
LECTURE 13, 18.155, 22 OCTOBER 2013

Operators on Hilbert space.
In the next three lectures I will go through the basic results on oper-

ators on Hilbert space before returning to the behaviour of particular
differential operators. I am assuming that everyone has some famil-
iarity with the basic properties of Hilbert space itself, so I shall just
describe these very quickly.

(1) Hermitian (sesquilinear) form on a vector space V over C is a
map

〈·, ·〉 : V × V −→ C s.t.

〈av1 + bv2, w〉 = a〈v1, w〉+ b〈v2, w〉 ∀ a, b ∈ C, v1, v2, w ∈ V and

〈v, w〉 = 〈w, v〉 ∀ v, w ∈ V.

Thus the form is linear in the first variable, and using the second
‘Hermitian symmetry’ identity, it is ‘antilinear’ in the second
variable. We are interested in positive definite forms of this
type, i.e. such that

(1) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 =⇒ v = 0.

From this Cauchy’s inequality follows

(2)
‖v‖ = |〈v, v〉|

1
2 is a norm and

|〈v, w〉| ≤ ‖v‖‖w‖ ∀ v, w ∈ V.

Really the first part follows from the second (which you can
prove by expanding out 0 ≤ 〈v + sw, v + sw〉.

So, a vector space with such a Hermitian inner product is
a pre-Hilbert space and a Hilbert space if it is complete with
respect to the norm.

(2) A norm comes from an inner product if and only if the paral-
lelogram law holds

(3) ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

(3) As for any Banach space a linear map A : H −→ N for any
normed space is continuous if and only if it is bounded in the
sense that

‖Au‖ ≤ ‖A‖‖u‖, ‖A‖ = inf
‖u‖=1

‖Au‖N <∞.
1
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This turns the linear space of such ‘operators’ into a normed
space which is a Banach space if N is Banach.

(4) An orthonormal set – in which each element has norm 1 and
district elements are orthogonal in the sense that 〈v, w〉 = 0 – is
complete if the only element of H orthogonal to all elements of
the set is 0. A separable Hilbert space (having a countable dense
subset) has a (n at most) countable orthonormal set, called an
orthonomal basis (Gram-Schmidt).

(5) Bessel’s inequality – if {ei} is a finite orthonormal set then

(4)
∑
i

|〈u, ei〉|2 ≤ ‖u‖2 ∀ u ∈ H.

(6) If H is a separable Hilbert space and {ei} is an orthonormal
basis then

(5)

‖u‖2 =
∑
i

|〈u, ei〉|2 and

u =
∑
i

〈u, ei〉ei converges in H ∀ u ∈ H.

This is the Fourier-Bessel series.
(7) If S ⊂ H is a closed, non-empty set in a Hilbert space which is

convex in the sense that if u, v ∈ S then 1
2
(u+v) ∈ S then there

is a unique element s ∈ S of minimal length. The proof uses
the parallelogram law and this result is not true in a general
Banach space.

(8) Riesz Representation: The dual space of a Hilbert space (the
linear space of bounded linear functionals) is isometrically iso-
morphic to H̄ (which is H with the complex structure and inner
product reversed). The second dual is naturally isomorphic to
H.

(9) Any bounded operator A : H −→ H on a Hilbert space has a
unique adjoint operator satisfying

〈Au, v〉 = 〈u,A∗v〉 ∀ u, v ∈ H and ‖A∗‖ = ‖A‖.
(10) For any W ⊂ H which is a closed subspace there is a well-

defined projection operator PW with PWH = W and P 2
W =

PW = P ∗W . Then Id−PW is the orthogonal projection onto W⊥,

H = W ⊕W⊥.

(11) A sequence uj in H converges weakly if 〈uj, v〉 converges for
each v ∈ H. It follows that uj is bounded and that there exists
a unique weak limit u ∈ H such that 〈uj, v〉 → 〈u, v〉 for all
v ∈ H. This is written uj ⇀ u. The weak limit satisfies ‖u‖ ≤
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lim inf ‖uj‖ and if uj ⇀ u then u → uj if and only if ‖uj‖ →
‖u‖.

(12) Bounded sets in a separable Hilbert space are weakly precom-
pact, i.e. any bounded sequence has a weakly convergent sub-
sequence.

(13) Heine-Borel replacement. A subset U of a Hilbert space is com-
pact if and only if it is closed and bounded and for each ε > 0
there is a finite-dimensional subspace F ⊂ H such that

sup
u∈U

inf
f∈F
‖u− f‖ < ε.

Proof: If U is compact then the open cover by the ε-balls around
each point of U have a finite subcover. The linear span of the
centres is a finite dimensional subspace F and by the covering
property (13) holds.

Conversely if U is closed and bounded then the projection
PFU onto F is bounded and hence any sequence in U has a
subsequence which projects to a convergent sequence in F, since
finite-dimensional Hilbert spaces do satisfy Heine-Borel. Start-
ing with a sequence uk in U, take ε = 1/n for which there is a
finite dimensional space Fn and extract successive subsequences
so that PFnun,p converges in Fn. Here un,p is a subsequence of
un−1,p for each n with u0,p = up. Now, take the diagonal se-
quence vk = uk,k. It is a subsequence of uk and by construction
PFnvk converges in Fn for each n – since convergence is a prop-
erty of the tail and vk is ‘eventually’ a subsequence of un,p. Since
every element of vk is distant at most 1/n from Fn it follows
from the triangle inequalty

‖vk − vj‖ ≤ ‖vk − Pnvk‖+ ‖Pnvk − Pnvj‖+ ‖Pnvj − vj‖
that vk is Cauchy so converges by the completeness of H.

(14) The bounded operators B(H), on H form a Banach-?-algebra,
so if A, B ∈ B(H) then

A∗ ∈ B(H), AB ∈ B(H), ‖AB‖ ≤ ‖A‖‖B‖.
(15) Norm convergence of operators is defined with respect to the

Banach space structure on B(H) and strong convergence is de-
fined for a sequence An ∈ B(H) by the condition that Anu →
Au (in the norm topology on H) for each u ∈ H. In fact it
is enought just to require the convergence of Anu for each u
since it follows that Au is well-defined, that it is linear and its
boundedness follows from the uniform boundedness principle
(Banach-Steinhaus).
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(16) Open Mapping, Closed Graph theorems. A linear map A :
H −→ H is bounded if and only if its graph

Gr(A) = {(u,Au);u ∈ H} ⊂ H ×H
is closed. If A ∈ B(H) is surjective then it is open in the sense
that A(O) ⊂ H is open for each O ⊂ H open. In particular if
A ∈ B(H) is a bijection then its inverse is continuous.

(17) For A ∈ B(H) the resolvent set is

res(A) = {z ∈ C;A− z Id is a bijection}.
By the open mapping theorem the resolvent (A−z Id)−1 ∈ B(H)
is defined for z ∈ res(A) which, using a Neumann series argu-
ment, is open and contains the region |z| > ‖A‖. The comple-
ment, the spectrum spec(A) ⊂ C is therefore compact and if z
is an eigenvalue, i.e. A− z Id is not injective, then z ∈ spec(A),
in general the spectrum is larger than the set of eigenvalues.
The resolvent is a holomorphic map from res(A) to B(H).

(18) By definition an operator is of finite rank if its range is finite
dimensional. It can then be written in the form

(6) Au =
N∑
i=1

〈u, vi〉wi

for some elements ui, vi of H. The operators of finite rank for
a two-sided ?-closed ideal in B(H).

(19) An operator A ∈ B(H) is compact if the closure of A(B(0, 1)),
the image of the unit ball, is compact. These operators form a
two-sided ?-closed ideal K(H) ⊂ B(H) which is the closure of
the ideal of finite-rank operators.

(20) For a compact operator the spectrum is of the form D ∪ {0}
where D ⊂ C \ {0} is a discrete set (possibly empty) consisting
of eigenvalues; {0} may or may not be an eigenvalue. In par-
ticular there are quasi-nilpotent compact operators which have
spectrum just consisting of {0} but have no eigenvalues. The
generalized eigenspace for A ∈ K(H) and z 6= 0,

(7) {u ∈ H; (A− z Id)Nu = 0 for some N} is finite-dimensional.


