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This was partly reconstructed later.

Smoothly bounded domains

(1) B ⊂ Rn is bounded

(2) B = int(B) is the closure of its interior
(3) For each p ∈ ∂B there exists ψ ∈ C∞(Rn;R) such that dψ(p) 6=

0 (so ∂ψ/∂xj(p) 6= 0 for some j) and for some ε > 0,

(1) B ∩B(p, ε) = {x ∈ B(p, ε); f(x) ≥ 0}.

E.g. the closed ball {x; |x| ≤ R}.

Lemma 1. For each p ∈ ∂B there exists δ > 0 and a diffeomorphism
Fp : B(p, δ)←→ Ωp onto an open neighbourhood of 0 ∈ Rn such that

(2) Fp(B(p, δ) = Ω+
p = Ωp ∩ {yn ≥ 0}

where the coordinates in the image are written (y1, . . . , yn).

Proof. By definition there is a ‘local defining function’ ψ for B in
an open ball around p. Choose one of the coordinates xj such that
∂ψ/∂xj 6= 0 at p and consider the map

(3) Fp : B(p, ε) 3 x −→ (x̃− x̃(p), ψ)

where x̃ = (x1, . . . , xj−1, xj+1, . . . xn) are the coordinates other than the
chosen xj. Then the Jacobian matric of Fp is invertible at p and Fp(p) =
0 so by the implicit function theorem Fp is a diffeomorphism from a
possibly smaller ball B(p, δ) to its image, Ωp, an open neighbourhood
of 0 in Rn. By construction Fp(B ∩ B(p, δ) ⊂ {yn ≥ 0} since F ∗p yn =
yn ◦ Fp = ψ. �

This diffeomorphism which ‘straightens out the boundary of B’ (lo-
cally) is by no means unique. However if Fp and F̃q are two such diffeo-
morphism, where p and q might or might not be equal, then provided
their domains intersect,

(4) B(p, δ) ∩B(q, δ̃) 6= ∅
1
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there is a well defined ‘transition map’. Namely within the two image
sets consider the image of the intersection of the balls:

(5)
Ωpq = Fq(B(p, δ) ∩B(q, δ̃)) ⊂ Ωq,

Ωqp = Fp(B(p, δ) ∩B(q, δ̃)) ⊂ Ωp.

These are both open sets (not necessarily containing 0) with the com-
posite map

(6) FpGq : Ωpq −→ Ωqp, Gq = F−1q

necessarily a diffeomorphism. Moreover this map has the additional
property that

(7) FpGq : Ω+
pq −→ Ω+

qp, FpGq : Ω′pq −→ Ω′qp

where the first sets are the local images of B, the intersections with
yn ≥ 0 and the second sets the images of ∂B, the intersections with
yn = 0. As discussed further below, this means that the variables y′ =
(y1, . . . , yn−1) induced by any Fp are local coordinates on ∂B which
tranform smoothly, under the transition diffeomorphism, under change
to another map F̃q.

Since ∂B (and of course B itself) is compact, we may cover it by a
finite number of the balls B(pj,

1
2
δj) where there is a diffeomorphism

Fj defined on B(pj, δj). Then if we take a fixed cutoff function 0 ≤
χ ∈ C∞c (Rn) with support in |x| ≤ 1 and which is strictly positive on
|x| < 1, the functions χj(x) = χ(2(x − p)/δj) ∈ C∞c (B(p, δj)) are such
that

(8) χM =
∑
j

χj(x) satisfies inf MχM = m > 0.

For each point t ∈ Rn \ ∂B with |t| ≤ R where R is so large that
B ⊂ {|x| < R}, we can a cover by balls B(t, δ) not meeting ∂B and
pass to a finite collection such that the B(t, δ/2) cover the compact set

(9) {|x| ≤ R} \ {χM > m/2}.
Defining functions as the χj above, and summing separately over the
points in the interior and exterior of B gives to non-negative functions

(10) χI , χE + exp(1/(|x| −R))

with supports inside and outside B such that

(11)
∑
j

χj + χI + χE + exp(1/(|x| −R)) > 0.

Dividing by this gives function forming a finite partition of unity

(12) ηj, ηI , ηE
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where the ηj give restricti to a partition of unity on M, ηI has compact
support inside B and ηE has support disjoint from B.

This construction can be used for instance to prove

Lemma 2. Any smoothly bounded domain B has a global defining func-
tion, Ψ ∈ C∞(Rn), real-valued, such that

(13)
Ψ(x) = 0 =⇒ ∂Ψ/∂xj 6= 0 for some j = j(x),

and B = {Ψ ≥ 0}.

Proof. Take local defining functions ψj which are defined in a neigh-
bourhood of the support of each of the ηj (since they are supported in
B(pj, δIj/2)) and set

(14) Ψ =
∑
j

ψjηj + ηI − ηE.

This vanishes onlu on M = ∂B and the discussion above of the transi-
tion maps shows that on any open set where both ψj and ψk are defined,
each is a non-vanishing positive multiple of the other. It follows that
for any j G∗jΨ = aj(y)yn where Gj is the inverse of Fj with aj > 0 and
this is non-startionary on yn = 0, so Ψ is non-stationay on M. �

To examine functions on B we start by considering the model space
{xn ≥ 0} – then subsequently do the same for functions on M = ∂B
which is an example of a compact manifold of dimension n− 1.

The Lemma of É. Borel

One of the basic results which shows how different ‘smooth’, i.e. C∞,
functions are from (real) analytic functions is that the Taylor series of
such a function is completely unconstrained. That is, given an arbitrary
sequence cj ∈ C there is a function u ∈ C∞c (R) such that

(15)
dju

dxj
(0) = cj ∀ j.

In fact there is a higher dimensional analogue of this.

Lemma 3. Suppose uj ∈ C∞(Rn−1) is any sequence which has suppuj ⊂
{|x′| ≤ 1} for all j ∈ N ∪ {0} then there exists u ∈ C∞c (Rn) such that

(16)
∂jnu

∂xjn
(x′, 0) = uj(x

′) ∀ x′ ∈ Rn−1 and j ∈ N ∪ {0}.

The assumption on supports is just for convenience, so that we can
ensure that u has compact support.
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Proof. Even though there are no bounds on the uj at all, the basic idea
is still to use the Taylor series expansion that u should have around
xn = 0 but to cut it off in an appropriate way. So, choose a fixed cut-off
function φ ∈ C∞c (R) where we want only that φ(xn) = 0 in |xn| > 1
and φ(xn) = 1 in |xn| < 1

2
. Now, for any sequence εj > 0 where initially

we only demand εj → 0 as j →∞ consider the formal sum

(17)
∞∑
j=0

xjn
j!
uj(x

′)φ(xn/εj).

Observe that the jth term here is cut off to have support in |xn| ≤
εj, so in any region |xn| > δ > 0 only finitely many terms are non-
zero (because εj → 0) so in fact the series converges to a function in
C∞(Rn \ {xn = 0}) – outside the hypersurface we are interested in.

So, the aim is to choose the εj (depending on the uj) so that the series
(17) actually converges in C∞c (Rn), i.e. uniformly with all derivatives.
To get convergence in Ck we need to consider derivatives up to order
k = |α|+p, α ∈ Nn−1

0 . As discussed below we can consider the jth term
in (16) and assume that j ≥ k – so the xn derivatives do not ‘exhaust’
the monomial xjn and

(18) Dα
x′D

p
n

xjn
j!
uj(x

′)φ(xn/εj)

=
∑

0≤q≤p

xj−p+qn

(j − p+ q)!
Dα
x′uj(x

′)φ(q)(xn/εj)ε
−q
j .

For the moment we have fixed k so we are only considering a finite
number of α’s and q ≤ p ≤ k. Each term on the right side vanishes
when xn ≥ εj so we can estimate the remaining powers using xn ≤ εj
and so estimate the derivative in (18) by

C(j, k)εj−pj ≤ C(j, k)εj

absorbing the ε−qj and estimating the various derivatives and constants
by constants depending only on k and j. Thus, for the given k we can
ensure convergence in Ck by demanding that the εj satisfy

(19) εj ≤ 2−j/(C(j, k) + 1) for j > k.

Note that convergence is a property of the tail – all the terms are in
C∞ anyway, so it is enough to estimate from some finite point onwards,
which is why only k < j was considered above.

The small point is that while (19) represents an infinite number of
conditions on the εj for each k, it only represents a finite number of
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conditions on each εj for all k! So all the convergence conditions are
(eventually) satisfies by demanding

(20) εj < min
k<j

2−j/(C(j, k) + 1) ∀ j

and so there is a indeed a sequence εj > 0 such that (17) converges in
C∞c (R).

If u is the sum of this series then it satisfies (16). Indeed, all the
terms apart from the jth have derivative Dj

n vanishing at 0 so, by the
convergence in C∞c (R) the limit has Dj

nu(x′, 0) = uj(x
′) for all j. �

Extension of smooth functions

Now, we can use this to prove another natural result. How should we
define C∞c (Rn−1 × [0,∞)) – the space of smooth functions of compact
support in an closed half-space. There are two pretty natural defini-
tions. The one by extension and the other more ‘intrinsic’. Let me
adopt the first and just define

(21) C∞c (Rn−1 × [0,∞))

= {u : Rn−1 × [0,∞) −→ C;∃ ũ ∈ C∞c (Rn), u = ũ
∣∣
Rn−1×[0,∞)

}.

We will also want to put a topology on this space. Observe that if we
think of the restriction map to the closed half space as a linear map R
then its null space consists of the functions which vanishing identically
in xn ≥ 0. Since we are talking about smooth functions here, this is the
same as having support in {xn ≤ 0}. So in fact we have a short exact
sequence
(22)

{u ∈ C∞c (Rn); suppu ⊂ {xn ≤ 0}} // C∞c (Rn)
R // C∞c (Rn−1 × [0,∞)).

The space defined by supports is a closed subspace of C∞c (Rn) so as
topology we can take the quotient topology and we will get a complete
space.

Still, we look at the more intrinsic approach to regularity in a half-
space. Namely consider

(23) {u ∈ C∞(Rn−1 × (0,∞));u(x′, xn) = 0 if |x′| ≥ R or |xn| ≥ R,

Dα
x′D

k
xnu bounded for all k, α}

Lemma 4. The space (23) is equal to C∞c (Rn−1 × [0,∞)) in (21).

Proof. Since all the derivatives are bounded it follows that they actually
extend continuously down to xn = 0, since they are all smooth in xn > 0
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and

(24) Dα
x′D

k
xnu(x′, xn) = −

∫ R

xn

Dα
x′D

k+1
xn u(x′, xn)dxn

shows inductively that the limits exist. Thus we may define the se-
quence of limiting normal derivatives

(25) uj(x
′) = lim

xn→0

∂ju

∂xjn
(x′, xn) ∈ C∞c (Rn−1)

all with supports in |x′| ≤ R.
Since u is continuous on xn ≥ 0 it defines a distribution u′ ∈ C−∞c (Rn)

by extension as zero to xn < 0 and using a limiting argument from
Rn−1 × (δ,∞)

(26) u′((−)j
∂jφ

∂xjn
) =

∫
xn≥0
−∂

ju

∂xjn
(x′, xn)φ(x′, xn)dx′dxn∑

0≤k<j

−
∫
Rn−1

uk(x
′)
∂j−k−1φ

∂xj−k−1n

(x′, 0)dx′, ∀ φ ∈ C∞c (Rn).

In case all the uj in (25) vanish, this shows that u′ has continuous
weak derivatives of all orders (apply the same formula to Dα

x′u) and
hence, by equality of weak and strong derivatives, is in C∞c (Rn). In this
case u is the restriction of u′ which has support in xn ≥ 0.

Now, in the general case, where the uj in (25) may not vanish, apply
Borel’s Lemma above to find v ∈ C∞c (Rn) which has these as derivatives
at xn = 0. Then w = u− v

∣∣
xn>0

is in the space (23) and has vanishing

derivatives in the sense of (25). Thus its ‘zero extension’ w′ ∈ C∞c (Rn)
and u itself is the restricton of v+w′ to xn > 0, proving the result. �

So the two notions of smooth function on the closed half-space – by
extension or ‘intrinsically’ as in (23) are the same. This is a general
phenomenon, reflecting the smoothness of the boundary. Before dis-
cussing the corresponding result for Sobolev spaces, let me note that
there is a better result than the one proved here. It is not so hard
either:-

Proposition 1 (Seeley Extension). There is a continuous linear exten-
sion map E from the space (23) to C∞c (Rn) with respect to the uniform
norms on all derivatives.

The point here is the linearity. The proof above constructs and exten-
sion for each element, but because it passes through Borel’s Lemma it
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is not, and cannot be, linear. The method is like the proof of Borel’s
Lemma in a way, namely one can define E by ‘reflection’

(27) (Eu)(x′, xn) =
∞∑
k=0

aku(x′,−bkxn), xn < 0.

The trick is to choose the ak and bk > 0 so that the series converges
with all derivatives in xn ≤ 0 and that the derivatives match up with
those of u at xn = 0. It is possible!

Supported and extendible distributions

Having discussed the space C∞c (D+), D+ = Rn−1 × [0,∞) – and
hence also the corresponding space for any ‘half-space’, in particular
D− = Rn−1 × (−∞, 0]) by linear invariance let me now jump to the
opposite extreme, of distributions associated to a close half-space. Let
me introduce a notation for the space in (20):

(28) Ċ∞c (D+) = {u ∈ C∞c (Rn); supp(u) ⊂ D+}.
This is a closed subspace of C∞c (D+) and we can also define the corre-
sponding spaces without restriction on supports
(29)
Ċ∞(D+) = {v ∈ C∞(Rn); v = 0 in xn < 0}, C∞(D+) = C∞(Rn)

∣∣
D+

and easily obtain similar results to the case of compact supports.
Now, we introduce four spaces of distributions associated to D+ by

duality, really two types but in each case with and without compact
supports:

(30)

Ċ−∞(D+) = (C∞c (D+))′,

C−∞(D+) = (Ċ∞c (D+))′,

Ċ−∞c (D+) = (C∞(D+))′,

C−∞c (D+) = (Ċ∞(D+))′.

Note that by way of deliberate notation there are ‘dots’ on the left when
there are none on the right and similarly there are ‘c’s (for compact
support) on the left when there are none on the right.

We can easily identify the ‘dotted’ spaces:

(31)
Ċ−∞(D+) = {u ∈ C−∞(Rn); supp(u) ⊂ D+},
Ċ−∞c (D+) = {u ∈ C−∞c (Rn); supp(u) ⊂ D+}.

That is indeed what the ‘dot’ is supposed to mean, the subspace of
distributions on the whole space with support in D+, the (closed) half-
space. These are the spaces of ‘supported distributions on D+ (with or



8 LECTURE 18, 18.155, 7 NOVEMBER 2013

without compact support)’. If you want to play along, you can do the
same thing for S(Rn).

So, how to prove (31). Of course these equalities really represent the
existence of natural bijections which we can regard as identifications
and ignore. Let me consider the second case, with compact supports.
The definition in (30) is as the dual of the space of smooth functions
on D+, as discussed above (although there I emphasized the case of
compact supports). This is a quotient

(32) C∞(D+) = C∞(Rn)
/
Ċ∞(D−)

since we know (or defined depending) that any element can be ex-
tended to the whole space as a smooth function and different exten-
sions differ by functions supported in D−. Thus, we can simply extend
u ∈ Ċ−∞c (D+) to a compactly supported distribution

(33) ũ(φ) = u(φ
∣∣
D+

), ∀ φ ∈ C∞(Rn).

If φ has compact support in Rn−1 × (−∞, 0) then ũ(φ) = 0, so indeed
supp(ũ) ⊂ D+ and this provides a map from left to right in (31). This
map is certainly injective, since if ũ = 0 then u = 0. Surjectivity is
slightly less obvious so consider v ∈ C−∞c (Rn) which has support in
D+. Then it follows that u(φ) = 0 if supp(ψ) ⊂ Rn−1×(−∞, 0), by the
definition of support. However, if φ ∈ C∞(Rn) has support in xn ≤ 0
then ψk(x

′, xn) = φ(x′, xn − 1
k
) has support in the open half space and

converges to φ in C∞(Rn). Thus by continuity v(φ) = 0 and it follows
that v = ũ for u ∈ C−∞c (D+).

Integration by parts
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