}\right)=-\int u D_{j} \phi=(2 \pi)^{-n} \int \hat{u} \overline{\xi_{j} \hat{\phi}}=\int v_{j} \bar{\phi} \forall \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{6}
\end{equation*}
$$

I put the bars in here to make the computation easier. So v_{j} is a weak derivative in $L^{2}\left(\mathbb{R}^{n}\right)$. As I showed last time this implies that it is a strong derivative as well. Indeed computing the Fourier transform of the difference quotient gives

$$
\begin{equation*}
\frac{u\left(x+\widehat{\left.t e_{j}\right)}-u(x)\right.}{t}=\frac{e^{i t \xi_{j}}-1}{t} \hat{u}(\xi) \tag{7}
\end{equation*}
$$

and using Taylors formula with remainder we showed last time that

$$
\begin{equation*}
\frac{e^{i t \xi_{j}}-1}{t}(1+|\xi|)^{-1} \longrightarrow i \xi_{j}(1+|\xi|)^{-1} \tag{8}
\end{equation*}
$$

pointwise in ξ and with a uniform bound. In (7) this means by Lebesgues' dominated convergence that the right side converges to $i \xi_{j} \hat{v}_{j}$ in L^{2} so in fact (5) holds. If $u \in H^{k}\left(\mathbb{R}^{n}\right)$ then $v_{j} \in H^{k-1}\left(\mathbb{R}^{n}\right)$ and the result this way holds.

The statement the other way, that if u has strong partial derivatives in L^{2} up to order k then it is in $H^{k}\left(\mathbb{R}^{n}\right)$ is a bit easier. Again induction in k reduces the problem to showing that if u has strong first derivatives and they are in $H^{k-1}\left(\mathbb{R}^{n}\right)$ then $u \in H^{k}\left(\mathbb{R}^{n}\right)$. Change of variable of integration shows that for $u \in L^{2}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\int u(x) \frac{\phi(x-t)-\phi(x)}{t}=\int \frac{u(x-t)-u(x)}{t} \phi(x) d x, \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{9}
\end{equation*}
$$

The difference quotient for ϕ does converge in $L^{2}\left(\mathbb{R}^{n}\right)-\mathcal{S}\left(\mathbb{R}^{n}\right) \subset H^{1}\left(\mathbb{R}^{n}\right)$ for instance - so both sides converge and this shows that a strong derivative is a weak derivative. The inductive hypothesis means that

$$
\begin{equation*}
\left(1+|\xi|^{2}\right)^{\frac{k-1}{2}} \xi_{j} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right) \tag{10}
\end{equation*}
$$

for all j and this implies that $\left(1+|\xi|^{2}\right)^{\frac{k}{2}} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$, i.e. $u \in H^{k}\left(\mathbb{R}^{n}\right)$.
So, now we have some idea of what the Sobolev spaces of positive integral order are like. What about the intermediate ones?

Proposition 1. For $0<s<1, u \in L^{2}\left(\mathbb{R}^{n}\right)$ is in the space $H^{s}\left(\mathbb{R}^{n}\right)$ if and only if the integral

$$
\begin{equation*}
\int_{\mathbb{R}^{2 n}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{n+2 s}} d x d y<\infty \tag{11}
\end{equation*}
$$

Proof. The integrand here is a non-negative measureable function so this makes good sense. So, start with $u \in H^{s}\left(\mathbb{R}^{n}\right)$. This means that $u \in L^{2}$ and $\left(1+|x i|^{2}\right)^{s / 2} \hat{u} \in$ L^{2}. So, we can use the fact that $\left(1+|\xi|^{2}\right)^{s / 2}$ and $1+|\xi|^{s}$ are bounded by multiples of each other, so given that $u \in L^{2}$ and hence $\hat{u} \in L^{2}$ this just means that

$$
\begin{equation*}
|\xi|^{s} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right) \tag{12}
\end{equation*}
$$

Notice that the integral in in like and integrated difference quotient, it can be rewritten as

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x+t)-u(x)|^{2}}{|t|^{n+2 s}} d x d t
$$

With this in mind we proceed to compute the L^{2} integral using the Fourier transform

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|u(x+t)-u(x)|^{2} d x=(2 \pi)^{-n} \int_{\mathbb{R}^{n}}\left|e^{i t \xi}-1\right|^{2}|\hat{u}(\xi)|^{2} d \xi \tag{13}
\end{equation*}
$$

So the t integral we want to evaluate is

$$
\begin{equation*}
F(\xi)=\int\left|e^{i t \cdot \xi}-1\right|^{2}|t|^{-n-2 s} d t \tag{14}
\end{equation*}
$$

This is finite for each ξ since the singularity at the origin is integrable - the first term vanishes at $t=0$ so contributes a $|t|^{2}$ and the integral is bounded by $C|t|^{-n-2 s+2}$ which is integrable for $s<1$. Near infinity the first term is bounded so it is integrable there too.

We can also make a rotation in the integral to check that $F(\xi)=f(|\xi|)$ is constant on spheres. We can also scale the variables, sending $\xi \longmapsto r \xi$ and $t \rightarrow t / r$ for r positive shows that

$$
\begin{equation*}
F(r \xi)=r^{2 s} F(\xi) \Longrightarrow F(\xi)=C|\xi|^{2 s}, C>0 \tag{15}
\end{equation*}
$$

From this it follows that the finiteness of (11) for $u \in L^{2}\left(\mathbb{R}^{n}\right)$ is equivalent to $u \in H^{s}\left(\mathbb{R}^{n}\right)$.

Next we can relate the two spaces $H^{ \pm s}\left(\mathbb{R}^{n}\right)$.
Lemma 2. For any $s \in \mathbb{R}, \mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in $H^{s}\left(\mathbb{R}^{n}\right)$ and if $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ then $u \in H^{s}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\begin{equation*}
|u(\phi)| \leq C\|\phi\|_{H^{-s}} \forall \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{16}
\end{equation*}
$$

Proof. The density follows from the density of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ in L^{2}. If $u \in H^{s}\left(\mathbb{R}^{n}\right)$ then $\left(1+|\xi|^{2}\right)^{s / 2} \hat{u}=v \in L^{2}\left(\mathbb{R}^{n}\right)$ so there exists $v_{n} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $v_{n} \rightarrow v$ in $L^{2}\left(\mathbb{R}^{n}\right)$. Then defining $w_{n} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ by $\hat{w}_{n}=\left(1+|\xi|^{2}\right)^{-s / 2} v_{n}(\xi)$ we see that

$$
\begin{equation*}
\left\|u-w_{n}\right\|_{H^{s}}^{2}=(2 \pi)^{-n} \int\left(1+|\xi|^{2}\right)^{s}\left|\hat{u}-\hat{w}_{n}\right|^{2}=(2 \pi)^{-n} \int\left|v-v_{n}\right|^{2} \rightarrow 0 \tag{17}
\end{equation*}
$$

Setting $\psi=\bar{\phi}$

$$
\begin{equation*}
u(\bar{\psi})=(2 \pi)^{-n} \hat{u}(\overline{\hat{\psi}})=(2 \pi)^{-n} \int\left(1+|\xi|^{2}\right)^{s / 2} \hat{u} \cdot\left(1+|\xi|^{2}\right)^{-s / 2} \overline{\hat{\psi}} \tag{18}
\end{equation*}
$$

Here the last integral should really be interpreted as the distributional pairing. Then the inequality (16) (and Riesz' Representation Theorem) tells us that $v=$ $\left(1+|\xi|^{2}\right)^{s / 2} \hat{u}$ does exist in L^{2} so that holds and hence $u \in H^{s}\left(\mathbb{R}^{n}\right)$. The converse is easier.

For Sobolev spaces of negative integral order we get a corresponding 'dual' characterization to that above.

Lemma 3. If $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ then $u \in H^{-k}\left(\mathbb{R}^{n}\right)$, with $k \in \mathbb{N}$, if and only if there exist $u_{\alpha} \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $0 \leq|\alpha| \leq k$ such that

$$
\begin{equation*}
u=\sum_{0 \leq|\alpha| \leq k} D^{\alpha} u_{\alpha} \tag{19}
\end{equation*}
$$

I.e. it is a sum of up to k fold derivatives of L^{2} functions.

Proof. We know that $u \in H^{-k}\left(\mathbb{R}^{n}\right)$ if and only if $\hat{u}=\left(1+|\xi|^{2}\right)^{k / 2} v$ with $v \in L^{2}$. This can also be written

$$
\begin{equation*}
\hat{u}=\left(1+|\xi|^{2}\right)^{k} v^{\prime}, v^{\prime}=\left(1+|\xi|^{2}\right)^{-k / 2} v, v \in L^{2}\left(\mathbb{R}^{n}\right) \tag{20}
\end{equation*}
$$

This however means precisely that $v^{\prime}=\hat{w}$ where $w \in H^{k}\left(\mathbb{R}^{n}\right)$. Multiplying out the factor in 20 we see that for some constants c_{α},

$$
\begin{equation*}
u=\sum_{0 \leq|\alpha| \leq k} D^{\alpha} u_{\alpha}, u_{\alpha}=\left(c_{\alpha} D^{\alpha} w\right) \in L^{2}\left(\mathbb{R}^{n}\right) \tag{21}
\end{equation*}
$$

This can be refined in various. Using the fact that the three functions

$$
\begin{equation*}
\left(1+|\xi|^{2}\right)^{k}, 1+\sum_{|\alpha|=k}\left|\xi^{\alpha}\right|^{2} \text { and } 1+\sum_{j=1}^{n}\left|\xi_{j}\right|^{2 k} \tag{22}
\end{equation*}
$$

are bounded above and below by constant multiples of each other, the second two can be inserted in place of the first in 20 . This allows the condition $u \in H^{-k}\left(\mathbb{R}^{n}\right)$ to be shown to be equivalent to either of

$$
\begin{gather*}
u=u_{0}+\sum_{|\alpha|=k} D^{\alpha} u_{\alpha}, u_{\bullet} \in L^{2}\left(\mathbb{R}^{n}\right) \text { or } \\
u=v_{0}+\sum_{j=1}^{n} D_{j}^{k} v_{j}, v_{\bullet} \in L^{2}\left(\mathbb{R}^{n}\right) . \tag{23}
\end{gather*}
$$

As an exercise towards 'elliptic regularity' which we discuss later you should check that similarly for the positive integral case

For $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right), u \in H^{k}\left(\mathbb{R}^{n}\right) \Longleftrightarrow u \in L^{2}\left(\mathbb{R}^{n}\right)$ and $D_{j}^{k} u \in L^{2}\left(\mathbb{R}^{n}\right) j=1, \ldots, n$.
Now we can prove Schwartz' structure theorem.
Theorem 1. Any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ can be written in the form of a finite sum

$$
\begin{equation*}
u=\sum_{|\alpha|+|\beta| \leq N} x^{\alpha} D^{\beta} u_{\alpha, \beta}, u_{\alpha, \beta} \in L^{2}\left(\mathbb{R}^{n}\right) \tag{25}
\end{equation*}
$$

or, for a possibly different N, with the $u_{\alpha, \beta}$ bounded continuous functions.
Detour on isotropic Sobolev spaces - I will add some notes a bit later.

