LECTURE 17, 18.155, 5 NOVEMBER 2013

The first thing I want to talk about in relation to half-spaces and
bounded domains is the restriction theorem for Sobolev spaces. So
consider the embedding map

(1) E:R"!'32 +— (2/,0) € R™

Pullback under this is the restriction map, R = E*, Rf(2') = f(2/,0) =
foF.

Proposition 1. The restriction map

(2) R:S[R") 3 ¢+ ¢(-,0) € S(R™ )

extends by continuity to a surjective bounded map

1 1
(3) H™(R") — H" HR™) ¥V m > .

Proof. The Fourier transform of the restriction to z,, = 0 of a Schwartz
function can be written in terms of the Fourier transform:

(1) RaE) = / e i4€ o' 0)de’ = (27)"! / e € e

Now, for functions in H™(R"™) with Fourier tranform supported in
{|¢| < 1} the result is clear, since the restriction also has Fourier tran-
form with support in the ball and so is in H*(R"™!). So, we may
assume that & = 0 in {|¢{| < 1} and that the same is true of an ap-
proximating sequence in S(R™). Thus it suffices to estimate the norm
of in H™ Y(R"!) under this assumption.

The integral may be estimated by Cauchy Schwartz’ inequality, aim-
ing at the H™ norm:

(5)
| / e E)dE? < / (. € PUEL + a2 e, / (€12 + €a?) e,

where the second integral is finite proved m > % as we are assuming.
Then it can be evaluated by scaling

() [ 6P + 1) e, = g2, e
Inserting this in shows that

M IRy < [ 1677 [ 9666 < Clam
1
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using the support property of the Fourier tranform. This proves .
For the converse we will construct a right inverse to R. If v €
H™ 2(R™) then

©) | arlepmaepas < o

and all we need to do is to construct w € L?(R") with

[ e leppmw©Pds < oo, v) = 207 [ we' g)d

Choose 0 < ¢ € CX(R) with [ ¢ = 1. For part of ¥ supported in
|€’| < 27 such an extensmn is given by

w(', ) = ¢(fn)X{\5'\§1}@(f/)

since this is in H*(R"). So, really just for notation convenience, we
can assume that 0(£') = 0 in || < 1. Then we use the same idea, but
‘spread the support’:

(9) w(&, &) = ( )€ ().
Then

(10)

€]

/ et -1y —
/Rw(f,fn)dfn—lfl /%, g, = 0(&),

/ P (e &) Pdg,de’ = / o(e)? / (6 + Py |23 Pag e’
R™ n-1 R

'l
where the inner integral is actually a constant multiple of |¢'|?"~1. [

We do not actually need m > % to find a right inverse in the last
part of the argument — even for m < 1 if v € H™ 2 (R"!) there is
a distribution u € H™(R™) which happens to have the property that
u(+, z,) is continuous in x,, with values in distributions, which restricts
to v at x, = 0. If I have some time later I will discuss this sort of thing
a bit more.

The remainder of this lecture is reconstructed after the event.

A diffeomorphism between open sets, U, U’ C R", is a smooth map
with a smooth two-sided inverse, F' : U — U’, G : U' — U, F(z) =
(fiseos fu), G(2) = (g1(2), .., ga(@)) with f; € CP(U), g; € C=(U')

(real-valued of course) and

(11) F(Gly)=yVyelU,6 G(F(x))=xzVaxeUl.
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For any smooth map, the pull-back operation is defined by compo-
sition:

(12) F*:C®U') — C=(U), F*f(z) = f(F(x)).

Then F is a diffeomorphism if and only if is a bijection — since the
components of G are the functions which pull-back to the coordinate
functions on U.

The tangent space of R" at a pont p may be defined as the space of
derivations of C*(O) for any open O > p, the linear maps

(13) TR" ={6:C*(0) — C, s.t. 0(fg) = f(p)d(g) + g(p)d(f)}-

Such a derivation if just a sum of the basic derivations

of ), 522@'@'

Thus the standard coordinates give a natural trivialization 7,R" = R".
If F: U — U’ is smooth then its differential at p is

(15)

F.:T,R" — TpyR", F.(0) =¢", &' :C*(U') — R, §'(g9) = 6(F™g).

(14) 8; 1 C>(0)

Clearly as a map in terms of the coordinate trivialization this is given
by the Jacobian matrix

(16) Z 8:61 (p)).

If F is a diffeomorphism, then F, must be invertible at each point,
with inverse G.(f(p)). Conversely, the inverse function theorem im-
plies that if F : O — R" is smooth and F.(p) is invertible then
F : B(p,e) — F(B(p,¢)) is a diffeomorphism of open sets for ¢ > 0
small enough.

Now, if F': U — U’ is a diffeomorphism then, not only does
hold, but also

(17) F*: C2(U") —s C®(U)

is an isomorphism, since F' maps compact subsets of U onto (all) com-
pact subsets of U’. These two spaces are dense in the distribution spaces
so it makes sense to claim:
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Proposition 2. For any diffeomorphism F : U — U’. the maps (17))
and extend by continuity to isomorphisms

F*: Hi (U') — Hyg,(U),
F*: H™U') — H™U) ¥V m,

Fr:C2(U") — C~=(U),

F o eo(U") —s ¢ (U).

(18)

Proof. We need first to recall the behaviour of integrable functions
under diffeomorphisms. If f € L(U’) then indeed, F*f € L(U), and
the integrals are related by

OF;

5l

(19) /UF*fJF: U/f, JF:|det(

In particular there is no sign change in the Lebesgue integral if one
reverses one of the variables.

Perhaps I should recall a little where comes from, but it is of
course a very standard formula.

This immediately extends to L? since a function u € L2(U’) is just
one such that u, |u|* € LL(U"). This gives the second result in for
m = 0.

Continuing with this case, consider 0 < m < 1. Since we are looking

at functions with compact support, u € H*(U’) then means that u €
L2(U’) and

. 2
[ G
U’ xU’

|z — y[rr2m

In fact, if § > 0 then for an L? function of compact support, () is
equivalent to

_ 2
(20) / dedy < 00.
U'xU’, |x—y|<é

|z — y| 2

Indeed, the integral over |x — y| > 0 can be bounded by twice

|u(z)[*

IxU', |z—y|>6 lz—y

which is indeed finite. So, given u € H(U’) to show that F*u €
H™(U) it remains only to show that

2 téwl_mwwmw—mmwwww<m

‘QZ’ _ y‘n+2m
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where K € U. Using Taylor’s formula
oF

(23) F(z)=F(y) = (z~y) 5 +E, |[Ez,y)] < Clz—y[* in [a—y| <&

uniformly over x € K if § > 0 is small enough. Since the Jacobian
matrix is invertible it follows that

|z —y| > c|F(x) — F(y)| on K x KN{|z—y| <}
Thus instead of it is enough to show that

u(F(z)) —u(F(y))?
(24) /KXK’ ostes [F@) — Py Jp(x)Jp(y)dady < oo

since the Jacobian factors are strictly positive. Now we simply change
variable as in and the finiteness follows from ().
Now suppose that £k < m < k+ 1 for £ € N. We can proceed by
induction over k using the fact that u € H*(U’) is equivalent to
u, Dju € H™1(U"), i=1,...,n.

Thus, by the inductive hypothesis, it follows that F*u, F*(D;u) €
H™ Y(U). However, the behaviour of derivations is simple, in that

(25) DiF*u =Y a;(x)F*(Dju)
j=1

where the coefficients are again essentially the Jacobian matrix, in any
case are smooth. Since we know the compactly-supported Sobolev
spaces are modules over C*(U), we conclude that u € H(U) and the
result follows for all m > 0.

The proof for m < 0 is similar, since if —k <m < —k+ 1, k € N,
then u € H*(U’) is equivalent to being able to decompose it as a sum

n
U = vy + ZDivia Vp S Hén_'—l(U,).
i=1
The same sort of inductive argument therefore applies.

Thus we have proved the second statement in (18]). The last is a
consequence since each compactly supported distribution is in some
Sobolev space. The first and third identifications then follow from the
second and last by a suitable localization argument. 0



