
LECTURE 17, 18.155, 5 NOVEMBER 2013

The first thing I want to talk about in relation to half-spaces and
bounded domains is the restriction theorem for Sobolev spaces. So
consider the embedding map

(1) E : Rn−1 3 x′ 7−→ (x′, 0) ∈ Rn.

Pullback under this is the restriction map, R = E∗, Rf(x′) = f(x′, 0) =
f ◦ E.

Proposition 1. The restriction map

(2) R : S(Rn) 3 φ 7−→ φ(·, 0) ∈ S(Rn−1)

extends by continuity to a surjective bounded map

(3) Hm(Rn) −→ Hm− 1
2 (Rn−1) ∀ m >

1

2
.

Proof. The Fourier transform of the restriction to xn = 0 of a Schwartz
function can be written in terms of the Fourier transform:

(4) R̂φ(ξ′) =

∫
e−ix

′·ξ′φ(x′, 0)dx′ = (2π)−1
∫
φ̂(ξ′, ξn)dξn.

Now, for functions in Hm(Rn) with Fourier tranform supported in
{|ξ| ≤ 1} the result is clear, since the restriction also has Fourier tran-
form with support in the ball and so is in H∞(Rn−1). So, we may
assume that û = 0 in {|ξ| ≤ 1} and that the same is true of an ap-
proximating sequence in S(Rn). Thus it suffices to estimate the norm
of (4) in Hm−1(Rn−1) under this assumption.

The integral may be estimated by Cauchy Schwartz’ inequality, aim-
ing at the Hm norm:
(5)

|
∫
φ̂(ξ′, ξn)dξn|2 ≤

∫
|φ̂(ξ′, ξn)|2(|ξ|2 + |ξn|2)mdξn

∫
(|ξ|2 + |ξn|2)−mdξn

where the second integral is finite proved m > 1
2

as we are assuming.
Then it can be evaluated by scaling

(6)

∫
(|ξ|2 + |ξn|2)−mdξn = c|ξ′|−2m+1, c > 0.

Inserting this in (5) shows that

(7) ‖Rφ‖
Hm− 1

2
≤

∫
|ξ′|2m−1|

∫
φ̂(ξ′, ξn)dξn|2 ≤ C‖φ‖Hm

1
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using the support property of the Fourier tranform. This proves (3).
For the converse we will construct a right inverse to R. If v ∈

Hm− 1
2 (Rn−1) then

(8)

∫
Rn−1

(1 + |ξ′|2)2m−1|v̂(ξ′)|2dξ′ <∞

and all we need to do is to construct w ∈ L2(Rn) with∫
Rn

(1 + |ξ|2)2m|w(ξ)|2dξ <∞, v(ξ′) = (2π)−1
∫
w(ξ′, ξn)dξn.

Choose 0 ≤ φ ∈ C∞c (R) with
∫
φ = 1. For part of v̂ supported in

|ξ′| ≤ 2π such an extension is given by

w(ξ′, ξ) = φ(ξn)χ{|ξ′|≤1}v̂(ξ′)

since this is in H∞(Rn). So, really just for notation convenience, we
can assume that v̂(ξ′) = 0 in |ξ′| ≤ 1. Then we use the same idea, but
‘spread the support’:

(9) w(ξ′, ξn) = φ(
ξn
|ξ′|

)|ξ′|−1v̂(ξ′).

Then
(10) ∫

R
w(ξ′, ξn)dξn = |ξ′|−1v̂(ξ′)

∫
φ(
ξn
|ξ′|

)dξn = v̂(ξ′),∫
Rn

|ξ|2m|w(ξ′, ξn)|2dξndξ′ =
∫
Rn−1

|v̂(ξ′)|2
∫
R
(|ξn|2 + |ξ′|2)m|ξ′|−2φ(

ξn
|ξ′|

)|2dξndξ′

where the inner integral is actually a constant multiple of |ξ′|2m−1. �

We do not actually need m > 1
2

to find a right inverse in the last

part of the argument – even for m ≤ 1
2

if v ∈ Hm− 1
2 (Rn−1) there is

a distribution u ∈ Hm(Rn) which happens to have the property that
u(·, xn) is continuous in xn with values in distributions, which restricts
to v at xn = 0. If I have some time later I will discuss this sort of thing
a bit more.

The remainder of this lecture is reconstructed after the event.
A diffeomorphism between open sets, U, U ′ ⊂ Rn, is a smooth map

with a smooth two-sided inverse, F : U −→ U ′, G : U ′ −→ U, F (x) =
(f1, . . . , fnx), G(x) = (g1(x), . . . , gn(x)) with fi ∈ C∞(U), gi ∈ C∞(U ′)
(real-valued of course) and

(11) F (G(y)) = y ∀ y ∈ U ′, G(F (x)) = x ∀ x ∈ U.
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For any smooth map, the pull-back operation is defined by compo-
sition:

(12) F ∗ : C∞(U ′) −→ C∞(U), F ∗f(x) = f(F (x)).

Then F is a diffeomorphism if and only if (12) is a bijection – since the
components of G are the functions which pull-back to the coordinate
functions on U.

The tangent space of Rn at a pont p may be defined as the space of
derivations of C∞(O) for any open O 3 p, the linear maps

(13) TpRn = {δ : C∞(O) −→ C, s.t. δ(fg) = f(p)δ(g) + g(p)δ(f)}.

Such a derivation if just a sum of the basic derivations

(14) ∂i : C∞(O) 3 f 7−→ ∂f

∂xi
(p), δ =

∑
i

ci∂i.

Thus the standard coordinates give a natural trivialization TpRn = Rn.
If F : U −→ U ′ is smooth then its differential at p is
(15)
F∗ : TpRn −→ TF (p)Rn, F∗(δ) = δ′, δ′ : C∞(U ′) −→ R, δ′(g) = δ(F ∗g).

Clearly as a map in terms of the coordinate trivialization this is given
by the Jacobian matrix

(16) F∗(∂i(p)) =
∑
j

∂Fj
∂xi

(p)∂j(f(p)).

If F is a diffeomorphism, then F∗ must be invertible at each point,
with inverse G∗(f(p)). Conversely, the inverse function theorem im-
plies that if F : O −→ Rn is smooth and F∗(p) is invertible then
F : B(p, ε) −→ F (B(p, ε)) is a diffeomorphism of open sets for ε > 0
small enough.

Now, if F : U −→ U ′ is a diffeomorphism then, not only does (12)
hold, but also

(17) F ∗ : C∞c (U ′) −→ C∞(U)

is an isomorphism, since F maps compact subsets of U onto (all) com-
pact subsets of U ′. These two spaces are dense in the distribution spaces
so it makes sense to claim:
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Proposition 2. For any diffeomorphism F : U −→ U ′. the maps (17)
and (12) extend by continuity to isomorphisms

(18)

F ∗ : Hm
loc(U

′) −→ Hm
loc(U),

F ∗ : Hm
c (U ′) −→ Hm

c (U) ∀ m,
F ∗ : C−∞(U ′) −→ C−∞(U),

F ∗ : C−∞c (U ′) −→ C−∞c (U).

Proof. We need first to recall the behaviour of integrable functions
under diffeomorphisms. If f ∈ L1

c(U
′) then indeed, F ∗f ∈ L1

c(U), and
the integrals are related by

(19)

∫
U

F ∗fJF =

∫
U ′
f, JF = | det(

∂Fi
∂xj

)|.

In particular there is no sign change in the Lebesgue integral if one
reverses one of the variables.

Perhaps I should recall a little where (19) comes from, but it is of
course a very standard formula.

This immediately extends to L2 since a function u ∈ L2
c(U

′) is just
one such that u, |u|2 ∈ L1

c(U
′). This gives the second result in (18) for

m = 0.
Continuing with this case, consider 0 < m < 1. Since we are looking

at functions with compact support, u ∈ Hm
c (U ′) then means that u ∈

L2
c(U

′) and ∫
U ′×U ′

|u(x)− u(y)|2

|x− y|n+2m
dxdy <∞.

In fact, if δ > 0 then for an L2 function of compact support, () is
equivalent to

(20)

∫
U ′×U ′, |x−y|<δ

|u(x)− u(y)|2

|x− y|n+2m
dxdy <∞.

Indeed, the integral over |x− y| ≥ δ can be bounded by twice

(21) 2

∫
U ′×U ′, |x−y|>δ

|u(x)|2

|x− y|n+2m
dxdy

which is indeed finite. So, given u ∈ Hm
c (U ′) to show that F ∗u ∈

Hm
c (U) it remains only to show that

(22)

∫
K×K, |x−y|<δ

|u(F (x))− u(F (y))|2

|x− y|n+2m
dxdy <∞
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where K b U. Using Taylor’s formula

(23) F (x)−F (y) = (x−y)·∂F
∂x

+E, |E(x, y)| ≤ C|x−y|2 in |x−y| ≤ δ

uniformly over x ∈ K if δ > 0 is small enough. Since the Jacobian
matrix is invertible it follows that

|x− y| ≥ c|F (x)− F (y)| on K ×K ∩ {|x− y| < δ}.
Thus instead of (22) it is enough to show that

(24)

∫
K×K, |x−y|<δ

|u(F (x))− u(F (y))|2

|F (x)− F (y)|n+2m
Jf (x)Jf (y)dxdy <∞

since the Jacobian factors are strictly positive. Now we simply change
variable as in (19) and the finiteness follows from ().

Now suppose that k ≤ m < k + 1 for k ∈ N. We can proceed by
induction over k using the fact that u ∈ Hm

c (U ′) is equivalent to

u, Diu ∈ Hm−1
c (U ′), i = 1, . . . , n.

Thus, by the inductive hypothesis, it follows that F ∗u, F ∗(Diu) ∈
Hm−1

c (U). However, the behaviour of derivations is simple, in that

(25) DiF
∗u =

n∑
j=1

aij(x)F ∗(Dju)

where the coefficients are again essentially the Jacobian matrix, in any
case are smooth. Since we know the compactly-supported Sobolev
spaces are modules over C∞(U), we conclude that u ∈ Hm

c (U) and the
result follows for all m ≥ 0.

The proof for m < 0 is similar, since if −k < m < −k + 1, k ∈ N,
then u ∈ Hm

c (U ′) is equivalent to being able to decompose it as a sum

u = v0 +
n∑
i=1

Divi, vp ∈ Hm+1
c (U ′).

The same sort of inductive argument therefore applies.
Thus we have proved the second statement in (18). The last is a

consequence since each compactly supported distribution is in some
Sobolev space. The first and third identifications then follow from the
second and last by a suitable localization argument. �


