18.155 LECTURE 3: 12 SEPTEMBER, 2013

- We showed $\mathcal{F}: \mathcal{S}\left(\mathbb{R}^{n}\right) \longrightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is continuous, in fact

$$
\|\hat{\phi}\|_{N} \leq C\|\phi\|_{N+n+1}
$$

- To prove it is an isomorphism we start with two Lemmas - the first is very standard

Lemma 1. There exists $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right), \psi(x) \geq 0, \psi(x)=1$ in $|x|<\frac{1}{2}$ $\psi(x)=0$ in $|x|>1$.

Proof. In one variable consider the function

$$
\mu(x)= \begin{cases}\exp (-1 / x) & x>0 \\ 0 & x \leq 0\end{cases}
$$

This is an example of a non-analytic but infinitely differentiable function. It is certainly smooth in $x>0$ and the derivatives are of the form

$$
\frac{d^{k}}{d x^{k}} \mu(x)=\frac{p_{k}(x)}{x^{2 k}} \exp (-1 / x)
$$

with p_{k} a polynomial. The convergence of the power series for e^{s}, all terms in which are positive for $s>0$ shows that for each $N, e^{s} \geq s^{n} / n!$ - and hence

$$
\frac{d^{k}}{d x^{k}} \mu(x) \leq C_{k, N} x^{N} \text { in } 0<x \leq 1
$$

Thus all the derivatives, defined in $x>0$, extend by continuity down to 0 where they vanish to infinite order. This includes μ itself which is therefore given by the integral from -1 of its own derivative extended to be 0 in $x<0$. This argument iterates to show - or you could do it directly anyway - that μ is infinitely differentiable across 0 .

From this we can construct

$$
\psi^{\prime}(x)=\mu\left(1-|x|^{2}\right) \in \mathcal{S}\left(\mathbb{R}^{n}\right), \eta(x)=\mu\left(|x|^{2}-\frac{1}{2}\right) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)
$$

which are respectively positive in $|x|<1$ but zero in $|x| \geq 1$ and zero near $x=0$ and positive in $|x|>3 / 4$. Thus $\psi+\eta$ is strictly positive everywhere and then

$$
0 \leq \psi(x)=\frac{\psi^{\prime}(x)}{\psi^{\prime}(x)+\eta(x)} \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

satisfies the conditions we want, since it is equal to 1 where $\eta(x)=0$ and 0 where $\psi^{\prime}(x)=0$.

Lemma 2. Any $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ can be written in the form

$$
\begin{equation*}
\phi(x)=\phi(0) \exp \left(-\frac{|x|^{2}}{2}\right)+\sum_{j=1}^{n} x_{j} \psi_{j}(x), \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{4}
\end{equation*}
$$

Proof. Taylor's formula and then use of the cutoff from the previous lemma.

- Now, to back to the Forier transform. We consider the composite and then restrict to 0 and claim that

$$
\mathcal{G}(\hat{\phi})(0)=c \phi(0) \forall \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

where c is a fixed constant independent of ϕ. Indeed to see this insert (4) into the left side to get

$$
\mathcal{G}(\hat{\phi})(0)=c \phi(0)+\sum_{j} \mathcal{G}\left(\widehat{x_{j} \psi_{j}}\right)(0), c=\mathcal{G}(\hat{\gamma})(0), \gamma=\exp \left(-\frac{|x|^{2}}{2}\right)
$$

However, $\widehat{x_{j} \psi_{j}}(\xi)=i \partial_{\xi_{j}} \hat{\psi}_{j}(\xi)$ as we showed last time and since

$$
\mathcal{G}(f)(0)=(2 \pi)^{-n} \int f
$$

so each of the terms in the sum vanishes. Thus we arrive at (5) where we even no the constant in terms of the Gaussian.

- Now, we can also work out formulæ for the Fourier transform of translates and multiples by exponentials:-

$$
\mathcal{F}(\phi(\bullet+y))(\xi)=e^{i y \cdot \xi} \hat{\psi}, \mathcal{G}\left(e^{-i y \cdot} f\right)(x)=\mathcal{G}(f)(x+y)
$$

Combining these two and (5) shows that

$$
\mathcal{G \mathcal { F }}=c \mathrm{Id}
$$

- So we are reduced to working out the constant. This amounts to working out the Fourier transform of the Gaussian and this is pretty standard. First we only need do the 1-D case since

$$
\mathcal{F}\left(\exp \left(-\frac{|x|^{2}}{2}\right)=\prod_{j} \mathcal{F}\left(\exp \left(-x_{j}^{2} / 2\right)\right.\right.
$$

and then we can check that
$\left(\frac{d}{d \xi}+\xi\right) \mathcal{F}\left(\exp \left(-x^{2} / 2\right)(\xi)=0 \Longrightarrow \mathcal{F}\left(\exp \left(-x^{2} / 2\right)(\xi)=c^{\prime} \exp \left(-\xi^{2} / 2\right)\right.\right.$
where the constant is the value of the Fourier transform at 0, i.e.

$$
c^{\prime} \int_{\mathbb{R}} \exp \left(-x^{2} / 2\right)=\sqrt{2 \pi}
$$

Going back to 5 it follows that $c=1$ and we have the Fourier inversion formula

$$
\mathcal{G} \circ \mathcal{F}=\mathrm{Id}=\mathcal{F} \circ \mathcal{G} \text { on } \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

where the second follows from the first by changing signs.

- So the Fourier transform is an isomorphism on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, a continuous linear bijection with a continuous inverse.
- Computing with absolutely convergent Lebesgue integrals it also follows directly that for any $\phi, \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} \hat{\phi} \psi=\int_{\mathbb{R}^{2 n}} e^{-i x \cdot \xi} \phi(x) \psi(\xi)=\int_{\mathbb{R}^{n}} \phi \hat{\psi}
$$

This gives a weak formulation of the Fourier transform which we can write

$$
\begin{equation*}
I(\hat{\phi})(p s i)=I(\phi)(\hat{\psi}) \tag{15}
\end{equation*}
$$

and so for general $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ it is consistent to define

$$
\begin{equation*}
\hat{u}(\psi)=u(\hat{\psi}) \forall u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right), \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{16}
\end{equation*}
$$

This gives a linear bijection (so far we don't have a topology to measure continuity)

$$
\begin{equation*}
\mathcal{F}: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \longrightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \tag{17}
\end{equation*}
$$

- If we apply the identity (14) to $\psi=\overline{\hat{\eta}}$ for some $\eta \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ then $\hat{\eta}=\bar{\psi}$ so by the inversion formula,

$$
\eta(\xi)=\mathcal{G}(\bar{\psi})=(2 \pi)^{-n} \mathcal{F}(\bar{\psi})(-\xi) \Longrightarrow \bar{\eta}(\xi)=(2 \pi)^{-n} \hat{\psi}(\xi)
$$

The result is Parseval's formula

$$
\int_{\mathbb{R}^{n}} \hat{\phi} \overline{\hat{\eta}}=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \phi \bar{\eta}
$$

the essential unitarity of the Fourier transform, i.e. $(2 \pi)^{-n / 2} \mathcal{F}$ is preserves the L^{2} inner product on $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and so, if we accept that $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in $L^{2}\left(\mathbb{R}^{n}\right)$,

Proposition 1. The operators $(2 \pi)^{-n / 2} \mathcal{F}$ extends by continuity to be unitary on $L^{2}\left(\mathbb{R}^{n}\right)$.

- So we have seen that the Fourier transform is an isomorphism on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, and on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ which restricts to an isomorphism on the subspace $L^{2}\left(\mathbb{R}^{n}\right)$.
- The L^{2}-based Sobolev spaces are then defined for each real number $s \in \mathbb{R}$:

Note that in the homework this week you showed that $\left(1+|x|^{2}\right)^{s / 2}$ is a 'multiplier' on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, and hence on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ so the definition makes sense, $L^{2}\left(\mathbb{R}^{n}\right)$ being a well-defined subspace of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
-
Lemma 3. For $s=k \in \mathbb{N}$ a positive integer,

$$
H^{k}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right) ; D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right),|\alpha| \leq k\right\}
$$

is also the space of L^{2} functions with strong derivatives up to order k in L^{2} where successive strong derivatives are defined by convergence of the difference quotient in L^{2} :

$$
\partial_{j} u=\lim _{s \rightarrow 0} \frac{u\left(x+s e_{j}\right)-u(x)}{s} \text { in } L^{2}\left(\mathbb{R}^{n}\right)
$$

